
Mars ZX3 eCos manual

Antmicro Ltd

Aug 04, 2017

Contents

1 Introduction 1
1.1 ECos . 1
1.2 This document . 1
1.3 Acknowledgements . 1
1.4 Licence . 2
1.5 Supported features . 2
1.6 Version information . 3

2 Compiling the system 4
2.1 Prerequisites . 4
2.2 Source code and configuration files . 5
2.3 Building eCos . 5

3 RedBoot 10
3.1 Building RedBoot . 10
3.2 Ethernet support in RedBoot . 10
3.3 SPI Flash support in RedBoot . 11

4 Usage 12
4.1 Building a boot image file . 12
4.2 Loading binaries to the module . 13
4.3 QSPI Test . 13
4.4 I2C Test . 14

5 Appendix 1: Clock speeds 15

6 Appendix 2: MMU mappings for custom IP cores 17

i

CHAPTER 1

Introduction

This is a port of the eCos 3.0 real-time operating system for Enclustra’s Mars ZX3 Zynq module.

ECos

ECos is a configurable real-time operating system intended for use in embedded applications.
The documentation for eCos 3.0, which is the most recent version of the system as well as the one
ported to Mars ZX3, can be found at http://ecos.sourceware.org/docs-3.0/.

This document

For the most part, this document describes features specific to the Mars ZX3 port, however it also
contains some information which do not directly refer to the port but may be helpful in working
with the system.

Acknowledgements

We would like to thank Enclustra GmbH (http://enclustra.com) for co-sponsoring the port as well
as Richard Rauch (http://www.itrgmbh.de) for his help in the porting effort.

The remarks of Garry Jeromson and Christoph Glattfelder of Enclustra GmbH, the manufacturer
of the module, have been extremely helpful in making this document more complete and accurate.

1

http://www.enclustra.com/en/products/system-on-chip-modules/mars-zx3/
http://ecos.sourceware.org/docs-3.0/
http://enclustra.com
http://www.itrgmbh.de

1.4. Licence

Licence

(based on the eCos licence overview)

ECos is released under a modified version of the well known GNU General Public License (GPL).
The eCos license is officially recognised as a GPL-compatible Free Software License. An exception
clause has been added which limits the circumstances in which the license applies to other code
when used in conjunction with eCos. The exception clause is as follows:

As a special exception, if other files instantiate templates or use macros or inline func-
tions from this file, or you compile this file and link it with other works to produce a
work based on this file, this file does not by itself cause the resulting work to be covered
by the GNU General Public License. However the source code for this file must still be
made available in accordance with section (3) of the GNU General Public License.

This exception does not invalidate any other reasons why a work based on this file
might be covered by the GNU General Public License.

The license does not require users to release the source code of any applications that are devel-
oped with eCos.

Supported features

This eCos port provides the following software packages specific for Enclustra’s Mars ZX3 Zynq
module:

• HAL package

• cache support

• debug UART driver

• serial port driver

• Ethernet driver

• I2C driver

• QSPI Flash driver

• RedBoot with Ethernet and Flash support

Mars ZX3 eCos manual 2

http://ecos.sourceware.org/license-overview.html
http://www.gnu.org/copyleft/gpl.html

1.6. Version information

Version information

Author Content Date Ver-
sion

Michael Gielda Draft version 10.09.2012 0.1
Michael Gielda Preliminary release 15.09.2012 0.2
Ziemowit Borowski First release 25.09.2012 0.3
Michael Gielda Review 26.09.2012 0.4
Michael Gielda Corrections; ecc files; Appendix 1 28.09.2012 0.5
Michael Gielda Updates for secondary release 10.10.2012 0.6
Mateusz
Majchrzycki

Added section on building a boot image 25.10.2012 0.6.1

Michael Gielda Corrections 25.10.2012 0.6.2
Karol Gugala Minor Updates 10.01.2013 0.6.3
Michael Gielda Updates to feature test feedback 11.01.2013 0.7
Michael Gielda Fixes for readthedocs 18.04.2013 0.7.1
Michael Gielda Feedback from the community 10.08.2013 0.7.2
Michael Gielda Appendix 2: MMU mappings for custom IP

cores
15.08.2013 0.7.3

Mars ZX3 eCos manual 3

CHAPTER 2

Compiling the system

The port was prepared using Gentoo, Debian and Ubuntu Linux environments. The procedures
described here should also work on other systems, but if you detect any errors or ommissions
please e-mail us at contact@antmicro.com.

Prerequisites

Toolchain

The toolchain used to compile the port is Sourcery G++ Lite 2011.03-42, and can be obtained from
the Mentor Graphics website.

It should be decompressed so that its bin directory is included in the PATH variable. The proper
availability of the toolchain can be checked by finding out if arm-none-eabi-gcc is available
from the shell.

ecosconfig

The ecosconfig tool, available from the eCosCentric website, is used to generate the build tree
from the main repository and is a mandatory requirement. ecosconfig requires the tcl compiler
to work. For Debian or Ubuntu development platforms the proper package is named tcl8.5,
you can install it using: sudo apt-get install tcl8.5. For Gentoo platforms the package
is named dev-lang/tcl, you can install it using: sudo emerge dev-lang/tcl.

4

mailto:contact@antmicro.com
https://sourcery.mentor.com/sgpp/lite/arm/portal/release1802
http://www.ecoscentric.com/snapshots/ecosconfig-100305.bz2

2.2. Source code and configuration files

configtool (optional)

configtool is an optional GUI tool to facilitate the creation of eCos configuration tools files. It
also may be downloaded from eCosCentric.

Warning: ecosconfig and configtool are 32bit applications, thus if you are using a 64bit
OS you have to provide 32bit run-time libraries for compatibility. In a Ubuntu/Debian OS
these could be installed using the command sudo apt-get install ia32-libs.

Source code and configuration files

The source of the port is provided on github.

By default, two general purpose configuration files are provided with the release. See Ready-made
.ecc files for details.

Building eCos

Using ecosconfig

The main tool used for building the eCos operating system is ecosconfig (see Prerequisites). The
source tree of eCos, called eCos repository (like for example the source code tree provided in this
release) is not built directly but instead first trimmed down and configured to suit the needs of
a specific user and platform using ecosconfig. This static pick-and-build procedure allows the
user to exclude these elements of the system which are not necessary, thus reducing the memory
footprint. This mechanism also enables easy configuration of system-wide variables and driver
specific features.

What exactly can be included, excluded or configured is determined by the contents of .cdl files
residing side by side with all source files in the eCos repository (usually in the cdl directory on
the same level as the src directory of a given package, like a driver for a particular interface).

Package list

The available packages which can be used in configuring eCos for Mars ZX3 are provided below,
together with explanations which is responsible for what:

• CYGPKG_HAL_ARM_XC7Z - Xilinx Zynq 70XX series specific infrastructure

• CYGPKG_HAL_ARM_XC7Z020 - Xilinx Zynq 7020 EPP specific infrastructure

• CYGPKG_HAL_ARM_MARS_ZX3 - Enclustra Mars ZX3 module specific infrastructure

• CYGPKG_DEVS_ETH_ARM_XC7Z - Xilinx Zynq Ethernet (Cadence GEM) driver

• CYGPKG_DEVS_I2C_ARM_XC7Z - Xilinx Zynq I2C (XIIC) driver

Mars ZX3 eCos manual 5

http://www.ecoscentric.com/snapshots/configtool-100305.bz2
https://github.com/antmicro/ecos-mars-zx3

2.3. Building eCos

• CYGPKG_IO_SERIAL_ARM_XC7Z - Xilinx Zynq serial port driver

• CYGPKG_DEVS_QSPI_ARM_XC7Z - Xilinx Zynq QSPI driver

• CYGPKG_DEVS_FLASH_SPI_M25PXX - M25P Flash driver modified to support Winbond
W25Q series Flash memories.

.ecc files

The output of ecosconfig are .ecc (eCos Configuration) files which are in essence tcl scripts
storing all the information on what elements will be included in the system image and how they
will be configured. A handbook on ecosconfig exists to help in the manual creation of ecc files.

While creating .ecc files from scratch is possible, there exist several methods of making the pro-
cess much simpler.

Templates and configtool

configtool (see Prerequisites) allows the user to build the system however they want using a
graphical user interface, provided constraints in .cdl files describing the system structure are
maintained.

While creating a new .ecc file it is easier to also use a predefined template representing common
use scenarios, such as posix which represents a system which has all the necessary packages to run
typical POSIX programs or redboot which understandably is used to build a binary of RedBoot,
the eCos bootloader.

The supported templates are:

• default

• minimal

• all

• kernel

• lwip_net

• net

• posix

• redboot

In order to select a template to base upon, use build -> templates. The necessary packages can be
added from build -> packages.

Warning: Remember that the templates are just general scenarios, which may contain settings
incompatible with the desired ones (baudrates, console mangling, debug console choice, pres-
ence of RedBoot ROM monitor). It is necessary to tweak them according to your needs. If you
want to use a network connection through the Zynq Gigabit Ethernet Controller you

Mars ZX3 eCos manual 6

http://ecos.sourceware.org/docs-3.0/user-guide/using-ecosconfig-on-linux.html

2.3. Building eCos

Fig. 2.1: Configtool showing some of ZX3 specific options, such as the Micrel PHY

Mars ZX3 eCos manual 7

2.3. Building eCos

have to enable at least one Ethernet tranceiver (PHY) support as presented in the fig-
ure entitled Configtool showing some of ZX3 specific options, such as the Micrel PHY

Ready-made .ecc files

Two ready-made .ecc files will be provided with this distribution. The first one,
mars_zx3_ecos.ecc, can be used to build the eCos kernel, to be linked against by a user application
The other, mars_zx3_redboot.ecc, can be used to build RedBoot (see RedBoot).

Building the kernel

Provided an .ecc file is generated properly (or supplied from outside), eCos can now be compiled
to include all the elements and options as selected in the file. A short shell script is proposed to
make the compilation process easier:

Making the eCos kernel script.

export ECOS_REPOSITORY="{path/to/repository}/packages"
export PATH="$PATH:{path/to/toolchain}/bin"

mkdir -p build
rm -rf build/*
cd build

../ecosconfig --config=../mars_zx3_ecos.ecc tree
make

The resulting kernel files can be found in build/install/lib.

Building tests

The system features a testing mechanism where particular drivers and system abstractions can be
checked for proper functioning.

The tests reside in the respective directories, for example devs/i2c/arm/xc7z/current/
tests/i2ctest.c (the test that can be used to check if I2C runs properly - see I2C Test).

Building all tests is very simple, it is enough to use make tests instead of make in a procedure
like the one above. The compiled test binaries reside in the respective directories, like build/
install/tests/devs/i2c/arm/xc7z/current/tests/i2ctest

Warning: Remember that tests are built only if the corresponding setting is enabled in the
.ecc used file. Tests cannot be generated for the redboot template, as they are in essence eCos
applications.

Mars ZX3 eCos manual 8

https://github.com/antmicro/ecos-mars-zx3/blob/master/mars_zx3_ecos.ecc
https://github.com/antmicro/ecos-mars-zx3/blob/master/mars_zx3_redboot.ecc

2.3. Building eCos

Building an eCos application

With a compiled kernel files in the build/install/lib directory (see Building the kernel), a user
space eCos application can be compiled and linked to it.

Building user space application script.

Set paths.
KPATH="/path/to/kernel/build/directory" # modify this
TPATH="/path/to/toolchain/bin/directory" # modify this

Set compiler path.
export PATH=${TPATH}:${PATH}

Application source code.
FILES="file1.c file2.c file3.c"

Set compiler options.
OPT="-mcpu=cortex-a9 -Wpointer-arith -Winline -Wundef -g -O2 \

-nostdlib -ffunction-sections -fdata-sections -fno-exceptions"

Do compilation and link your application with kernel.
arm-none-eabi-gcc -g -I./ -g -I${KPATH}/install/include ${FILES} \
-L${KPATH}/install/lib -Ttarget.ld ${OPT}

Mars ZX3 eCos manual 9

CHAPTER 3

RedBoot

RedBoot is the eCos bootloader that shares the driver infrastructure with eCos. It is, however, not
limited to booting eCos and can just as well work as a standalone bootloader for other types of
binaries. It has several interesting functionalities, such as support for Ethernet and SPI Flash.

Building RedBoot

To build RedBoot, prepare an .ecc based on the RedBoot template and build as normal (see
Building the kernel). A RedBoot binary (in the ELF format) will reside in build/install/bin/
redboot.elf.

Warning: If you built your system using the RedBoot template from scratch (not using an
.ecc file) and use the none-eabi compiler like the one suggested in this manual, you need to
set the -fno-builtin compiler option. Otherwise a runtime error occurs.

Ethernet support in RedBoot

Ethernet in RedBoot can be used to download and run files on the ZX3 board, ping it or telnet to
it. Remote boot via tftp is possible. A blog note will be written on use of Ethernet in RedBoot on
Enclustra Mars ZX3.

By default, the board will use DHCP to acquire the IP address, this is however fully configurable
before compiling the system as well as at runtime.

10

3.3. SPI Flash support in RedBoot

Warning: If you plug in the Ethernet cable after the system is booted, you will not be able
to receive data until some data is sent first and the linkup can be detected. This is because
RedBoot does not support interrupts.

IP setting in .ecc

The IP address of the board can be set using the value Redboot ROM monitor → Build redboot ROM
ELF image → Redboot Networking → Default IP address in configtool.

If DHCP is to be used, select Use DHCP to get IP information; otherwise uncheck it.

Also Use a gateway fot non-local IP traffic → Default gateway IP address and Use a gateway fot non-local
IP traffic → Default IP address mask may be of interest.

IP setting at runtime

The following commands can be used to manipulate the IP address at runtime:

• ip_address -l <local_addr> - set static IP address

• ip_address -h <server_address> - set the IP address of the server to boot from

• ip_address -b - get IP address from DHCP

SPI Flash support in RedBoot

A Flash Image System (FIS) can be created with RedBoot and subsequently modified. RedBoot
can perform self-modification, put ELF files there and run them, etc. A blog note will be written
on use of Flash in RedBoot on Enclustra Mars ZX3.

Mars ZX3 eCos manual 11

CHAPTER 4

Usage

After building a eCos kernel (see Building the kernel), a user application must be linked against
it to produce a runnable program (see Building an eCos application). The program can be directly
uploaded to the module (see Loading binaries to the module) or included in a boot image file (see
Building a boot image file).

Building a boot image file

The boot image is the file which is used to program the Flash memory on the Mars ZX3 module.
The boot image contains the FSBL (First Stage Bootloader), the SLCR configuration data for the
Zynq EPP, the bitstream for the PL and the user application or the Second Stage Bootloader. Only
the FSBL is required to create the boot image. Other components are optional. The boot image file
is built with the bootgen tool from the Xilinx Design Suite. To create the image, a simple text file
in the .bif format, containing a list of files used in the process, is needed. An example .bif file
is presented below:

the_ROM_image:
{

[bootloader]fsbl.elf
system_top.bit
redboot.elf

}

The filenames used in the .bif file may also contain an absolute path if they are located in another
directory than the .bif file. Next, bootgen should be used to build the boot image:

bootgen -image bootimage.bif -o i output.bin

12

4.2. Loading binaries to the module

After the boot image is created, it may be uploaded to the Mars ZX3 module using the Enclustra
MCT software. Further details about the process of creating a boot image can be found in the Zynq-
7000 EPP Software Developers Guide on page 29.

Loading binaries to the module

Binaries can be loaded to the ZX3 module using a Xilinx JTAG, xmd and gdb. A non-Xilinx JTAG
with openocd can also be used; this will be the subject of an upcoming blog note in the Zynq
series. What follows is a simple procedure that can be used to run a precompiled binary on the
ZX3 module.

Note: The special gdb commands were removed since the primary release as they are no longer
needed, and thus the procedure does not differ from uploading binaries to any other board.

1. Run xmd and gdb in separate terminals.

2. Connect to the board with xmd using connect arm hw.

3. Upload the binary with gdb using the commands load [elf filename] and c (con-
tinue).

QSPI Test

The W25Q QSPI Flash test contains a test case repeatedly erasing and filling the onboard Winbond
W25Q QSPI Flash with a checkerboard and inverse checkerboard of 0xAA and 0x55. It is based
on a test for a similar, very popular model of Flash memory, the M25Q, which is part of the eCos
mainline (packages/devs/flash/spi/m25pxx/test/m25pxx_test.c).

Since the Flash on board of the ZX3 module contains a bitstream and FSBL, which need an exter-
nal program to replace, the test does not modify the part of the Flash (memory addresses under
0x00400000). This is a feature peculiar to this platform which would require changes not only to
header definitions but in several places inside the test, so the M25P test was not modified and
instead a w25qxx_test.c file is provided separately with the distribution.

The file can be compiled as a user-space eCos program linked against a kernel with Flash support
(i.e. a kernel built with CYGPKG_IO_FLASH in the cdl_configuration part on the top of the ecc
file). The compilation procedure for a user-space application can be found in Building an eCos
application.

This is a good way to test such a compilation procedure, however, for convenience, a binary of the
test (w25qxx_test) is also included in the package.

Mars ZX3 eCos manual 13

http://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdg.pdf
http://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdg.pdf

4.4. I2C Test

I2C Test

The test mimicks the functioning of the Xilinx BSP-based test provided for the ZX3 module by
Enclustra, i.e. communicates with the on-board EEPROM to read module data and then tests the
RTC, both of which reside on the module and are connected to the I2C bus. The test is part of the
standard eCos test suite and will be built using the procedure described in Building tests for any
.ecc which includes the I2C package (CYGPKG_IO_I2C).

Mars ZX3 eCos manual 14

CHAPTER 5

Appendix 1: Clock speeds

The default CPU clock frequency on the MARS ZX3 board is 400MHz. The RTC system timer
is clocked by CPU frequency divided by 4. The required timer interrupt period is 1ms. System
initialization parameters are set as described above in: packages/hal/xc7z/var/current/
cdl/hal_arm_xc7z.cdl:

Clock settings

cdl_option CYGHWR_HAL_ARM_SOC_PROCESSOR_CLOCK {
display "Processor clock rate"
flavor data
default_value 400000000
description "

The processor can run at various frequencies.
These values are expressed in Hz. It's the CPU frequency."

}

cdl_component CYGNUM_HAL_RTC_CONSTANTS {
display "Real-time clock constants"
flavor none

cdl_option CYGNUM_HAL_RTC_NUMERATOR {
display "Real-time clock numerator"
flavor data
default_value 1000000000

}
cdl_option CYGNUM_HAL_RTC_DENOMINATOR {

display "Real-time clock denominator"
flavor data
default_value 1000

}
cdl_option CYGNUM_HAL_RTC_CPU_CLOCK_DIVIDER {

display "Divider of CPU frequency distributed to RTC"
flavor data
default_value 4

}

cdl_option CYGNUM_HAL_RTC_PERIOD {
display "Real-time clock period"
flavor data
calculated ((CYGHWR_HAL_ARM_SOC_PROCESSOR_CLOCK/

CYGNUM_HAL_RTC_CPU_CLOCK_DIVIDER)/
CYGNUM_HAL_RTC_DENOMINATOR)

description "Value to program into the RTC clock generator. \
OS timer must be 1 ms."

}
}

15

CYGNUM_HAL_RTC_NUMERATOR and CYGNUM_HAL_RTC_DENOMINATOR determine
that the timer interrupt period is:

CYGNUM_HAL_RTC_NUMERATOR/CYGNUM_HAL_RTC_DENOMINATOR nanoseconds.

CYGNUM_HAL_RTC_PERIOD is a value written directly to the clock di-
vider to obtain the required interrupt frequency. It is calculated just like
the CPU clock using the CYGHWR_HAL_ARM_SOC_PROCESSOR_CLOCK,
CYGNUM_HAL_RTC_CPU_CLOCK_DIVIDER and CYGNUM_HAL_RTC_DENOMINATOR
values.

Mars ZX3 eCos manual 16

CHAPTER 6

Appendix 2: MMU mappings for custom IP cores

This port is aimed at a highly configurable Zynq platform, where the user is free to create custom
connections through the FPGA fabric to peripherals which can then be accessed via memory using
mappings.

The port features only a basic set of mappings to support the fixed onboard peripherals while any
custom mappings have to be done manually to reflect the bistream configuration of the FPGA.

The hal_mmu_init function in mars_zx3_misc.c is the best place to add such mappings on top
of the ones for RAM, IO, SLCR and on-chip RAM.

To map additional memory regions (e.g. for custom ipcores), the ARC_X_ARM_MMU_SECTION
macro can be used. An example for a 0x70A00000 .. 0x70AFFFFF mapping is given below:

ARC_X_ARM_MMU_SECTION(0x70a, 0x70a, 1, ARC_ARM_UNCACHEABLE,
ARC_ARM_UNBUFFERABLE, ARC_ARM_ACCESS_PERM_RW_RW);

17

https://github.com/antmicro/ecos-mars-zx3/blob/master/packages/hal/arm/xc7z/mars_zx3/current/src/mars_zx3_misc.c

	Introduction
	ECos
	This document
	Acknowledgements
	Licence
	Supported features
	Version information

	Compiling the system
	Prerequisites
	Source code and configuration files
	Building eCos

	RedBoot
	Building RedBoot
	Ethernet support in RedBoot
	SPI Flash support in RedBoot

	Usage
	Building a boot image file
	Loading binaries to the module
	QSPI Test
	I2C Test

	Appendix 1: Clock speeds
	Appendix 2: MMU mappings for custom IP cores

