

 Navigation

 	
 index

 	
 next |

 	EAvatar's Document

EAvatar ME’s documentation!

Contents:

	Introduction

	User Guide
	System Requirements

	Installation

	Launch the Application

	Application System Tray

	Open Web UI (Not working yet)

	Get Notified

	Recent Notices

	Application Folder

	Writing Scripts
	What are Scripts

	Differences from Regular Code

	Common Libraries

	Perform Actions

	Built-in Actions

	Loop Control

	Example

	Development
	On Windows Platform

	On OS X Platform

	On Ubuntu Platform

	Frequently Asked Questions
	Where is my working folder for Avame?

	How do I add auto-run jobs when Avame starts?

	Internals
	Event-driven, Non-blocking I/O

	Restrictive Execution of Python Codes

	How Avame integrated with desktop environments

	Glossary

 Copyright 2015, EAvatar Technology Ltd..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	EAvatar's Document

Introduction

EAvatar ME, or Avame for short, is an event-driven agent for task automation.
It’s designed with following scenarios in mind:

	Web scraping

	Web functional tests

	Network service monitoring

	Cloud application integration

Basically speaking, Avame runs tasks on behalf of the user in the background.

A task is a unit of work that performs one action only.
Related tasks are grouped as a job for complicated workflow.
Incidentally, a job is the unit for submission and is described by a script.
The scripts are nothing but restrictive Python code. Compared to regular Python code,
a script do not support following features, just to name a few:

	No import statement

	No while loop

	No print statement

	Names start with double underscores are prohibited.

	No function definition

	No class definition

All these restrictions are to make scripts easier to write and read.
Other heavy-lifting actions are provided by modules and exposed to scripts.

The source code of Avame project is released with Apache license 2.0

 Copyright 2015, EAvatar Technology Ltd..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	EAvatar's Document

User Guide

Avame not yet released, the document is for your information only.

System Requirements

Supported Environments

Avame is a cross-platform application which supports following desktop environments:

	Windows 7 or above (X86-64 architecture)

	OS X 10.8+ (X86-64 architecture)

	Ubuntu 14.04+ Unity desktop (X86-64 architecture)

Web Browsers

Avame uses your default web browser to access the web user interface (a.k.a. webfront).

	Google Chrome 46.0+

	Firefox 41.0+

	Internet Explorer 11

Installation

For desktop environments, such as Windows, OS X, etc, Avame is distributed as a portable
application. Following are the usual steps to install Avame for these environments:

	
	Download the distribution package for your environment.

	The package might be in different formats for various environments.

	avame-x.y.x.zip for Windows

	avame-x.y.z.tgz for Ubuntu

	avame-x.y.z.dmg for OS X

, where ‘x.y.z’ is the release version.

	
	Uncompress the package to a suitable directory.

	Use the existing tool to uncompress the distribution package.

	
	Delete the downloaded distribution package.

	This step is optional.

OS X

Avame is released as an application bundle within a disk image (.dmg). Follow the steps
to install Avame on OS X:

	Double click the disk image to mount it.

	All you have to do is copy the application bundle to your Applications folder.

	Unmount the disk image.

Launch the Application

Assume APPFOLDER is the installation folder of Avame application.
You may launch Avame via command line or File manager or the like.

Windows

Launch the application from command line.

APPFOLDER\avame.exe

OS X

Launch from the console

APPFOLDER/avame

or run the app bundle:

Ubuntu

Launch from the console

APPFOLDER/avame

Application System Tray

As an agent, Avame works silently most of the time.
The main UI is a system tray icon on the desktop environment of your choice.
Through the tray icon, you may trigger a context menu illustrated as follow:

[image: Avame context menu]

Open Web UI (Not working yet)

From the context menu, choose the ‘Open Web UI...’ option or
input ‘http://127.0.0.1:5080/‘ in your browser’s address bar.
Following figure illustrates the home page of the web UI (Fake):

[image: Avame Web UI]

Get Notified

Avame may notify you from time to time. The way how it notifies is platform-specific, though.

For Windows

System tray notification is used.

[image: Avame notification on Windows 7]

For OS X

Avame supports the notification center.

[image: Avame notification on OS X]

For Ubuntu

[image: Avame notification on Ubuntu]

Recent Notices

In case that you missed some notifications from Avame, fear not. 10 most recent notices
are kept in the context menu for your convenience:

[image: Avame recent notices]
Choose the notice you want to read, a message box should show up:

[image: Avame notice box]

Application Folder

Location

Avame creates a per-user application folder when runs for the first time.
The location is dependent on the operating system, following are the typical paths:

	
	Mac OS X:

	~/Library/Application Support/avame

	
	Mac OS X (POSIX):

	~/.avame

	
	Ubuntu:

	~/.config/avame

	
	Win 7 (roaming):

	C:\Users\<user>\AppData\Roaming\avame

	
	Win 7 (not roaming):

	C:\Users\<user>\AppData\Local\avame

Structure

Under the application folder, there exist several pre-defined subfolders.
Users may create more for other purposes.

	
	conf/

	Configuration files.

	
	data/

	Folder for storing generic data.

	
	jobs/

	Auto-start jobs.

	
	logs/

	Log files.

	
	mods/

	Standalone module files. Modules in this folder will be imported when start.

	
	pkgs/

	Python package distributions in EGG format, some of them may also be Avame’s extensions.

Open Folder

From the context menu, choose the ‘Open Folder...’ option to open Avame application folder.

[image: Avame application folder]

 Copyright 2015, EAvatar Technology Ltd..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	EAvatar's Document

Writing Scripts

What are Scripts

To tell Avame to do your jobs, you need to tell Avame how to do it imperatively.
The instructions are expressed as a script in Python-like programming language.
It sounds scary at the first place to writing scripts in a programming language
for regular users. It ends up not so hard at all.

Differences from Regular Code

The syntax is intentionally very limited so that it’s more approachable than full-featured
Python codes. The document is not intended to describe all the syntax as it’s a proper
subset of Python’s. Compared to regular Python, following are removed features:

	No import statement

	No while control loop

	No print statement

	Names start with double underscores are prohibited, e.g. ‘__class__’.

	No function definition

	No class definition

Common Libraries

It’s not supported to import modules for scripts, so some standard
libraries from Python runtime are selected and made available.
The modules provided:

	datetime

	collections

	calendar

	heapq

	bisect

	array

	queue or Queue

	string

	re

	math

	random

	json

	base64

	binascii

	hashlib

	hmac

In addition to standard libraries, lxml is available for XML/HTML parsing.

Perform Actions

Besides the common libraries, scripts can perform various actions,
each of which are explicitly registered functions and are intended for use by scripts.

The syntax to invoke an action is like follow:

ava.do(action_name, **kwargs)

, where action_name is in a format like ‘mod_name.func_name’. For example,
‘imap.check_gmail’ is the action name from imap module to check GMail.

ava.do function returns a task object whose essential methods are:

	
	result(blocked=True, timeout=None)

	Wait for the task to finish and return the result (or raise an exception).
By default, the method blocks the caller. But can be made to work asynchronously.
If blocked is False and the task is not stopped, a Timeout exception is raised.
If timeout parameter is given, a Timeout exception will be raised if expired.

	
	stopped()

	Check if the task is finished or failed without blocking.

	
	finished()

	Check if the task is completed successfully.

	
	failed()

	Check if the task failed.

The execution of an action is represented as a task. Multiple tasks can be issued
concurrently. At times, it’s needed to wait for tasks to finish. To coordinate
tasks, a script may use following method to wait for tasks.

ava.wait(tasks, timeout=10)

,where tasks is a list of task objects; timeout is a timeout interval in seconds.
There is an additional argument count which specify how many tasks to wait for before
returning.

Built-in Actions

User Module

	
	user.notify

	Notify owner with a message and title.

Request Module

Make methods from requests library available as actions.

	requests.head

	requests.get

	requests.put

	requests.patch

	requests.delete

	requests.post

Loop Control

The only supported loop control for scripts is for statement.
for loop is usually used to iterate a finite number of elements.
In case a indefinite loop is needed, following construct can be used:

for it in ava.schedule:
 ...

ava.schedule is a special generator that returns counting number from 1 for
each iteration. By default, the interval between intervals are 1 minute.
Following are more examples:

1-minute interval

for it in ava.schedule.every(1).minute

5-minute interval

for it in ava.schedule.every(5).minutes

There are other supported interval units like second,`seconds`, hour, hours, day and days.

The total number of looping can also be control by providing a counts value.
For example:

for it in ava.schedule.count(5).every().minute:
 ...

Above code snippet loops 5 times and waits for 1 minute before an iteration.

Example

Following script is for checking a GMail account with IMAP protocol every minute:

last_unseen = 0

for it in ava.schedule.every(1).minute:
 check_task = ava.do('imap.check_gmail',
 username='username@gmail.com',
 password='password')

 messages, unseen = check_task.result()
 if unseen > 0 and unseen != last_unseen:
 last_unseen = unseen
 ava.do('user.notify',
 message="You got %d new messages." % unseen,
 title="You Got Mails from GMail")

 Copyright 2015, EAvatar Technology Ltd..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	EAvatar's Document

Development

For developers who want to build Avame from source code, proper development
environments should be set up. According to the platform, the system requirements
and instructions are different.

Avame’s source code is hosted on GitHub at https://github.com/eavatar/eavatar-me .
Therefore, Git is used for management of the source code.

virtualenv is used to have a relatively isolated Python runtime during development.
However, it becomes tricky due to the fact that Avame needs access to some packages that cannot be installed
via pip. So, even virtualenv is used, the –system-site-packages argument is set
for all supported platforms.

Refer to the section for the platform of your choice. Should you encountered any issues
, please file issues at https://github.com/eavatar/eavatar-me/issues

On Windows Platform

System Requirements

	Operating system
	CPU Architecture

	Windows 7 Pro
	X86-64

Git for Windows

To check out source codes on Windows platform, Git for Windows command line tool is needed.
Please download and install it from https://git-scm.com/download/win .

Please note that all command-line instructions are assumed to be run using the shell provided by
Git for Windows, which provides a Unix-like interface.

Python Distribution

The Python distribution for development on Windows platform is Anaconda Python 2.7.
Download it from https://www.continuum.io/downloads .

Get the Source Code

Use following command to check out the source code:

git checkout https://github.com/eavatar/eavatar-me avame

It’s assumed that source code is cloned to the local host at $WORKDIR directory.

Virtual Environment

virtualenv --system-site-packages env
source env/Scripts/activate

It’s assumed that command-line instructions in the following sections are run with the
virtual environment activated.

Installing Dependencies

Use following instruction to install

pip install -r requirements/requirements_win32.txt

Avame needs `pywin32’, ‘lxml’ packages on Windows platform, which should be already provided by
Anaconda Python Distribution.

Run from the Source

To run the program form the source, please ensure following paths are in the sys.path.
This can be done by setting an environment variable PYTHONPATH to be like this:

export PYTHONPATH="./src"

Note that this is assumed to be run from the Git for Windows shell.
If you use an IDE, the root and the ‘src’ sub-folder of the project should be in the paths
as mentioned above.

Build the Binaries

pyinstaller pack\avame.spec --clean -y

The application binaries are located at $WORKDIRdistavame.
You may use following instruction to launch it:

.\dist\avame\avame.exe

On OS X Platform

System Requirements

The instructions are tested on following configuration.

	Operating system
	CPU Architecture

	OS X 10.10
	X86-64

Python Distribution

Although OS X has a bundled Python runtime, the one used should be from python.org.
Please download version 2.7.10 from that site.

Note that it’s assumed you have XCode command-line tools installed already.

Virtual Environment

virtualenv --system-site-packages env
source env/bin/activate

It’s assumed that command-line instructions in the following sections are run with the
virtual environment activated.

Get the Source Code

Avame’s source code is hosted on GitHub at https://github.com/eavatar/eavatar-me .
Therefore, Git is used for management of the source code.

Use following command to check out the source code:

git checkout https://github.com/eavatar/eavatar-me avame

It’s assumed that source code is cloned to the local host at $WORKDIR directory.

Installing Dependencies

On OS X development machine, should you encountered an error
with message like error: ‘_Noreturn’ keyword must precede function declarator,
then gevent package needs to be installed with following instruction:

CFLAGS='-std=c99' pip install gevent==1.0.2

Install other dependencies:

pip install -r requirements/requirements_osx.txt

lxml package needs extra steps to install with following instructions:

brew install libxml2
pip install lxml

Run from the Source

To run the program form the source, please ensure following paths are in the sys.path.
This can be done by setting an environment variable PYTHONPATH to be like this:

export PYTHONPATH="./src"

If you use an IDE, the the ‘src’ subfolder of the project should be in the paths
as mentioned above.

Build the Binaries

pyinstaller pack/avame.spec --clean -y

The application binaries are located at $WORKDIR/dist/avame/.
You may use following command to launch it:

./dist/avame/avame

In addition to the binaries, an application bundle for OS X is created and placed at
$WORKDIR/dist/EAvatar.app/ . An application bundle is a special directory on OS X,
which may be launched from the command line with following instruction:

open ./dist/EAvatar.app

On Ubuntu Platform

System Requirements

	Operating system
	CPU Architecture

	Ubuntu 14.04
	X86-64

Python Distribution

Avame uses the system-bundled Python distribution for the development on Ubuntu platform.
Note that the version used is 2.7.6.

Virtual Environment

virtualenv --system-site-packages env
source env/bin/activate

It’s assumed that command-line instructions in the following sections are run with the
virtual environment activated.

Get the Source Code

Avame’s source code is hosted on GitHub at https://github.com/eavatar/eavatar-me .
Therefore, Git is used for management of the source code.

Use following command to check out the source code:

git checkout https://github.com/eavatar/eavatar-me avame

It’s assumed that source code is cloned to the local host at $WORKDIR directory.

Installing Dependencies

Use following instructions to install Python and system packages:

sudo apt-get install libxml2-dev libxslt1-dev python-dev python-lxml
pip install -r requirements/requirements_gtk.txt

Run from the Source

To run the program form the source, please ensure following paths are in the sys.path.
This can be done by setting an environment variable PYTHONPATH to be like this:

export PYTHONPATH="./src"

If you use an IDE, the root and the ‘src’ subfolder of the project should be in the paths
as mentioned above.

Build the Binaries

pyinstaller pack/avame.spec --clean -y

The application binaries are located at $WORKDIR/dist/avame/.
You may use following command to launch it:

./dist/avame/avame

 Copyright 2015, EAvatar Technology Ltd..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	EAvatar's Document

Frequently Asked Questions

Where is my working folder for Avame?

Avame creates a per-user application folder when runs for the first time.
The location is dependent on the operating system, following are the typical paths:

	
	Mac OS X:

	~/Library/Application Support/avame

	
	Mac OS X (POSIX):

	~/.avame

	
	Ubuntu:

	~/.config/avame

	
	Win 7 (roaming):

	C:\Users\<user>\AppData\Roaming\avame

	
	Win 7 (not roaming):

	C:\Users\<user>\AppData\Local\avame

How do I add auto-run jobs when Avame starts?

Simply add the script file (with extension .py) to the subfolder ‘jobs’ under the
Avame’s working folder, and then restart Avame. It will be started if it’s a correct script.

 Copyright 2015, EAvatar Technology Ltd..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	EAvatar's Document

Internals

Event-driven, Non-blocking I/O

At the core of EAvatar, Gevent is used as the event-driven, non-blocking I/O engine.
With the lightweight concurrency support and thread-like programming model,
it a pleasure again to write asynchronous I/O codes.

Restrictive Execution of Python Codes

In addition to mainly developed in Python, EAvatar also uses Python as the
domain-specific language(DSL) for describing jobs. A job is defined by a script in Python
with very limited subset of features enabled.

A script is parsed into an abstract syntax tree with ast module,
and then being walked through to detect
invalid constructs such as ‘import’, ‘print’, ‘functiondef’, etc.
Without complex constructs, it makes writing scripts more approachable for average users.

How Avame integrated with desktop environments

The main user interface for Avame is a so-called system tray icon or status icon on the
desktop environment. Trying to avoid the bloated cross-platform GUI frameworks like QT,
it takes a very different way to provide the desktop UI.

No cross-platform GUI frameworks are used for the desktop environments,
an environment-by-environment integration is used instead.

	On Windows platform, Win32 API is used via PyWin32 package.

	On OS X platform, Cocoa is used via PyObjc package.

	On Ubuntu platform, GTK3 is used via PyGObject package.

A cross-platform web-based user interface is supported for user interactions that are more
complex. To this end, Avame launches the default web browser when web UI is required.

 Copyright 2015, EAvatar Technology Ltd..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	EAvatar's Document

Glossary

The project uses terms that are overloaded. It’s useful to highlight
some commonly used terms and definitions.

	Job

	A set of related tasks executed in an order determined by a script.

	Task

	A unit of work in a job, which also represents the execution of an action.

	Action

	A function that can be invoked by jobs. Each invocation of an action is represented
as a task.

	Script

	The code to describe the flow in which tasks should be executed.

	Module

	A software component providing functions, classes and other definitions.

	Package

	A software component which contains sub-packages or modules.

 Copyright 2015, EAvatar Technology Ltd..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	EAvatar's Document

Index

 Copyright 2015, EAvatar Technology Ltd..
 Created using Sphinx 1.3.1.

 _static/screenshot1.png
Busy day, you have 100 new messages. % X
You got new mails from GMail

_static/plus.png

_static/context-menu.png
o &3 Ay
Open Web UL...
Open Folder...

Status >

Notices >

Quit EAvatar

_images/context-menu.png
o &3 Ay
Open Web UL...
Open Folder...

Status >

Notices >

Quit EAvatar

_static/osx-notice.png
v

-

Greeting from Greeter
This is a test notice 4

_images/osx-notice.png
v

-

Greeting from Greeter
This is a test notice 4

_static/ubuntu-notice.png
/python2.7/dist-packages/glib .

. 723 Hello from greeter-4
7 [dist AR aGhE g ndtice

_static/down-pressed.png

_static/up-pressed.png

_images/ubuntu-notice.png
/python2.7/dist-packages/glib .

. 723 Hello from greeter-4
7 [dist AR aGhE g ndtice

_static/up.png

_images/win7-notice.png
from the agent

This is a test notice.
Hello from Greeter

_images/recent-notices.png
Message 4
Message 3

Quit EAvatar Message 2

Message 1
Message 0

_static/comment.png

_images/app-folder.png
22 B oo 1o

vVVvyvYyVvyy

[conf
[data
[jobs
[logs
[mods

1 avame

g

g8
<

£
<

avame

_static/app-folder.png
22 B oo 1o

vVVvyvYyVvyy

[conf
[data
[jobs
[logs
[mods

1 avame

g

g8
<

£
<

avame

_images/notice-box.png
Message 3

This is a test notice 3

OK

_static/notice-box.png
Message 3

This is a test notice 3

OK

_static/minus.png

search.html

 Navigation

 		
 index

 		EAvatar's Document »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, EAvatar Technology Ltd..
 Created using Sphinx 1.3.1.

_static/win7-notice.png
from the agent

This is a test notice.
Hello from Greeter

_images/web-ui-home.png
Home

Notices
Jobs

Logs

Instructions:

EAvatar ME

Submit

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/recent-notices.png
Message 4
Message 3

Quit EAvatar Message 2

Message 1
Message 0

_static/down.png

_static/ajax-loader.gif

_static/web-ui-home.png
Home

Notices
Jobs

Logs

Instructions:

EAvatar ME

Submit

