
EAV-Django Documentation
Release 1.4.6

Andrey Mikhaylenko

Jun 12, 2017

Contents

1 Priorities 3

2 Features 5

3 Examples 7

4 Data types 9

5 Documentation 11

6 Dependencies 13

7 Alternatives, Forks 15

8 Author 17

9 Licensing 19

10 Details 21
10.1 API Reference . 21
10.2 Contributors . 22

11 Indices and tables 25

Python Module Index 27

i

ii

EAV-Django Documentation, Release 1.4.6

EAV-Django is a reusable Django application which provides an implementation of the Entity-Attribute-Value data
model.

Entity-Attribute-Value model (EAV), also known as object-attribute-value model and open schema which
is used in circumstances where the number of attributes (properties, parameters) that can be used to
describe a thing (an “entity” or “object”) is potentially very vast, but the number that will actually apply
to a given entity is relatively modest.

(See the Wikipedia article for more details.)

EAV-Django works fine with traditional RDBMS (tested on SQLite and MySQL).

Contents 1

http://en.wikipedia.org/wiki/Entity-attribute-value_model

EAV-Django Documentation, Release 1.4.6

2 Contents

CHAPTER 1

Priorities

The application grew from an online shop project, so it is pretty practical and not just an academic exercise. The main
priorities were:

1. flexibility of data,

2. efficiency of queries, and

3. maximum maintainability without editing the code.

Of course this implies trade-offs, and the goal was to find the least harmful combination for the general case.

3

EAV-Django Documentation, Release 1.4.6

4 Chapter 1. Priorities

CHAPTER 2

Features

All provided models are abstract, i.e. EAV-Django does not store any information in its own tables. Instead, it provides
a basis for your own models which will have support for EAV out of the box.

The EAV API includes:

• Create/update/access: model instances provide standart API for both “real” fields and EAV attributes. The
abstraction, however, does not stand in your way and provides means to deal with the underlying stuff.

• Query: BaseEntityManager includes uniform approach in filter() and exclude() to query “real” and EAV at-
tributes.

• Customizable schemata for attributes.

• Admin: all dynamic attributes can be represented and modified in the Django admin with no or little effort (using
eav.admin.BaseEntityAdmin). Schemata can be edited separately, as ordinary Django model objects.

• Facets: facet search is an important feature of online shops, catalogues, etc. Basically you will need a form
representing a certain subset of model attributes with appropriate widgets and choices so that the user can
choose desirable values of some properties, submit the form and get a list of matching items. In general case
django-filter would do, but it won’t work with EAV, so EAV-Django provides a complete set of tools for that.

5

EAV-Django Documentation, Release 1.4.6

6 Chapter 2. Features

CHAPTER 3

Examples

Let’s define an EAV-friendly model, create an EAV attribute and see how it behaves. By “EAV attributes” I mean
those stored in the database as separate objects but accessed and searched in such a way as if they were columns in the
entity’s table:

from django.db import models
from eav.models import BaseEntity, BaseSchema, BaseAttribute

class Fruit(BaseEntity):
title = models.CharField(max_length=50)

class Schema(BaseSchema):
pass

class Attr(BaseAttribute):
schema = models.ForeignKey(Schema, related_name='attrs')

in Python shell:

define attribute named "colour"
>>> colour = Schema.objects.create(
... title = 'Colour',
... name = 'colour', # omit to populate/slugify from title
... datatype = Schema.TYPE_TEXT
...)

create an entity
>>> e = Fruit.objects.create(title='Apple', colour='green')

define "real" and EAV attributes the same way
>>> e.title
'Apple'
>>> e.colour
'green'

>>> e.save() # deals with EAV attributes automatically

7

EAV-Django Documentation, Release 1.4.6

list EAV attributes as Attr instances
>>> e.attrs.all()
[<Attr: Apple: Colour "green">]

search by an EAV attribute as if it was an ordinary field
>>> Fruit.objects.filter(colour='yellow')
[<Fruit: Apple>]

all compound lookups are supported
>>> Fruit.objects.filter(colour__contains='yell')
[<Fruit: Apple>]

Note that we can access, modify and query colour as if it was a true Entity field, but at the same time its name, type
and even existance are completely defined by a Schema instance. A Schema object can be understood as a class, and
related Attr objects are its instances. In other words, Schema objects are like CharField, IntegerField and such, only
defined on data level, not hard-coded in Python. And they can be “instantiated” for any Entity (unless you put custom
constraints which are outside of EAV-Django’s area of responsibility).

The names of attributes are defined in related schemata. This can lead to fears that once a name is changed, the code
is going to break. Actually this is not the case as names are only directly used for manual lookups. In all other cases
the lookups are constructed without hard-coded names, and the EAV objects are interlinked by primary keys, not by
names. The names are present if forms, but the forms are generated depending on current state of metadata, so you
can safely rename the schemata. What you can break from the admin interface is the types. If you change the data
type of a schema, all its attributes will remain the same but will use another column to store their values. When you
restore the data type, previously stored values are visible again.

You can find more examples in the source code: see directory “example/” and the tests.

8 Chapter 3. Examples

CHAPTER 4

Data types

Metadata-driven structure extends flexibility but implies some trade-offs. One of them is increased number of JOINs
(and, therefore, slower queries). Another is fewer data types. Theoretically, we can support all data types available
for a storage, but in practice it would mean creating many columns per attribute with just a few being used – exactly
what we were trying to avoid by using EAV. This is why EAV-Django only supports some basic types (though you can
extend this list if needed):

• Schema.TYPE_TEXT, a TextField;

• Schema.TYPE_FLOAT, a FloatField;

• Schema.TYPE_DATE, a DateField;

• Schema.TYPE_BOOL, a NullBooleanField;

• Schema.TYPE_MANY for multiple choices (i.e. lists of values).

All EAV attributes are stored as records in a table with unique combinations of references to entities and schemata.
(Entity is referenced through the contenttypes framework, schema is referenced via foreign key.) In other words, there
can be only one attribute with given entity and schema. The schema is a definition of attribute. The schema defines
name, title, data type and a number of other properties which apply to any attribute of this schema. When we access or
search EAV attributes, the EAV machinery always uses schemata as attributes metadata. Why? Because the attribute’s
name is stored in related schema, and the value is stored in a column of the attributes table. We don’t know which
column it is until we look at metadata.

In the example provided above we’ve only played with a text attribute. All other types behave exactly the same except
for TYPE_MANY. The many-to-many is a special case as it involves an extra model for choices. EAV-Django provides
an abstract model but requires you to define a concrete model (e.g. Choice), and point to it from the attribute model
(i.e. put foreign key named “choice”). The Choice model will also have to point at Schema. Check the tests for an
example.

9

EAV-Django Documentation, Release 1.4.6

10 Chapter 4. Data types

CHAPTER 5

Documentation

Currently there is no tutorial. Still, the code itself is rather well-documented and the whole logic is pretty straightfor-
ward.

Please see:

• tests, as they contain good examples of model definitions and queries;

• the bundled example (“grocery shop”, comes with fixtures);

• the discussion group.

11

https://eav-django.readthedocs.org/en/latest/reference.html#tests
https://groups.google.com/forum/#!forum/eav-django

EAV-Django Documentation, Release 1.4.6

12 Chapter 5. Documentation

CHAPTER 6

Dependencies

In theory, Python 2.5 to 2.7 is supported; however, the library is only tested against Python 2.6 and 2.7.

You’ll also need Django 1.1 or newer and a couple of small libraries: django_autoslug and django_view_shortcuts.
This is usually handled automatically by the installer.

13

EAV-Django Documentation, Release 1.4.6

14 Chapter 6. Dependencies

CHAPTER 7

Alternatives, Forks

django-eav A fork of eav-django that became a new app. Doesn’t seem to be actively developed but is probably better
in certain aspects. The original author of eav-django encourages users to give this app a try, too.

15

http://mvpdev.github.com/django-eav/

EAV-Django Documentation, Release 1.4.6

16 Chapter 7. Alternatives, Forks

CHAPTER 8

Author

This application was initially created by Andrey Mikhaylenko. For complete list of contributors consult the AUTHORS
file.

Please feel free to file issues and/or submit patches.

17

http://neithere.net

EAV-Django Documentation, Release 1.4.6

18 Chapter 8. Author

CHAPTER 9

Licensing

EAV-Django is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any
later version.

EAV-Django is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this program; see the file
COPYING.LESSER. If not, see GNU licenses.

19

http://gnu.org/licenses/

EAV-Django Documentation, Release 1.4.6

20 Chapter 9. Licensing

CHAPTER 10

Details

API Reference

Admin

class eav.admin.BaseEntityAdmin(model, admin_site)
Base class for entity admin classes.

render_change_form(request, context, **kwargs)
Wrapper for ModelAdmin.render_change_form. Replaces standard static AdminForm with an EAV-
friendly one. The point is that our form generates fields dynamically and fieldsets must be inferred from a
prepared and validated form instance, not just the form class. Django does not seem to provide hooks for
this purpose, so we simply wrap the view and substitute some data.

class eav.admin.BaseSchemaAdmin(model, admin_site)
Base class for schema admin classes.

class eav.admin.BaseEntityInline(parent_model, admin_site)
Inline model admin that works correctly with EAV attributes. You should mix in the standard StackedInline or
TabularInline classes in order to define formset representation, e.g.:

class ItemInline(BaseEntityInline, StackedInline):
model = Item
form = forms.ItemForm

formset
alias of BaseEntityInlineFormSet

Fields

class eav.fields.RangeField(*args, **kwargs)
A multi-value field which consists of tho float fields.

21

EAV-Django Documentation, Release 1.4.6

widget
alias of RangeWidget

Forms

class eav.forms.BaseSchemaForm(data=None, files=None, auto_id=u’id_%s’, prefix=None, ini-
tial=None, error_class=<class ‘django.forms.utils.ErrorList’>,
label_suffix=None, empty_permitted=False, instance=None,
use_required_attribute=None)

Base class for schema forms.

clean_name()
Avoid name clashes between static and dynamic attributes.

class eav.forms.BaseDynamicEntityForm(data=None, *args, **kwargs)
ModelForm for entity with support for EAV attributes. Form fields are created on the fly depending on Schema
defined for given entity instance. If no schema is defined (i.e. the entity instance has not been saved yet), only
static fields are used. However, on form validation the schema will be retrieved and EAV fields dynamically
added to the form, so when the validation is actually done, all EAV fields are present in it (unless Rubric is not
defined).

check_eav_allowed()
Returns True if dynamic attributes can be added to this form. If False is returned, only normal fields will
be displayed.

save(commit=True)
Saves this form‘s cleaned_data into model instance self.instance and related EAV attributes.

Returns instance.

Object Managers

Widgets

class eav.widgets.RangeWidget(attrs=None)
Represents a range of numbers.

Contributors

EAV-Django was originally created by:

• Andrey Mikhaylenko <neithere@gmail.com>.

And here is a probably incomplete list of contributors – people who have submitted ideas, patches, reported bugs,
added translations and generally made EAV-Django better:

• Danila Shtan

• Janosch Scharlipp

• Jordi Llonch

• alTus

• Felipe Vieira

• Adrien Lemaire

22 Chapter 10. Details

mailto:neithere@gmail.com

EAV-Django Documentation, Release 1.4.6

• Igor Tokarev

• Vladimir Korsun

• Jon Atkinson

• Your Name Here ;)

10.2. Contributors 23

EAV-Django Documentation, Release 1.4.6

24 Chapter 10. Details

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

25

EAV-Django Documentation, Release 1.4.6

26 Chapter 11. Indices and tables

Python Module Index

e
eav, 21
eav.admin, 21
eav.fields, 21
eav.forms, 22
eav.managers, 22
eav.widgets, 22

27

EAV-Django Documentation, Release 1.4.6

28 Python Module Index

Index

B
BaseDynamicEntityForm (class in eav.forms), 22
BaseEntityAdmin (class in eav.admin), 21
BaseEntityInline (class in eav.admin), 21
BaseSchemaAdmin (class in eav.admin), 21
BaseSchemaForm (class in eav.forms), 22

C
check_eav_allowed() (eav.forms.BaseDynamicEntityForm

method), 22
clean_name() (eav.forms.BaseSchemaForm method), 22

E
eav (module), 21
eav.admin (module), 21
eav.fields (module), 21
eav.forms (module), 22
eav.managers (module), 22
eav.widgets (module), 22

F
formset (eav.admin.BaseEntityInline attribute), 21

R
RangeField (class in eav.fields), 21
RangeWidget (class in eav.widgets), 22
render_change_form() (eav.admin.BaseEntityAdmin

method), 21

S
save() (eav.forms.BaseDynamicEntityForm method), 22

W
widget (eav.fields.RangeField attribute), 21

29

	Priorities
	Features
	Examples
	Data types
	Documentation
	Dependencies
	Alternatives, Forks
	Author
	Licensing
	Details
	API Reference
	Contributors

	Indices and tables
	Python Module Index

