
easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
Release 0.9.2

André Roberge

Apr 05, 2017

Contents

1 EasyGUI_Qt 3
1.1 Python version . 3
1.2 Design philosophy . 3
1.3 Roadmap . 4
1.4 Similar projects . 4

2 Installation 5

3 Usage 7
3.1 Demos . 7

4 Naming convention 9
4.1 Specifying arguments . 10

5 EasyGUI_Qt API 11

6 Comparison with easygui 29

7 Contributing 31
7.1 Types of Contributions . 31
7.2 Get Started! . 32
7.3 Pull Request Guidelines . 33

8 Credits 35
8.1 Development Lead . 35
8.2 Contributors . 35

9 History 37
9.1 0.9.2 . 37
9.2 0.9.1 . 37
9.3 0.9.0a . 38
9.4 0.9.0 . 38
9.5 Release notes: . 38
9.6 0.4.0 . 38
9.7 0.3.0 . 39
9.8 0.2.3a . 39
9.9 0.2.3 . 39
9.10 0.2.2a . 39

i

9.11 0.2.2 . 39
9.12 0.2.1 . 39
9.13 0.2.0 . 40
9.14 0.1.0 . 40

10 Indices and tables 41

Python Module Index 43

ii

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

Contents:

Contents 1

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

2 Contents

CHAPTER 1

EasyGUI_Qt

Inspired by EasyGUI, designed for PyQt

EasyGUI_Qt is a module for simple and easy GUI programming in Python.

EasyGUI_Qt was inspired by EasyGUI created by Stephen Ferg and is based on Tkinter. By contrast, EasyGUI_Qt is
based on PyQt which is not included in the standard Python distribution - but is included in some other distributions
like Continuum Analytics’ Anaconda.

• Free software: BSD license

• Documentation: https://easygui_qt.readthedocs.org.

Python version

Officially, this is a project that targets only Python 3. However, I have now decided to attempt to provide some support
for Python 2. Other than some unicode issues, all widgets should work with Python 2.

Design philosophy

Like the original EasyGUI, EasyGUI_Qt seeks to provide simple GUI widgets that can be called in a procedural
program. EasyGUI_Qt is NOT event-driven: all GUI interactions are invoked by simple function calls.

The archetype is get_string(message) which pops a box whose purpose is exactly the same as Python’s
input(prompt), that is, present the user with a question/prompt, have the user enter an answer, and return the pro-
vided answer as a string. Thus easygui_qt.get_string() can be used as a drop-in replacement for input().
Similarly, instead of using a print() function to display a message, show_message() is used which pops a
message window; however, note that unlike print, show_message interrupts the flow of the program and require
some interaction from the user for the program to continue.

Unlike the original EasyGUI, which sometimes used cryptic names like msgbox or ynbox, EasyGUI_Qt attempts to
use descriptive names which follow PEP8 convention. Thus, instead of msgbox, it uses show_message; instead of
ynbox, it has get_yes_or_no. Most function names start with either get_, show_ or set_.

3

https://easygui_qt.readthedocs.org

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

EasyGUI_QT is based on PyQt; it leverages the available dialogs that come with PyQt whenever possible. This makes
it possible to have automatic translation of some GUI elements (such as text on standard buttons) provided the locale
is set correctly and that the local distribution of PyQt includes the appropriate translation: when EasyGUI_Qt runs, it
scans the standard PyQt location for translation files and note which ones are present and can be used when the locale
is set.

An attempt is made at avoiding duplication of essentially identical functionality. Thus, multiple selections from a list
of choices is done only one way: by using a dialog where choices appear as labels in text and not labels on buttons.

Roadmap

See https://github.com/aroberge/easygui_qt/issues/13 and feel free to add comments.

Similar projects

The following is an incomplete lists of a few cross-platform projects that share some similarity with EasyGUI_Qt, but
use back-ends other than PyQt

• easygui: the original; tkinter back-end

• anygui: multiple back-ends; well known but no longer supported

• psidialogs: multiple back-ends supported - possibly the most complete project from that point of view.

• python-dialog: dialog/Xdialog/gdialog back-end

There are quite a few lesser known projects but none that seem to be actively supported. If you are aware of other
projects that should be mentioned, do not hesitate to contact me and let me know.

4 Chapter 1. EasyGUI_Qt

https://github.com/aroberge/easygui_qt/issues/13
http://easygui.sourceforge.net/
http://anygui.sourceforge.net/
https://github.com/ponty/psidialogs
http://pythondialog.sourceforge.net/

CHAPTER 2

Installation

Prerequisite:

PyQt4

At the command line:

$ easy_install easygui_qt

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv easygui_qt
$ pip install easygui_qt

5

http://www.riverbankcomputing.com/software/pyqt/download

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

6 Chapter 2. Installation

CHAPTER 3

Usage

To use easygui_qt in a project:

import easygui_qt

Demos

There are currently two demos. The first one is a “launcher” which allows one to see each existing “widget” in action
with its default values. You can run this demo as follows:

>>> from easygui_qt.demos import launcher
>>> launcher.main()

7

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

There is also another type of demo, whose intention is more to show how EasyGUI_Qt might be used in a “real-life”
situation.

>>> from easygui_qt.demos.guessing_game import guessing_game
>>> guessing_game()

8 Chapter 3. Usage

CHAPTER 4

Naming convention

Warning: The naming convention is currently used as a guide helping to finalize the API. Not all widgets listed
here are implemented yet, or may be implemented using slightly different names.

In order to make its use more intuitive, EasyGUI_Qt uses a consistent naming convention.

All instructions meant to display information to a user without getting a response back start with show. The functions
available are:

• show()

• show_code()

• show_file()

• show_story()

Note that a detailed description of all of these is given on the next page.

When a response is expected from the user, the prefixed used is get_. Thus we have, in alphabetical order:

• get_abort()

• get_button()

• get_choice()

• get_color_hex()

• get_color_rgb()

• get_continue_or_cancel()

• get_date()

• get_directory_name()

• get_file_names()

• get_float()

9

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

• get_int()

• get_integer()

• get_language()

• get_list_of_choices()

• get_many_strings()

• get_new_password()

• get_password()

• get_save_file_name()

• get_string()

• get_username_password()

• get_yes_or_no()

One exception to the above is the special widget used to handle exceptions, appropriately called:

• handle_exception()

Functions with no corresponding graphical component can be used to set some global parameters; they are prefixed
by set_:

• set_font_size()

• set_language()

Finally, when writing code, instead of using Python’s help() function, one can simply use following function which
will open the API page on the ReadTheDocs website:

• find_help()

Specifying arguments

Arguments are all keyword based arguments. However, in order to enable simplified entry, they are generally listed in
a consistent way.

The first argument is message: this is the text that appears in the window itself and is usually the most important
information that is conveyed to the user.

10 Chapter 4. Naming convention

CHAPTER 5

EasyGUI_Qt API

EasyGUI_Qt: procedural gui based on PyQt

EasyGUI_Qt is inspired by EasyGUI and contains a number of different basic graphical user interface components

easygui_qt.easygui_qt.get_choice(message=’Select one item’, title=’Title’, choices=None)
Simple dialog to ask a user to select an item within a drop-down list

Parameters

• message – Message displayed to the user, inviting a response

• title – Window title

• choices – iterable (list or tuple) containing the names of the items that can be selected.

Returns a string, or None if “cancel” is clicked or window is closed.

>>> import easygui_qt as easy
>>> choices = ["CPython", "Pypy", "Jython", "IronPython"]
>>> reply = easy.get_choice("What is the best Python implementation",
... choices=choices)

easygui_qt.easygui_qt.get_list_of_choices(title=’Title’, choices=None)
Show a list of possible choices to be selected.

Parameters

11

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

• title – Window title

• choices – iterable (list, tuple, ...) containing the choices as strings

Returns a list of selected items, otherwise an empty list.

>>> import easygui_qt as easy
>>> choices = easy.get_list_of_choices()

easygui_qt.easygui_qt.get_float(message=’Choose a number’, title=’Title’, default_value=0.0,
min_=-10000, max_=10000, decimals=3)

Simple dialog to ask a user to select a floating point number within a certain range and a maximum precision.

Parameters

• message – Message displayed to the user, inviting a response

• title – Window title

• default_value – Default value for value appearing in the text box; set to the closest of
min_ or max_ if outside of allowed range.

• min – Minimum value allowed

• max – Maximum value allowed

• decimals – Indicate the maximum decimal precision allowed

Returns a floating-point number, or None if “cancel” is clicked or window is closed.

>>> import easygui_qt as easy
>>> number = easy.get_float()

12 Chapter 5. EasyGUI_Qt API

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

Note: depending on the locale of the operating system where this is used, instead of a period being used for
indicating the decimals, a comma may appear instead; this is the case for the French version of Windows for
example. Therefore, entry of floating point values in this situation will require the use of a comma instead of
a period. However, the internal representation will still be the same, and the number passed to Python will be
using the familar notation.

easygui_qt.easygui_qt.get_int(message=’Choose a number’, title=’Title’, default_value=1,
min_=0, max_=100, step=1)

Simple dialog to ask a user to select an integer within a certain range.

Note: get_int() and get_integer() are identical.

Parameters

• message – Message displayed to the user, inviting a response

• title – Window title

• default_value – Default value for integer appearing in the text box; set to the closest
of min_ or max_ if outside of allowed range.

• min – Minimum integer value allowed

• max – Maximum integer value allowed

• step – Indicate the change in integer value when clicking on arrows on the right hand side

Returns an integer, or None if “cancel” is clicked or window is closed.

>>> import easygui_qt as easy
>>> number = easy.get_int()

If default_value is larger than max_, it is set to max_; if it is smaller than min_, it is set to min_.

>>> number = easy.get_integer("Enter a number", default_value=125)

13

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

easygui_qt.easygui_qt.get_integer(message=’Choose a number’, title=’Title’, de-
fault_value=1, min_=0, max_=100, step=1)

Simple dialog to ask a user to select an integer within a certain range.

Note: get_int() and get_integer() are identical.

Parameters

• message – Message displayed to the user, inviting a response

• title – Window title

• default_value – Default value for integer appearing in the text box; set to the closest
of min_ or max_ if outside of allowed range.

• min – Minimum integer value allowed

• max – Maximum integer value allowed

• step – Indicate the change in integer value when clicking on arrows on the right hand side

Returns an integer, or None if “cancel” is clicked or window is closed.

>>> import easygui_qt as easy
>>> number = easy.get_int()

If default_value is larger than max_, it is set to max_; if it is smaller than min_, it is set to min_.

>>> number = easy.get_integer("Enter a number", default_value=125)

14 Chapter 5. EasyGUI_Qt API

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

easygui_qt.easygui_qt.get_string(message=’Enter your response’, title=’Title’, de-
fault_response=’‘)

Simple text input box. Used to query the user and get a string back.

Parameters

• message – Message displayed to the user, inviting a response

• title – Window title

• default_response – default response appearing in the text box

Returns a string, or None if “cancel” is clicked or window is closed.

>>> import easygui_qt as easy
>>> reply = easy.get_string()

>>> reply = easy.get_string("new message", default_response="ready")

easygui_qt.easygui_qt.get_many_strings(title=’Title’, labels=None, masks=None)
Multiple strings input

Parameters

• title – Window title

• labels – an iterable containing the labels for to use for the entries

• masks – optional parameter.

Returns An ordered dict containing the labels as keys, and the input from the user (empty string by
default) as value

The parameter masks if set must be an iterable of the same length as choices and contain either True or False
as entries indicating if the entry of the text is masked or not. For example, one could ask for a username and
password using get_many_strings as follows [note that get_username_password exists and automatically takes
care of specifying the masks and is a better choice for this use case.]

>>> import easygui_qt as easy
>>> labels = ["User name", 'Password']

15

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

>>> masks = [False, True]
>>> reply = easy.get_many_strings(labels=labels, masks=masks)
>>> reply
OrderedDict([('User name', 'aroberge'), ('Password', 'not a good password')])

easygui_qt.easygui_qt.get_password(message=’Enter your password’, title=’Title’)
Simple password input box. Used to query the user and get a string back.

Parameters

• message – Message displayed to the user, inviting a response

• title – Window title

Returns a string, or None if “cancel” is clicked or window is closed.

>>> import easygui_qt as easy
>>> password = easy.get_password()

easygui_qt.easygui_qt.get_username_password(title=’Title’, labels=None)
User name and password input box.

Parameters

• title – Window title

• labels – an iterable containing the labels for “user name” and “password”; if the value
not specified, the default values will be used.

Returns An ordered dict containing the fields item as keys, and the input from the user (empty string
by default) as value

Note: this function is a special case of get_many_strings where the required masks are provided automat-
ically..

>>> import easygui_qt as easy
>>> reply = easy.get_username_password()
>>> reply
OrderedDict([('User name', 'aroberge'), ('Password', 'not a good password')])

16 Chapter 5. EasyGUI_Qt API

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

easygui_qt.easygui_qt.get_new_password(title=’Title’, labels=None)
Change password input box.

Parameters

• title – Window title

• labels – an iterable containing the labels for “Old password” and “New password” and
“Confirm new password”. All three labels must be different strings as they are used as keys
in a dict - however, they could differ only by a space.

Returns An ordered dict containing the fields item as keys, and the input from the user as values.

Note: this function is a special case of get_many_strings where the required masks are provided automat-
ically..

>>> import easygui_qt as easy
>>> reply = easy.get_new_password()

easygui_qt.easygui_qt.get_yes_or_no(message=’Answer this question’, title=’Title’)
Simple yes or no question.

Parameters

• question – Question (string) asked

• title – Window title (string)

Returns True for “Yes”, False for “No”, and None for “Cancel”.

>>> import easygui_qt as easy
>>> choice = easy.get_yes_or_no()

17

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

easygui_qt.easygui_qt.get_continue_or_cancel(message=’Processed will be
cancelled!’, title=’Title’, con-
tinue_button_text=’Continue’, can-
cel_button_text=’Cancel’)

Continue or cancel question, shown as a warning (i.e. more urgent than simple message)

Parameters

• question – Question (string) asked

• title – Window title (string)

• continue_button_text – text to display on button

• cancel_button_text – text to display on button

Returns True for “Continue”, False for “Cancel”

>>> import easygui_qt as easy
>>> choice = easy.get_continue_or_cancel()

easygui_qt.easygui_qt.get_color_hex()
Using a color dialog, returns a color in hexadecimal notation i.e. a string ‘#RRGGBB’ or “None” if color dialog
is dismissed.

>>> import easygui_qt as easy
>>> color = easy.get_color_hex()

18 Chapter 5. EasyGUI_Qt API

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

easygui_qt.easygui_qt.get_color_rgb(app=None)
Using a color dialog, returns a color in rgb notation i.e. a tuple (r, g, b) or “None” if color dialog is dismissed.

>>> import easygui_qt as easy
>>> easy.set_language('fr')
>>> color = easy.get_color_rgb()

19

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

easygui_qt.easygui_qt.get_date(title=’Select Date’)
Calendar widget

Parameters title – window title

Returns the selected date as a datetime.date instance

>>> import easygui_qt as easy
>>> date = easy.get_date()

easygui_qt.easygui_qt.get_directory_name(title=’Get directory’)
Gets the name (full path) of an existing directory

20 Chapter 5. EasyGUI_Qt API

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

Parameters title – Window title

Returns the name of a directory or an empty string if cancelled.

>>> import easygui_qt as easy
>>> easy.get_directory_name()

By default, this dialog initially displays the content of the current working directory.

easygui_qt.easygui_qt.get_file_names(title=’Get existing file names’)
Gets the names (full path) of existing files

Parameters title – Window title

Returns the list of names (paths) of files selected. (It can be an empty list.)

>>> import easygui_qt as easy
>>> easy.get_file_names()

By default, this dialog initially displays the content of the current working directory.

easygui_qt.easygui_qt.get_save_file_name(title=’File name to save’)
Gets the name (full path) of of a file to be saved.

Parameters title – Window title

Returns the name (path) of file selected

21

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

The user is warned if the file already exists and can choose to cancel. However, this dialog actually does NOT
save any file: it only return a string containing the full path of the chosen file.

>>> import easygui_qt as easy
>>> easy.get_save_file_name()

By default, this dialog initially displays the content of the current working directory.

easygui_qt.easygui_qt.handle_exception(title=’Exception raised!’)
Displays a traceback in a window if an exception is raised. If the user clicks on “abort”, sys.exit() is called and
the program ends. If the user clicks on “ignore”, the program resumes its execution.

Parameters title – the window title

easygui_qt.easygui_qt.set_font_size(font_size)
Simple method to set font size.

Parameters font_size – integer value

Does not create a GUI widget; but affects the appearance of future GUI widgets.

>>> import easygui_qt as easy
>>> easy.set_font_size(20)

22 Chapter 5. EasyGUI_Qt API

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

>>> easy.show_message()

easygui_qt.easygui_qt.get_language(title=’Select language’, name=’Language codes’, instruc-
tion=None)

Dialog to choose language based on some locale code for files found on default path.

Parameters

• title – Window title

• name – Heading for valid values of locale appearing in checkboxes

• instruction – Like the name says; when set to None, a default string is used which
includes the current language used.

The first time an EasyGUI_Qt widget is created in a program, the PyQt language files found in the standard
location of the user’s computer are scanned and recorded; these provide some translations of standard GUI
components (like name of buttons). Note that “en” is not found as a locale (at least, not on the author’s computer)
but using “default” reverts the choice to the original (English here).

>>> import easygui_qt as easy
>>> easy.get_language()

easygui_qt.easygui_qt.set_language(locale)
Sets the locale, if available

23

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

Parameters locale – standard code for locale (e.g. ‘fr’, ‘en_CA’)

Does not create a GUI widget, but affect the appearance of widgets created afterwards

>>> import easygui_qt as easy
>>> easy.set_locale('es')

>>> # after setting the locale
>>> easy.get_yes_or_no()

easygui_qt.easygui_qt.get_abort(message=’Major problem - or at least we think there is one...’,
title=’Major problem encountered!’)

Displays a message about a problem. If the user clicks on “abort”, sys.exit() is called and the program ends. If
the user clicks on “ignore”, the program resumes its execution.

Parameters

• title – the window title

• message – the message to display

>>> import easygui_qt as easy
>>> easy.get_abort()

easygui_qt.easygui_qt.show_message(message=’Message’, title=’Title’)
Simple message box.

Parameters

• message – message string

• title – window title

>>> import easygui_qt as easy
>>> easy.show_message()

24 Chapter 5. EasyGUI_Qt API

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

easygui_qt.easygui_qt.show_file(file_name=None, title=’Title’, file_type=’text’)
Displays a file in a window. While it looks as though the file can be edited, the only changes that happened are
in the window and nothing can be saved.

Parameters

• title – the window title

• file_name – the file name, (path) relative to the calling program

• file_type – possible values: text, code, html, python.

By default, file_type is assumed to be text; if set to code, the content is displayed with a monospace font and,
if set to python, some code highlighting is done. If the file_type is html, it is processed assuming it follows
html syntax.

Note: a better Python code hightlighter would be most welcome!

>>> import easygui_qt as easy
>>> easy.show_file()

easygui_qt.easygui_qt.show_text(title=’Title’, text=’‘)

25

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

Displays some text in a window.

Parameters

• title – the window title

• code – a string to display in the window.

>>> import easygui_qt as easy
>>> easy.show_code()

../docs/images/show_text.png

easygui_qt.easygui_qt.show_code(title=’Title’, text=’‘)
Displays some text in a window, in a monospace font.

Parameters

• title – the window title

• code – a string to display in the window.

>>> import easygui_qt as easy
>>> easy.show_code()

easygui_qt.easygui_qt.show_html(title=’Title’, text=’‘)
Displays some html text in a window.

26 Chapter 5. EasyGUI_Qt API

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

Parameters

• title – the window title

• code – a string to display in the window.

>>> import easygui_qt as easy
>>> easy.show_html()

../docs/images/show_html.png

easygui_qt.easygui_qt.find_help()
Opens a web browser, pointing at the documention about EasyGUI_Qt available on the web.

27

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

28 Chapter 5. EasyGUI_Qt API

CHAPTER 6

Comparison with easygui

EasyGUI_Qt was inspired by EasyGUI.

Here is a brief summary table of the corresponding function names for widgets with similar purpose being used in each
project. This table is not complete, and is mainly provided to illustrate the different convention used when naming
widgets. Please see the api for more details

29

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

EasyGUI EasyGUI_Qt Description
enterbox get_string Gets a string from the user
mul-
tenter-
box

get_many_stringsUser enters multiple values

inte-
gerbox

get_int or
get_integer

Gets an integer from the user

get_float Gets a float from the user
msgbox show_message Displays a messages with an “ok” button
ccbox get_continue_or_cancelChoice: continue or cancel box
ynbox get_yes_or_no Answer a question with “yes” or “no” answer as choices
choice-
box

get_choice User selects a single choice from a list

multi-
choice-
box

get_list_of_choicesUser can select multiple choices from a list

pass-
word-
box

get_password Gets string from user, the text is masked as it is typed in

textbox show_file Displays text in proportional font, with word wrapping for EasyGUI / Displays text
from a file, either in monospace font or formatted if html document

codebox show_code Displays text in monospace font, with no word wrapping
diropen-
box

get_directory_nameReturns the name of a directory

fileopen-
box

get_file_names Returns the name of a file / list of files for EasyGUI_Qt

filesave-
box

get_save_file_nameReturns the name of a file

excep-
tionbox

han-
dle_exception

Displays a traceback

30 Chapter 6. Comparison with easygui

CHAPTER 7

Contributing

The following has been adapted from the boilerplate version created by cookiecutter. Make sure you read the relevant
parts as I do things a bit differently. ;-)

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/aroberge/easygui_qt/issues.

If you are reporting a bug, please include:

• Have a look first at the existing issues (even the closed ones) - to avoid duplication.

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

• Screen captures can be useful.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it. You might want to have a look at https://github.com/aroberge/easygui_qt/issues/13

31

https://github.com/aroberge/easygui_qt/issues
https://github.com/aroberge/easygui_qt/issues/13

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

Something that would be really nice is to have unittest working that make use of QTest. I just have not been able to do
this. I started implementing unittests using pyautogui but it (like Sikuli which could be another alternative) requires the
windows to be left on their own while the tests are “slowly” executed; furthermore, it had been found to be unreliable
on OSX with Python 2.7 (no report about OSX + Python 3+) as the windows appear “under” other already present.

Write Documentation

EasyGUI_Qt, like any project, could always use more documentation, whether as part of theofficial EasyGUI_Qt docs,
in docstrings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/aroberge/easygui_qt/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Try to provide a specific use-case. Please note that some good ideas may not be implemented so as to keep the
API easy to use for beginners.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up easygui_qt for local development.

1. Fork the easygui_qt repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/easygui_qt.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv easygui_qt
$ cd easygui_qt/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. Make sure you check your code, running any tests or demos, and see that it follows PEP8. If you are adding a
new widget, add it to the launcher demo.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

32 Chapter 7. Contributing

https://github.com/aroberge/easygui_qt/issues

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

7. Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests ... well, if I get tests working properly. If it is a new widget, you should
add it to the launcher and possibly creating a specific demo.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring.

3. The pull request should work for at least Python 3.3, and 3.4. ... Ideally, it should also be tested with Python 3.2
and Python 2.7 as it would be nice to support these older version.

7.3. Pull Request Guidelines 33

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

34 Chapter 7. Contributing

CHAPTER 8

Credits

Development Lead

• André Roberge <andre.roberge@gmail.com>

Contributors

• Jeremy R. Gray <jrgray@gmail.com>

35

mailto:andre.roberge@gmail.com
mailto:jrgray@gmail.com

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

36 Chapter 8. Credits

CHAPTER 9

History

0.9.2

(Some of the changes noted are addition or improvements submitted by David Hughes via email)

• TextWindow now shows input either from a file or from a supplied string.

• added show_code()

• added show_text()

• renamed show() to show_message() [reverting change from 0.9.1]

• started creation of custom “page format” for more complex dialogs

• changed get_date() so that it returns a datetime date instance

Note: the documentation has NOT been updated to reflect these changes.

0.9.1

• removed verification from get_new_password

• added find_help

• created “back end” for wizard creator - will become show_story()

• documented and changed naming convention

• renamed select_language() : get_language()

• renamed show_message() : show()

• fixed a unicode bug for Python 2

• changed the way show_file works

• removed required_install PyQt4 from setup.py

37

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

0.9.0a

• Simplified the way change_password was implemented by reusing one of the new modules and fixed an unre-
ported bug in the process

• changed the formatting of this file so that it should not cause problems with PyPI anymore.

0.9.0

Major change in version number as almost all the desired widgets for version 1.0 have been implemented.

Release notes:

Some unicode problems are likely present when using Python 2.7; the primary target is Python 3.3+ ... but we try to
support earlier version as well.

Some problems are present with Mac OSX and Python 2.7 (only?)

• added show_abort

• added get_many_strings

• added handle_exception

• added show_code

• added show_file

• added get_new_password

• adressed an issue where some dialogs would appear below some windows (e.g. terminal) when launched from
some platforms (e.g. Mac OSX): the goal should be that the dialogs always appear on top of other windows.

• removed with_app decorator; this decorator had been introduced to reduce the amount of repetitive code appear-
ing in each function (and initially inspected the function signature to add automatically some additional keyword
args) but it likely made it impossible to do unit testing with QTest (still not done) and prevented ReadTheDocs
from reading the correct signatures for the decorated functions.

• tooltips added to demos launcher

• added get_username_password

0.4.0

• added get_password

• added get_date

• added get_color_hex

• added get_color_rgb

• added get_continue_or_cancel

• added roadmap as a github issue https://github.com/aroberge/easygui_qt/issues/13

• removed CONFIG as a global dict; using the configuration file instead.

38 Chapter 9. History

https://github.com/aroberge/easygui_qt/issues/13

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

• remove set_default_font

• rename set_locale to set_language

• added configuration file to save locale and font size

0.3.0

• Decided to support (with lower priority) Python 2 (2.7.9 more specifically)

• Should work reasonably well with Python 2.7.9 - other than potential unicode related issues

• made get_list_of_choices(), get_choice(), get_string(), and get_directory_name() work properly with Python
2.7.9

0.2.3a

• changed extension of some demos (from .pyw to .py) as they were not uploaded to pypi

0.2.3

• added demos dir to setup.py so that it can be included on pypi

0.2.2a

• changing path on image in readme in attempt to help pypi display properly

0.2.2

• changed the syntax for calls to super() to be compatible with Python 2. Note that the intention is to be a Python
3 project, but if simple changes can make it compatible with Python 2, they will be incorporated.

• changed name of set_save_file_name to get_save_file_name

• changed name of yes_no_question to get_yes_or_no

• added get_list_of_choices

• added demo launcher

0.2.1

• Moved the demos directory to a more sensible location

• added get_directory_name

• added get_file_names

• added set_save_file_name

9.7. 0.3.0 39

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

• attempt to fix bug for Python 3.2 where inspect.signature was not defined

0.2.0

The API has been changed since the initial release and the following widgets have been documented, with images
inserted in the documentation.

• get_choice

• get_float

• get_int

• get_integer

• get_string

• set_font_size

• set_default_font

• select_language

• set_locale

• show_message

• yes_no_question

0.1.0

• First release on PyPI.

40 Chapter 9. History

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

41

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

42 Chapter 10. Indices and tables

Python Module Index

e
easygui_qt.easygui_qt, 11

43

easygui𝑞𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.9.2

44 Python Module Index

Index

E
easygui_qt.easygui_qt (module), 11

F
find_help() (in module easygui_qt.easygui_qt), 27

G
get_abort() (in module easygui_qt.easygui_qt), 24
get_choice() (in module easygui_qt.easygui_qt), 11
get_color_hex() (in module easygui_qt.easygui_qt), 18
get_color_rgb() (in module easygui_qt.easygui_qt), 19
get_continue_or_cancel() (in module

easygui_qt.easygui_qt), 18
get_date() (in module easygui_qt.easygui_qt), 20
get_directory_name() (in module easygui_qt.easygui_qt),

20
get_file_names() (in module easygui_qt.easygui_qt), 21
get_float() (in module easygui_qt.easygui_qt), 12
get_int() (in module easygui_qt.easygui_qt), 13
get_integer() (in module easygui_qt.easygui_qt), 14
get_language() (in module easygui_qt.easygui_qt), 23
get_list_of_choices() (in module easygui_qt.easygui_qt),

11
get_many_strings() (in module easygui_qt.easygui_qt),

15
get_new_password() (in module easygui_qt.easygui_qt),

17
get_password() (in module easygui_qt.easygui_qt), 16
get_save_file_name() (in module easygui_qt.easygui_qt),

21
get_string() (in module easygui_qt.easygui_qt), 14
get_username_password() (in module

easygui_qt.easygui_qt), 16
get_yes_or_no() (in module easygui_qt.easygui_qt), 17

H
handle_exception() (in module easygui_qt.easygui_qt),

22

S
set_font_size() (in module easygui_qt.easygui_qt), 22
set_language() (in module easygui_qt.easygui_qt), 23
show_code() (in module easygui_qt.easygui_qt), 26
show_file() (in module easygui_qt.easygui_qt), 25
show_html() (in module easygui_qt.easygui_qt), 26
show_message() (in module easygui_qt.easygui_qt), 24
show_text() (in module easygui_qt.easygui_qt), 25

45

	EasyGUI_Qt
	Python version
	Design philosophy
	Roadmap
	Similar projects

	Installation
	Usage
	Demos

	Naming convention
	Specifying arguments

	EasyGUI_Qt API
	Comparison with easygui
	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines

	Credits
	Development Lead
	Contributors

	History
	0.9.2
	0.9.1
	0.9.0a
	0.9.0
	Release notes:
	0.4.0
	0.3.0
	0.2.3a
	0.2.3
	0.2.2a
	0.2.2
	0.2.1
	0.2.0
	0.1.0

	Indices and tables
	Python Module Index

