
Ewancoder Arch Linux Documentation
Release 1.9.5

Ewancoder

Nov 19, 2017

Contents

1 Contents 3
1.1 User Guide . 3
1.2 Development Guide . 12

i

ii

Ewancoder Arch Linux Documentation, Release 1.9.5

Also Effective & Easy Arch Linux install script.

Ewancoder Arch Linux installation script is useful tool for installing/reinstalling your arch linux distro with all
software being automatically configured (by linking dotfiles from your github repository).

The script itself written in bash, Here you can find latest source code.

Note: See User Guide for detailed information on configuring ceal.sh

Contents 1

https://help.github.com/articles/github-glossary#repository
https://github.com/ewancoder/eal

Ewancoder Arch Linux Documentation, Release 1.9.5

2 Contents

CHAPTER 1

Contents

1.1 User Guide

This is complete user guide for Ewancoder / Effective&Easy Arch Linux installation script, getting it, configuring and
executing. Jump to Configuration if you want some info upon ceal.sh file and setting script for your needs.

1.1.1 Where to get

You need to download 5 files from my dotfiles repo. There’s already a script for that, so just run

bash <(curl ewancoder.github.io/al.sh)

All this command does is runs via curl the al.sh script which downloads all five files in current directory:

• ceal.sh - constants eal, main configuration file

• install.sh - main file which you need to execute to start installation after editing ceal.sh

• eal.sh - the main script for installing base-system from live-cd

• heal.sh - host eal, for downloading and preparing live-cd itself from within working linux system

• peal.sh - post eal, for installing and configuring all software (running from within chroot after installing base-
system)

Note: Script is using curl and not wget because Arch Linux live cd have curl as default and doesn’t have wget.

Alternatively, you can

• download al.sh and execute it manually

• download all 5 files by-hand

• clone my repository (but this is unnecessary and irrational for install purpose)

3

https://github.com/ewancoder/eal/blob/master/ceal.sh
https://github.com/ewancoder/eal
https://en.wikipedia.org/wiki/CURL
https://github.com/ewancoder/eal/blob/master/ceal.sh
https://github.com/ewancoder/eal/blob/master/install.sh
https://github.com/ewancoder/eal/blob/master/eal.sh
https://github.com/ewancoder/eal/blob/master/heal.sh
https://github.com/ewancoder/eal/blob/master/peal.sh
https://en.wikipedia.org/wiki/CURL
https://en.wikipedia.org/wiki/Wget
https://ewancoder.github.io/al.sh
https://github.com/ewancoder/eal
https://help.github.com/articles/github-glossary#clone

Ewancoder Arch Linux Documentation, Release 1.9.5

• download it as a zip archive

1.1.2 How to start

You only need to:

1. Format (and partition if needed) your drives

For example, use fdisk to partition your drives and mkfs.ext4 to format your partitions.

2. Configure the ceal.sh script (see Configuration section)

3. Start install.sh script (Just run ./install.sh)

EAL script reads ceal.sh file and then do all its magic based on constants which you should set first. The script is very
flexible in terms of changeability and it’s going to be much more flexible and perfect with your help and feedback.

Warning: Do NOT try to execute script (install.sh) before you change ceal.sh constants. It have drives like
/dev/sdb5 and users like ewancoder, so you probabbly want to change all the constants for your liking (or at least,
partition your drives like this).

1.1.3 Configuration

This chapter is detailed description of the each variable withing the ceal.sh file.

1. Version

There’s nothing to configure. This variable shows current version of a script.

version="1.9.5 Error-Handled, 2014"

2. Error-handling

When there will an error occur within a script - you will be prompted with a question either you wish to repeat
or to continue (skip the error). If for example you’re installing some packages with pacman and there’s an internet
connection randomly goes down - you’re probably will want to repeat the command. It is the default action.

EAL script can do it automatically if an error was detected. This is useful if you’re installing script automatically (with
auto switch turned on, see 4. Automatic install) and go for a walk at that time. You don’t want to go back and see that
some random error taked place at the beginning of the script and did not proceed further, do you?

timeout=10

4 Chapter 1. Contents

https://github.com/ewancoder/eal/archive/master.zip
http://tldp.org/HOWTO/Partition/fdisk_partitioning.html
https://wiki.archlinux.org/index.php/ext4
https://github.com/ewancoder/eal/blob/master/ceal.sh
https://github.com/ewancoder/eal/blob/master/install.sh
https://github.com/ewancoder/eal/blob/master/ceal.sh

Ewancoder Arch Linux Documentation, Release 1.9.5

Set this variable to number of seconds after which the command will be executed again. Set it to 0 if you don’t want
to use this feature.

Note: The error handling mechanism will print out on which step script was broken. This is achieved by using step
variable inside mess function. Look further to dev in Stylization section.

3. Host system or live-cd

If you’d like to install Arch Linux from within your already working (arch) linux (but onto the other hdd/ssd parti-
tions, of course) - this variables would do the trick.

Note: I am writing (arch) in brackets because I’m going to make it possible to install arch linux from within ANY
distribution (it’s not as hard as it seems to be).

If you have live-cd, you can just reboot into it and run script without this feature. For that set hostinstall=0.
Otherwise, installation process will go through downloading live-cd, chrooting into it and installing arch linux from
within your working distro (this is pretty cool and you can do your work in the meantime).

hostinstall=1

Also you should check iso variable. It should be a working link to the root squashfs live-cd image. It is working
now, so you could just leave it alone.

iso=http://ftp.byfly.by/pub/archlinux/iso/2014.06.01/arch/x86_64/root-image.fs.sfs

4. Automatic install

If you want to monitor EACH step of the script and give your permission to do it, leave auto=0 as 0. If you want
script to do all automatically so you could do your other work in the meantime - set auto=1. Anyway, there’s cool
error handling system (see 2. Error-handling) which will stop the script if something goes wrong. But by using first
option you can see what actually going on and learn how script works, so for the first time leave it as 0.

auto=0

Be AWARE: If you change auto to 1, all installation process will go as fast as your computer could think, download
files and install packages. And this is pretty awesome when you just want to install your system and do your other
stuff in the meantime :)

5. Font and locales

As archwiki tells us, we should set console fonts for displaying some character (for example, for russian utf-8 fonts
it’s cyr-sun16).

font=cyr-sun16

And, as well, we need our locales set in bash array.

locale=(en_US.UTF-8 ru_RU.UTF-8)

1.1. User Guide 5

https://en.wikipedia.org/wiki/SquashFS

Ewancoder Arch Linux Documentation, Release 1.9.5

Just list all locales you want to include separated by whitespace like in the example.

Note: If you need only one value in a bash array, you can always remove brackets and make it a variable like this:
locale=en_US.UTF-8.

6. Hostname and timezone

This is the hostname of your PC and your timezone. Hostname is the name of your PC, you should make it yourself.
Timezone is linked file which is located at the /usr/share/zoneinfo folder.

hostname=ewanhost
timezone=Europe/Minsk

7. Mirrorlist

Mirrorlist is formed by using grep from /etc/pacman.d/mirrorlist file on live-cd. So just include all countries’ names
respectively to importance. For example, here Belarus goes first, then all other countries. And United stays both for
United States and for United Kingdom.

mirror=(Belarus Denmark Russia United France)

8. Internet configuration

Internet can be configured 2 ways:

• dhcpcd - the most easiest way. It does not require any configuration and runs out of box because it is dhcp
receiver. Although, dhcp server should be set on your router and you should have ethernet connection (I’ve not
experienced wi-fi connection over dhcpcd, although it is possible)

• netctl - powerful and easy-to-setup network manager which is stable, ensures good connection over any inter-
faces with any settings and contains lots of pre-configured profiles as examples

netctl=1

If you set netctl=0 - you will use dhcpcd service. Otherwise - you should set all other params that you need to use
netctl.

profile=wireless-wpa-static

Profile is one of the profiles in /etc/netctl/examples folder which will be copied and edited by sed based on your config
values. You can choose ethernet-dhcp, ethernet-static, wireless-open, wireless-wpa-static, etc.

Note: I am currently using wireless-wpa-static because my Raspberry PI needs my ethernet cable.

Warning: WPA profiles need wpa_supplicant package which handles wpa encryption. So make sure you have
one in software section below (see 13. Software list)

6 Chapter 1. Contents

https://en.wikipedia.org/wiki/Grep
https://en.wikipedia.org/wiki/Sed

Ewancoder Arch Linux Documentation, Release 1.9.5

Next, you should definitely configure network interface. You could run ip link command to know which interfaces
do you have. It’s going to be something like enp2s0 or wlp3s5. Mine is wlan just because I have applied special rules
to udev.

interface=wlan

If you’re using static ip address (alongside with static netctl profile), you should definitely setup ip. Also you need to
setup dns and gateway to be able to connect to your router.

ip=192.168.100.22
dns=192.168.100.1

Note: With netctl dns is not a network dns, it’s address of your router (because you connect to it firstly).

Warning: In my current configuration dns and gateway are the same, so I made them as one variable - dns. If
you have different dns&gateway, you can connect me and I’ll improve my script a little bit more.

If you’re connecting via wi-fi (and maybe using encryption) you will need ESSID & PassKey to connect to your access
point. There are easily set up here too.

essid=TTT
key=192837465

9. Devices

EAL script does NOT format your drives. You should do it youself (preferably with mkfs.ext4 command). Then you
can configure these drives in ceal.sh to automount them and add to fstab during install.

All variables are arrays with corresponding values. For examle

device=(/dev/sdb5 /dev/sdb6)
mount=(/ /home)

This means that /dev/sdb5 will be mounted to / and /dev/sdb6 will be mounted to /home.

All devices should be set in the order of mounting. /home could not go before /. The first and mandatory device is / -
root.

Description is just text description of the mounted drive. I have 4 devices mounted in my system: root, home, cloud
and backup.

description=(Root Home Cloud Backup)

Device & mount are the actual devices and their mount points.

device=(/dev/sdb5 /dev/sdb6 /dev/sdb4 /dev/sda5)
mount=(/ /home /mnt/cloud /mnt/backup)

Type, option, dump and pass are the options in the fstab file. Pass should be 1 for root partition and 2 for all other.
Dump is usually 0 for all of them.

1.1. User Guide 7

https://wiki.archlinux.org/index.php/udev#Writing_udev_rules
https://wiki.archlinux.org/index.php/ext4
https://github.com/ewancoder/eal/blob/master/ceal.sh

Ewancoder Arch Linux Documentation, Release 1.9.5

type=(ext4 ext4 ext4 ext4)
option=(rw,relatime,discard rw,relatime,discard rw,relatime,discard rw,relatime)
dump=(0 0 0 0)
pass=(1 2 2 2)

Warning: Discard option is used only for SSD to minimize wear leveling count, do not try to use it on HDD.

And we need to set some additional devices. First - we need to point out which device will be used to store grub
bootloader. It is usually your drive where root partition is located.

mbr=/dev/sdb

If you have Windows OS installed on your machine and you want to automatically copy all fonts from
c:\windows\fonts to /usr/share/fonts/winfonts, set windows to your windows partition. Otherwise just delete this option
(or set it to “”).

windows=/dev/sdb1

10. Users configuration

Now you need to configure users.

user=(ewancoder lft)

So, users is our usernames declared in bash array.

Note: I have two users: ewancoder (my primary user) and lft (linux future tools, for testing weird stuff).

Shell variable is array with shells which will be set to users correspondingly. If not set, it will stay as standard (bash).

shell=(/bin/zsh /bin/zsh)

Group is a variable with groups which will be added to corresponding user.

group=(fuse,lock,uucp,tty fuse)

Groups itself divided by comma. For example, fuse, lock, uucp and tty groups added to ewancoder user, and only one
fuse group added to lft user.

Main variable is needed only as reference.

main=${user[0]}

It serves just as a reference to ewancoder string. So you can just simply change ewancoder to yourname and all
other stuff in the script which needs your username will be changed to yourname.

You can also set main to second user like main=${user[1]}. Array elements in bash start from 0.

For each user will be created an entry in sudoers file which will allow to use sudo for that user. If you want to add
some additional entries in sudoers file (for example, for executing something without password prompt) you can add
this additional entry to sudoers array. I have 1 entry there which allows me to update system without password prompt.

8 Chapter 1. Contents

Ewancoder Arch Linux Documentation, Release 1.9.5

sudoers=("$main ALL=(ALL) NOPASSWD: /usr/bin/yaourt -Syua --noconfirm")

11. Executable commands

If you have complex arch linux ecosystem, you definitely want to execute some of your specific commands at the end
of installation process. This is handled by execs and rootexec variables.

If you want to execute some commands after installation process as root, just add a line with a command in a rootexec
array. Each line will be executed consecutively after all installation process and even after user commands will be
executed (look below).

Note: You can define bash array elements not only horizontally like array=(item1 item2) but also verti-
cally, like

array=(
item1
item2

)

This comes in handy when you have lots of big commands to execute and also want a pretty code.

User commands is something like rootexec array, but they are executed as corresponding user. For example, if you
want to execute “mkdir ~/lol” as your first user and “vim +BundleInstall +qall” as your second user, form an array
execs like this:

execs=(
"mkdir ~/lol"
"vim +BundleInstall +qall"

)

What if you want to give specific user a bunch of commands to execute? It’s easy: add a linebreak at the and of a line
and array parser will take your command as a little script:

execs=(
"mkdir ~/lol \n
yoursecondcommand \n
yourthirdcommand"
"vim +BundleInstall +qall")

Look precisely that \n (which is stands for new line) is at the end of the each line except last one. And all three line
enclosed in quotation marks as one big line.

Note: You can use even something like execs=("command1\n command2\n command3\n") but that
would not be pretty.

There’s an example:

1.1. User Guide 9

Ewancoder Arch Linux Documentation, Release 1.9.5

12. Git configuration

If you’re not familiar with the git and github you can totally remove git section from configuration file, although
this script is highly integrated with git dotfiles technique, so you will benefit much much more by making your own
dotfiles repo and fulling it with your unique software configuration.

If you’re just familiar with git and github but don’t have a dotfiles repository, you can automatically clone your
favourite github repositories whenever you want and even link all the content from these repos to whenever you want
(for this, read below).

And finally, if you already have your dotfiles repo and you want to download it automatically and setup your software
by symlinks, you can set it up pretty quickly and easy.

First, of course, we need to setup our git essential settings:

gitname=$main
gitemail=$main@gmail.com
gittool=vimdiff
giteditor=vim

You can refer these settings to any of your usernames (if you have universal name on the web like I do) or just set
something like gitname=mygitname within the script. These settings will be applied to specific user. I need these
settings only for one user, but you always can do like

gitname=(firstgituser nextgituser thirdgituser)
gitemail=(email1@gmail.com email2@yandex.ru email1@gmail.com)
gittool=(vimdiff vimdiff vimdiff)
giteditor=(vi vim nano)

Next goes git repositories setup. As we did with our user variable (see 10. Users configuration), all these variables
are set corresponding to each other. We have 5 variables:

• gitrepo - list of our repos in a form “user/repo” (like vundle does)

• gitfolder - folder in which you want to clone this repo

• gitrule - chown rule to apply

• gitmodule - submodules to pull

• gitlink - where to symlink all repo content

gitrepo=($main/dotfiles $main/etc $main/btp $main/eal)
gitfolder=(/home/$main/.dotfiles /etc/.dotfiles /home/$main/btp /home/$main/eal)
gitrule=($main:users '' $main:users $main:users)
gitmodule=(".oh-my-zsh .vim/bundle/vundle")
gitlink=(/home/$main /etc)

Lets discuss this on an example above.

First, we’re cloning git repository https://github.com/ewancoder/dotfiles.git to folder /home/ewancoder/.dotfiles.
We’re doing this as root, so all the files will be read-only for any regular user.

Next, we’re pulling two submodules that I have in my dotfiles repo - oh-my-zsh and vundle. All submodules for one
user divided by a space and enclosed in quotation marks for division with other users.

After that, we’re ready to change all files permissions to whatever you need. In the example we’re performing chown
ewancoder:users -R /home/ewancoder/.dotfiles - giving power to the $main (ewancoder) user.

And now is the most interesting part. If you actually have your dotfiles repository and it contains perfect directory
hierarchy to match your home folder (or /etc folder, or any folder you want), for example if your dotfiles contains

10 Chapter 1. Contents

http://git-scm.com/
https://github.com/
https://dotfiles.github.io/
https://en.wikipedia.org/wiki/Chown

Ewancoder Arch Linux Documentation, Release 1.9.5

.config/mc/ini file for configuring mc and not just ini file, then you can set gitlink variable to your home directory (or
any) so that all content from repo will be symlinked to home directory.

Note: Even if you home directory would have some folders/files which you dotfiles repository has, it is not a problem
at all. All files from home will be firstly moved to dotfiles repository, and then dotfiles repository will be linked. So
you should set your gitignore to * to exclude lots of untracked content.

13. Software list

Finally, you need to configure your unique pieces of software. At first, it maybe seems hard to list all the software you
use, but when you’d construct your own list of software - it’d be an easy thing to add or to delete something from the
list. And you’ll be perfectly aware of the software you use.

There we have 3 variables:

• softtitle

• software

• service

Softtitle and software are set correspondingly to each other: first value of softtitle is just caption for the first software
value.

Now, software contains just list of the packages, installed by yaourt (this is analog of pacman, but it installs AUR pack-
ages too). You can list them like software="python cron anki ..." or you can divide them into groups like
software=("first group" "second group" ...). If you’re using second approach, you’d wanna
setup some labels on that groups so you can see what you’re currently installing: this is softtitle variable’s responsi-
bility.

You can see an example:

#Titles shows during install
softtitle=(

Drivers
Audio
Core
Styling
Web
Office
Coding
Tools

)
#Essential AUR software, installed before system boot
buildbefore=(canto-next-git compton cv dmenu2 dropbox dunst-git gtk-theme-

→˓espresso gcalcli gxkb slimlock-git slim-archlinux-solarized-spiral wmii-hg)
#Long-builded AUR software, installed after system boot
buildafter=(canto-curses-git chromium-pepper-flash hyphen-ru hunspell-ru jmtpfs

→˓latex-beamer latex-pscyr pencil popcorntime-bin python-pygame-hg syncplay pasystray-
→˓git)

term="urxvt -e" #Terminal to install $buildafter software within
#Packages (set drivers first for no-conflict)
software=(

"lib32-nvidia-libgl mesa nvidia nvidia-libgl phonon-qt5-gstreamer ttf-dejavu"
"alsa-plugins alsa-utils lib32-alsa-plugins lib32-libpulse pulseaudio

→˓pulseaudio-alsa"
"cronie devilspie udevil feh fuse git gksu keychain libnotify mplayer openssh

→˓p7zip pygtk redshift rsync rxvt-unicode screen sshfs tig tilda transset-df unrar
→˓unclutter unzip urxvt-perls wpa_supplicant xclip xdotool xorg-server xorg-server-
→˓utils xorg-xinit zsh"

1.1. User Guide 11

https://help.github.com/articles/ignoring-files
https://wiki.archlinux.org/index.php/yaourt
https://wiki.archlinux.org/index.php/pacman
https://wiki.archlinux.org/index.php/Arch_User_Repository

Ewancoder Arch Linux Documentation, Release 1.9.5

"faience-icon-theme ffmpegthumbnailer terminus-font tumbler"
"chromium deluge jre8-openjdk icedtea-web net-tools skype"
"anki calligra-krita filelight geeqie gource gvim impressive kdegraphics-

→˓okular libreoffice-fresh hyphen hyphen-en hunspell hunspell-en mc scrot thunar vlc"
"ctags mono pygmentize python python-matplotlib python-numpy python-pyserial

→˓python-requests python-scipy python-sphinx python2-pygments texlive-core texlive-
→˓humanities texlive-langcyrillic texlive-latexextra texlive-pictures texlive-science
→˓wine"

"dosfstools encfs gparted ntfs-3g smartmontools thefuck virtualbox"
)

Warning: If you’re using first approach, it is usually safe to include software without any order. But if you’re
using second approach - set drivers software before any other software (look where I’ve put my mesa, nvidia,
nvidia-libgl packages). Because if you wont, there likely to happen a conflict: some software package can require
mesa OR mesa-libgl, it can choose to install mesa-libgl, and when you’re installing mesa in the next chapter -
BOOM. It’s a conflict.

Finally, we’ve come to the last variable - service. Here you can setup services which will be enabled after whole
software installation process.

service=(cronie deluged deluge-web)

14. The rest

Interface secrion in the ceal.sh file is not changeable although you can change something there to make different
stylization. This section is only responsible for the mess function (which is responsible for displaying current states
on the screen, mess = message) and for the stylization of the script (green, red, yellow text, pauses and etc).

This chapter is about configuration so I will not discuss stylization here, although you might wanna check Stylization
page to get some more technical information about stylization.

1.1.4 Troubleshooting

If you have encountered an error and could not solve it by just skipping or repeating, instead of typing (y/n) type
givemebash command. It will give you bash session and you then can do whatever you want. After fixing the error,
please report me about it and exit bash to continue installation (after bash exit command you will be returned to the
script again).

1.2 Development Guide

This page is intended to help anyone who interested in how-script-work-inside magic. Here will be detailed explana-
tion of each and single line of script code.

1.2.1 CEAL script

The ceal.sh script is basically configuration file with lots of variables setting up, but at the end of a file there’s little
section which defined mess (message) function and its stiling.

You can read about configuration part at the Configuration section of use page.

12 Chapter 1. Contents

https://github.com/ewancoder/eal/blob/master/ceal.sh

Ewancoder Arch Linux Documentation, Release 1.9.5

Stylization

In ceal.sh we have interface section which is responsible for script stylization, printing text in different colors and
making pauses. Here will be detailed described mess function and stylization variables.

Now, we have styling variables here:

All these does is setting specific color or styling. tput command is used for setting a style like this:

tput setaf 1 red
tput setaf 2 green
tput setaf 3 yellow
tput bold bold
tput sgr0 default

Note: We need to set color back to default at the end of printing out text onto the screen because if we wont, all other
text will be printed out with distorted styling.

Mess function is intended to printing stylizied messages onto the screen while installation process proceeds. So each
step of the script will be commented with the help of this function for you to see what’s going on.

Pacman preparation

if [-f /var/lib/pacman/db.lck]; then
sudo rm -f /var/lib/pacman/db.lck #Need this in case pacman is still locked

→˓from last operation when installing on ssd very quicklky
fi

#Determine 'option' and 'message'

This is basically removes file /var/lib/pacman/db.lck if it exists. It is done on each step just to be sure that this file is
not exist when pacman starts doing its work. When you’re using SSD for your main partitions, pacman could be very
quickly and if the script working in an auto mode (see 4. Automatic install) pacman just doesn’t have time to remove
the file.

Getting options

Next block of code defines do we have any options given to the script (like -p, -t, -w or -q).

if ["${#1}" -gt "2"]; then
m=$1
o=$2

else
o=$1
m=$2

fi

If length of the first parameter given to a script is greater than 2 symbols, $m variable will become this first parame-
ter, and $o variable will become the second parameter (if it was given). For example, mess lol. Here first parameter
is greater than 2 symbols (it’s 3), so m=lol and o=''.

1.2. Development Guide 13

https://github.com/ewancoder/eal/blob/master/ceal.sh
https://en.wikipedia.org/wiki/Tput

Ewancoder Arch Linux Documentation, Release 1.9.5

Else (if the length is lower or is equal to 2) first parameter will be given to $o variable and $m will be the second. For
example, mess ha lol. Here first parameter is equal to 2 symbols, so m=lol and o=ha.

Why do we need this block of code? Because it’s unlikely that someone wish to print out a text with the lenght lower
than 2 symbols, but options (-t, -q) is 2 symbols lenght. So we can now pass an option first and the text the second
and it will transfer well.

mess -t "This is printed in green colors, because -t option is stays for 'Title' and
→˓the title is green"

Stylization

Next block of code defines stylization for different options. You can add lots of different options here or change
existing ones.

fi

#Stylize message
case $o in

"-p")
Style="$Bold$Yellow\n-> $m [MANUAL]$Def"
step=$m
;;

"-w")
Style="\n$Bold$Red! mDef"
;;

"-t")
Line="$(printf "%$(tput cols)s\n"|tr ' ' '-')"
Style="\n$Line$Bold$Green\n-> mDef\n$Line"
step=$m
;;

"-q")
Style="$Bold$RedmDef"
;;

"-v")
Style="$Blue-> mDef"
echo $m | grep -oP '(?<!\[)\$[{(]?[^"\s\/\047.\\]+[})]?' | uniq > vars
if [! "`cat vars`" == ""]; then

while read -r p; do
value=`eval echo $p`
Style=`echo -e "$Style\n\t$Green$p = $value$Def"`

done < vars
fi
rm vars
;;

*)
Style="$Bold$Green\n-> DefBoldmDef"
step=$m
;;

esac

#Print message
if ["$o" == "-v"]; then

echo -en "$Style\n"
elif ["$o" == "-p"]; then

echo -en "$Style"
read

14 Chapter 1. Contents

Ewancoder Arch Linux Documentation, Release 1.9.5

else
echo -e "$Style"
if ["$o" == "-w" -o "$o" == "-p"] || ["$o" == "" -a $auto -eq 0]; then

read -p $Bold$Yellow"Continue [ENTER]"$Def
fi

fi
}

Here we’re setting 3 variables:

• Style - styled string which will be printed out onto the screen

• Pause - if equal to 1, script will be paused no matter what is auto variable

• Line - just temporary variable for title style sake - horisontal lines with the width of the screen

• step - this variable is responsible for error-handling mechanism (see also 2. Error-handling). If it’s set to
something, this will be printed by error-handling mechanism. So I’m setting it to $m variable, but only if there
was no options given (this is just regular step in the script) or if -p or -t options were given (pause and title).
There will be no use of -w and -q options being error-handled.

Different styles

Pause

Pause style is used when you need to force-pause script and tell user that he is going to do something. For example,
if you want user to enter password or to edit some file use pause style.

The option is -p.

Style="$Bold$Yellow\n-> $m [MANUAL]$Def"
step=$m
;;

"-w")
Style="\n$Bold$Red! mDef"
;;

Title

Title style is used for block of code united with the one goal. Also, it is used to print out the whole scipt’s title.

The option is -t.

Line="$(printf "%$(tput cols)s\n"|tr ' ' '-')"
Style="\n$Line$Bold$Green\n-> mDef\n$Line"
step=$m
;;

"-q")
Style="$Bold$RedmDef"
;;

"-v")
Style="$Blue-> mDef"

1.2. Development Guide 15

Ewancoder Arch Linux Documentation, Release 1.9.5

echo $m | grep -oP '(?<!\[)\$[{(]?[^"\s\/\047.\\]+[})]?' | uniq > vars
if [! "`cat vars`" == ""]; then

while read -r p; do
value=`eval echo $p`
Style=`echo -e "$Style\n\t$Green$p = $value$Def"`

done < vars
fi
rm vars
;;

*)
Style="$Bold$Green\n-> DefBoldmDef"
step=$m
;;

esac

#Print message
if ["$o" == "-v"]; then

echo -en "$Style\n"
elif ["$o" == "-p"]; then

echo -en "$Style"
read

else
echo -e "$Style"
if ["$o" == "-w" -o "$o" == "-p"] || ["$o" == "" -a $auto -eq 0]; then

read -p $Bold$Yellow"Continue [ENTER]"$Def
fi

fi
}

Warning

Warning style is used when you need to force-pause script plus print out something with big red font and exlamation
sign. For example, it is used to remind user that he should change ceal.sh file and format drives before installation.

The option is -w.

Style="\n$Bold$Red! mDef"
;;

"-t")
Line="$(printf "%$(tput cols)s\n"|tr ' ' '-')"
Style="\n$Line$Bold$Green\n-> mDef\n$Line"
step=$m
;;

16 Chapter 1. Contents

https://github.com/ewancoder/eal/blob/master/ceal.sh

Ewancoder Arch Linux Documentation, Release 1.9.5

Question

Question style is used just for error-handling question (y/n). It is also red and differs from warning style just a little
bit. Also, it hasn’t force-pause thing.

The option is -q.

Style="$Bold$RedmDef"
;;

"-v")
Style="$Blue-> mDef"
echo $m | grep -oP '(?<!\[)\$[{(]?[^"\s\/\047.\\]+[})]?' | uniq > vars
if [! "`cat vars`" == ""]; then

while read -r p; do
value=`eval echo $p`
Style=`echo -e "$Style\n\t$Green$p = $value$Def"`

done < vars
fi
rm vars
;;

*)
Style="$Bold$Green\n-> DefBoldmDef"
step=$m
;;

esac

#Print message
if ["$o" == "-v"]; then

echo -en "$Style\n"
elif ["$o" == "-p"]; then

echo -en "$Style"
read

else
echo -e "$Style"
if ["$o" == "-w" -o "$o" == "-p"] || ["$o" == "" -a $auto -eq 0]; then

read -p $Bold$Yellow"Continue [ENTER]"$Def
fi

fi
}

Default

Default style is just for the regular messages of what is going on now. It is used at almost the each line of a script (at
the each step).

This is applied if there’s no options.

1.2. Development Guide 17

Ewancoder Arch Linux Documentation, Release 1.9.5

The core

So far, we’ve only set all variables. Where’s the actions? Here are they:

Here we’re just echo-ing our Style variable which already contains all the styles and the message. Then we’re checking
two variables:

• Pause - if it’s 1, we need to force-pause the script

• auto - if it’s 0, then we’re force-pausing script anyway (on each step)

But inside the cycle, we’re checking two more things: if -t or -q options were NOT given, we’re printing yel-
low string “Continue [ENTER]” and waiting for input (this is pause itself). This is needed for skipping titles and
questions even if the auto variable was being set.

1.2.2 Install script

1.2.3 HEAL script

1.2.4 EAL script

1.2.5 PEAL script

18 Chapter 1. Contents

	Contents
	User Guide
	Development Guide

