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Work very much in progress.
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CHAPTER 1

API

Coming soon.

3



dynsity, Release 0.1

4 Chapter 1. API



CHAPTER 2

Methodology

In this page we give a brief overview of the modelling process used in dynsity. We refer the interested reader to
Takeuchi & Lin (2002) for more thorough details.

2.1 Background

The gas in a protoplanetary disk will rotate at a slightly sub-Keplerian velocity due to the support from the radial
pressure gradient. In addition, the mass of the disk will contribute to the gravitational potential and speed the rotation
of the disk, such that the total rotation is given by,

𝑣2𝜑
𝑟

=
𝐺𝑀star𝑟

(𝑟2 + 𝑧2)3/2
+

1

𝜌gas

𝜕𝑃gas

𝜕𝑟
+

𝜕𝜑gas

𝜕𝑟
,

where, for an ideal gas, 𝑃gas = 𝑛gas 𝑘 𝑇gas, and 𝜑gas is the gravitational potential of the gas which satisfies

∇2𝜑gas = 4𝜋𝐺𝜌gas.

If we are able to measure 𝑣𝜑 precisely, and are able to constrain both 𝑧(𝑟) and 𝑇gas(𝑟) observationally, we hope to

1) Place tight constraints on the dynamical mass of the star, 𝑀sun.

2) Infer local changes in 𝑃gas due to local deviations in 𝑣𝜑, such as due to gaps in the gas surface density.

3) Constrain the dynamical mass of the disk after making some assumptions about how Σgas(𝑟) varies.

2.2 The Model

2.2.1 Inputs

We assume that the user has been able to measure:

• 𝑣𝜑(𝑟) - The deprojected rotational velocity of the gas as a function of radius in [m s−1].
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• 𝑧(𝑟) - The height of the emission surface as a function of radius in [au].

• ℎ𝑝(𝑟) - The gas pressure scale height as a function of radius in [au].

• 𝑇gas(𝑟) - The gas temperature as a function of radius in [K].

The emission surface can be derived either from fitting the rotation map, as in Keppler et al. (2019), or following the
method in Pinte et al. (2018). The gas temperature is harder to measure, but optically thick lines like CO are useful as
𝑇B = 𝑇ex. Optically thin lines may pose more of a challenge.

2.2.2 Gas Surface Density

We make the assumption that the gas surface density is well described by

Σgas = Σ0 ×
(︁ 𝑟

100 au

)︁𝛾

,

where we have neglected the often used exponential edge. The normalization of this term is given in terms of 𝑀disk

such that,

Σ0 =
𝑀disk 𝑟

𝛾
0 (2 + 𝛾)

2𝜋 (𝑟2max − 𝑟2min)
,

which means that 𝛾 > −2. This means that for 𝛾 ≤ 2 we have to calculate this numerically.

Note: With this approach, the inner radius of the fit is considered 𝑟min and any disk mass inside this term will result
in a slightly inflated 𝑀star.

2.2.3 Gas Volume Density

To relate Σgas to 𝑛(H2) we assume an isothermal vertical density profile,

𝑛(𝑟, 𝑧) =
Σgas(𝑟)√
2𝜋ℎ𝑝(𝑟)

· exp

(︂
−1

2

𝑧2

ℎ𝑝(𝑟)2

)︂
,

where ℎ𝑝 is the gas scale height. Unless there is some other observational constrain on ℎ𝑝, it is typically taken to be
ℎ𝑝 / 𝑟 = 0.1. While this provides some degree of self-consistency between the models, significant changes in 𝑧(𝑟)
can result in large deviation ins 𝑛(H2).

Note: There are different definitions of the ℎ𝑝 which can vary by a factor of
√

2. While this shouldn’t introduce a
significant difference relative to the other uncertainties involved, it’s good to check.

2.2.4 Disk Self-Gravity

To calculate the self-gravity of the disk we can take the simplification of

𝜕𝜑gas

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑟′

= 2𝜋𝐺Σ(𝑟′),

which is appropriate when Σgas = Σ0 · (𝑟 / 𝑟0)−1. However, testing showed that this was a poor approximation for
anything where 𝛾 ̸= −1, even for small changes. Current approach is to solve numerically for this, but this is relatively
slow (180 times slower. . . ).
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We can also consider the expansion:

𝜑gas(𝑟) = −2𝜋𝐺

∫︁ ∞

0

∫︁ ∞

0

Σ(𝑟′) 𝐽0(𝑘𝑟′) 𝑟′𝐽0(𝑘𝑟) d𝑟′ d𝑘

where 𝐽0 is the zeroth-order spherical Bessel function. This might not necessarily be quicker. . .

2.2.5 Perturbations in 𝑛(H2) Profile

In dynsity we have two options for modelling 𝛿𝑛: either the product of multiple Gaussian perturbations,

𝛿𝑛 =

𝑁∏︁
𝑖

𝒢𝑖,

where

𝒢𝑖(𝑟, 𝑟0,∆𝑟, ∆𝑛) = 1 − ∆𝑛 · exp

(︂
− (𝑟 − 𝑟0)2

2∆𝑟2

)︂
,

or a 𝑁 th-order polynomial. Any number of perturbation terms can be added to the model for 𝑛(H2), however note
that no perturbations will be added to the attached 𝑇gas.

Warning: Currently we have no good way to bounding the coefficients for the polynomial perturbations so these
should be ignored.

2.2. The Model 7
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D
dynsity.dysity.fitting (module), 1
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