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Models


The following inference models have been added.



Meta Models & Ensembles



		LSSVM committees.








Stochastic Processes



		Multi-output, multi-task Gaussian Process models as reviewed in Lawrence et. al [https://arxiv.org/abs/1106.6251].


		Student T Processes: single and multi output inspired from Shah, Ghahramani et. al [https://www.cs.cmu.edu/~andrewgw/tprocess.pdf]


		Performance improvement to computation of marginal likelihood and posterior predictive distribution in Gaussian Process models.


		Posterior predictive distribution outputted by the AbstractGPRegression base class is now changed to MultGaussianRV which is added to the dynaml.probability package.










Kernels



		Added StationaryKernel and LocallyStationaryKernel classes in the kernel APIs, converted RBFKernel, CauchyKernel, RationalQuadraticKernel & LaplacianKernel to subclasses of StationaryKernel


		Added MLPKernel which implements the maximum likelihood perceptron kernel as shown here [http://gpss.cc/gpuqss16/slides/gp_gpss16_session2.pdf].


		Added co-regionalization kernels which are used in Lawrence et. al [https://arxiv.org/abs/1106.6251] to formulate kernels for vector valued functions. In this category the following co-regionalization kernels were implemented.
		CoRegRBFKernel


		CoRegCauchyKernel


		CoRegLaplaceKernel


		CoRegDiracKernel








		Improved performance when calculating kernel matrices for composite kernels.


		Added :* operator to kernels so that one can create separable kernels used in co-regionalization models.








Optimization



		Improved performance of CoupledSimulatedAnnealing, enabled use of 4 variants of Coupled Simulated Annealing, adding the ability to set annealing schedule using so called variance control scheme as outlined in de-Souza, Suykens et. al [ftp://ftp.esat.kuleuven.be/sista/sdesouza/papers/CSA2009accepted.pdf].








Pipes



		Added Scaler and ReversibleScaler traits to represent transformations which input and output into the same domain set, these traits are extensions of DataPipe.


		Added Discrete Wavelet Transform based on the Haar wavelet.





{% include links.html %}
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The best way to learn using DynaML’s many features is to practice on some data science case studies. The dynaml-examples module contains a number of model training and testing experiments which are intended to serve as instructive material for getting comfortable with the DynaML API.


The example programs cover a number of categories.



		Regression


		Classification


		System Identification
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Have questions or suggestions? Feel free to open an issue on GitHub or ask me on Twitter [https://twitter.com/dyna_ml].


{% include links.html %}
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Set up your Github repo



		Make sure you have Git installed. You can download and install Git for Windows here [https://git-scm.com/download/win] and Git for Mac here [https://git-scm.com/download/mac]. If you’re on a Mac, chances are you might already have git installed. You can check by opening up a terminal and typing which git.{{end}}


		Go to Github.com [http://github.com] and sign up for an account.


		Click the + button in the upper-right corner and select New repository.


		Name the repository something like mydoctheme.


		Type a description..


		Select the Initialize this repository with a README check box.


		Add a license if desired.


		Leave the other options at the defaults and click Create repository.


		Click the Settings button.


		Go to your repository’s home page, and click the branch drop-down menu.


		Create a new branch called gh-pages.


		Click Settings and change the default branch to gh-pages.


		Go back to your repository’s homepage. With the gh-pages branch selected, copy the https clone url:


		Open a terminal, browse to a convenient location for your project, and type git clone https://github.com/tomjohnson1492/myreponame.git, replacing the https://github.com/tomjohnson1492/myreponame.git with your repository’s https clone URL that you copied.


		Move the jekyll theme files into this new folder that you just created in the previous step.


		Open the _config.yml file and add the following:





url: tomjohnson1492.github.io
baseurl: /myreponame






Change the url to your github account name, and the baseurl to your repo name.





Install Bundler


Bundler is a package manager for Ruby that will install all dependencies you might need to build your site locally. I recommend installing Bundler through homebrew. (Sorry, these instructions apply to Mac only.)



		Install homebrew [http://brew.sh/]:


/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"









		Install Bundler:


gem install bundler















Add the github pages gem



		In terminal, browse to your Jekyll project directory.





		Type bundle init. This creates a Gemfile and Gemfile.lock in your project.





		Type open gemfile. This opens the gemfile in your default text editor.





		Add the following in the gemfile (replacing the existing contents):


source 'https://rubygems.org'
gem 'github-pages'









		Run bundle install.





		Add the new jekyll files to git: git add --all.





		Commit the files: git commit -m "committing my jekyll theme".





		Push the files up to your github repo: git push.








Github Pages will now automatically build your site. Wait a minute or two, and then visit tomjohnson1492.github.io/yourreponame, replacing this path with your github account and branch.





Customize your URL


You can also customize your Github URL. More instructions on this later....


{% include links.html %}
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Model Classes


In DynaML all model implementations fit into a well defined class hierarchy. In fact every DynaML machine learning model is an extension of the Model[T,Q,R] trait. The Model trait is quite bare bones: machine learning models are viewed as objects containing two parts or components.



		A training data set (of type T).


		A method predict(point: Q):R to generate a prediction of type R given a data point of type Q.








Parameterized Models


Many predictive models calculate predictions by formulating an expression which includes a set of parameters which are used along with the data points to generate predictions, the ParameterizedLearner[G, T, Q, R, S] class represents a skeleton for all parametric machine learning models such as Generalized Linear Models, Neural Networks, etc.


The defining characteristic of classes which extend ParameterizedLearner is that they must contain a member variable optimizer: RegularizedOptimizer[T, Q, R, S] which represents a regularization enabled optimizer implementation along with a learn() method which uses the optimizer member to calculate approximate values of the model parameters given the training data.



Linear Models


Linear models; represented by the LinearModel[T, P, Q , R, S] trait are extensions of ParameterizedLearner, this top level trait is extended to yield many useful linear prediction models.


Generalized Linear Models which are linear in parameters expression for the predictions $$y$$ given a vector of processed features $$\phi(x)$$ or basis functions.


$$
\begin{equation}
y = w^T\varphi(x) + \epsilon
\end{equation}
$$





Neural Networks






[image: feedforward-NN]






Feed forward neural networks are the most common network architectures in predictive modeling, DynaML has an implementation of feed forward architectures that is trained using Backpropogation with momentum.


In a feed forward neural network with a single hidden layer the predicted target $$y$$ is expressed using the edge weights and node values in the following manner (this expression is easily extended for multi-layer nets).


$$
\begin{equation}
y = W_2 \sigma(W_1 \mathbf{x} + b_1) + b_2
\end{equation}
$$


Where $$W_1 , \ W_2$$  are matrices representing edge weights for the hidden layer and output layer respectively and $$\sigma(.)$$ represents a monotonic activation function, the usual choices are sigmoid, tanh, linear or rectified linear functions.







Non Parametric Models


Non parametric models generally grow with the size of the data set, some examples include Gaussian Processes and Dual LSSVM among others.



LSSVM


Least Squares Support Vector Machines are a modification of the classical Support Vector Machine, please see Suykens et. al [http://www.amazon.com/Least-Squares-Support-Vector-Machines/dp/9812381511] for a complete background.


[image: lssvm-book]





Stochastic Processes


Stochastic processes are general probabilistic models which can be used to construct finite dimensional distributions over a set of sampled domain points. More specifically a stochastic process is a probabilistic function $$f(.)$$ defined on any domain or index set $$\mathcal{X}$$ such that for any finite collection $$x_i \in \mathcal{X}, i = 1 \cdots N$$, the finite dimensional distribution $$P(f(x_1), \cdots, f(x_N))$$ is coherently defined.


In DynaML the StochasticProcess[T, I, Y, W] trait extends Model[T, I, Y] and is the top level trait for the implementation of general stochastic processes. In order to extend it, one must implement among others a function to output the posterior predictive distribution predictiveDistribution().





Gaussian Processes


[image: gp]




Gaussian Processes are stochastic processes whose finite dimensional distributions are multivariate gaussians.


Gaussian Processes are powerful non-parametric predictive models, which represent probability measures over spaces of functions. Ramussen and Williams [https://books.google.nl/books/about/Gaussian_Processes_for_Machine_Learning.html?id=vWtwQgAACAAJ&hl=en] is the definitive guide on understanding their applications in machine learning and a gateway to their deeper theoretical foundations.


[image: gp-book]









Student T Processes


Student T processes [https://www.cs.cmu.edu/~andrewgw/tprocess.pdf] are generalizations of Gaussian Processes, where the finite dimensional distribution on a set of points is a multivariate t distribution.







Meta Models/Model Ensembles


Meta models use predictions from several candidate models and derive a prediction that is a meaningful combination of the individual predictions. This may be achieved in several ways some of which are.



		Average of predictions/voting


		Weighted predictions: Problem is now transferred to calculating appropriate weights.


		Learning some non-trivial functional transformation of the individual prediction, also known as gating networks.





Currently the DynaML API has the following classes providing capabilities of meta models.


Abstract Classes



		MetaModel[D, D1, BaseModel]


		CommitteeModel[D, D1, BaseModel]





Implementations



		LS-SVM Committee


		Neural Committee
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The wine quality [https://archive.ics.uci.edu/ml/datasets/Wine+Quality] data set is a common example used to benchmark classification models. Here we use the DynaML scala machine learning environment to train classifiers to detect ‘good’ wine from ‘bad’ wine. A short listing of the data attributes/columns is given below. The UCI archive has two files in the wine quality data set namely winequality-red.csv and winequality-white.csv. We train two separate classification models, one for red wine and one for white.


![Wine: Representative Image]({{ site.baseurl}}/images/wine.jpg)



Attribute Information:



Inputs:



		fixed acidity


		volatile acidity


		citric acid


		residual sugar


		chlorides


		free sulfur dioxide


		total sulfur dioxide


		density


		pH


		sulphates


		alcohol








Output (based on sensory data):



		quality (score between 0 and 10)








Data Output Preprocessing


The wine quality target variable can take integer values from 0 to 10, first we convert this into a binary class variable by setting the quality to be ‘good’(encoded by the value 1) if the numerical value is greater than 6 and ‘bad’ (encoded by value 0) otherwise.







Model


Below is a GP model for predicting the quality label $$y$$.



Logit


$$
\begin{align}
P(y \ = 1 \ | \ \mathbf{x}) &= \sigma(w^T \varphi(\mathbf{x}) + b) \
\sigma(z) &= \frac{1}{1 + exp(-z)}
\end{align}
$$





Probit


The probit regression model is an alternative to the logit model it is represented as.


$$
\begin{align}
P(y \ = 1 \ | \ \mathbf{x}) &= \Phi(w^T \varphi(\mathbf{x}) + b) \
\Phi(z) &= \int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} exp(-\frac{z^{2}}{2}) dz\end{align}
$$







Syntax


The TestLogisticWineQuality program in the examples package trains and tests logit and probit models on the wine quality data.


Parameter | Type | Default value |Notes
——–|———–|———–|————|
training | Int | 100 | Number of training samples
test | Int | 1000 | Number of test samples
columns | List[Int] | 11, 0, ... , 10 | The columns to be selected for analysis (indexed from 0), first one is the target column.
stepSize | Double | 0.01 | Step size chosen for GradientDescent
maxIt | Int | 30 | Maximum number of iterations for gradient descent update.
mini | Double | 1.0 | Fraction of training samples to sample for each batch update.
regularization | Double | 0.5 | Regularization parameter.
wineType | String | red | The type of wine: red or white
modelType | String | logistic | The type of model: logistic or probit





Red Wine


TestLogisticWineQuality(stepSize = 0.2, maxIt = 120,
mini = 1.0, training = 800,
test = 800, regularization = 0.2,
wineType = "red")






16/04/01 15:21:57 INFO BinaryClassificationMetrics: Classification Model Performance
16/04/01 15:21:57 INFO BinaryClassificationMetrics: ============================
16/04/01 15:21:57 INFO BinaryClassificationMetrics: Accuracy: 0.8475
16/04/01 15:21:57 INFO BinaryClassificationMetrics: Area under ROC: 0.7968417788802267
16/04/01 15:21:57 INFO BinaryClassificationMetrics: Maximum F Measure: 0.7493563745371187






[image: red-roc]


[image: red-fmeasure]





White Wine


TestLogisticWineQuality(stepSize = 0.26, maxIt = 300,
mini = 1.0, training = 3800,
test = 1000, regularization = 0.0,
wineType = "white")






16/04/01 15:27:17 INFO BinaryClassificationMetrics: Classification Model Performance
16/04/01 15:27:17 INFO BinaryClassificationMetrics: ============================
16/04/01 15:27:17 INFO BinaryClassificationMetrics: Accuracy: 0.829
16/04/01 15:27:17 INFO BinaryClassificationMetrics: Area under ROC: 0.7184782682020251
16/04/01 15:27:17 INFO BinaryClassificationMetrics: Maximum F Measure: 0.7182203962483446






[image: red-roc]


[image: red-fmeasure]





Source Code


{% gist mandar2812/b309d5c26b5aba9c84415d2f7cd6d913 %}
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What I cannot create, I do not understand.



		Richard Feynman









Random variables and probability distributions form the bedrock of modern statistical based approaches to inference. Furthermore, analytically tractable inference is only possible for a small number of models while a wealth of interesting model structures don’t yield themselves to analytical inference and approximate sampling based approaches are often employed.



Random Variable API


Since version 1.4 a new package called probability has been added to the core api with an aim to aid in the modeling of random variables and measurable functions. Although both random variable with tractable and intractable distributions can be constructed, the emphasis is on the sampling capabilities of random variable objects.


The probability package class hierarchy consists of classes and traits which represent continuous and discrete random variables along with ability to endow them with distributions.



DynaML Random Variable


The RandomVariable[Domain] forms the top of the class hierarchy in the probability package. It is a light weight trait which takes a form like so.


abstract class RandomVariable[Domain] {

  val sample: DataPipe[Unit, Domain]

  def :*[Domain1](other: RandomVariable[Domain1]): RandomVariable[(Domain, Domain1)] = {
    val sam = this.sample
    RandomVariable(BifurcationPipe(sam,other.sample))
  }
}






A RandomVariable instance is defined by its type parameter Domain, in Mathematics this is the underlying space (referred to as the support) over which the random variable is defined ($$\mathbb{R}^p$$ for continuos variables, $$\mathbb{N}$$ for discrete variables).


The two main functionalities are as follows.



		sample which is a data pipe having no input and outputs a sample from the random variables distribution whenever invoked.


		:* the ‘composition’ operator between random variables, evaluating an expression like randomVar1 :* randomVar2 creates a new random variable whose domain is a cartesian product of the domains of randomVar1 and randomVar2.








Creating Random Variables


Creating random variables can be created by a number of ways.


import breeze.stats.distributions._
import spire.implicits._


//Create a sampling function
val sampF: () => Double = ...
val rv = RandomVariable(sampF)

//Also works with a pipe
val sampF: DataPipe[Unit, Double] = ...
val rv = RandomVariable(sampF)

//Using a breeze distribution
val p = RandomVariable(new Beta(7.5, 7.5))
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The past year has seen DynaML grow by leaps and bounds, this post hopes to give you an update about what has been achieved
and a taste for what is to come.



Completed Features


A short tour of the enhancements which were completed.



January to June



		Released v1.3.x series with the following new additions


Models



		Regularized Least Squares


		Logistic and Probit Regression


		Feed Forward Neural Nets


		Gaussian Process (GP) classification and NARX based models


		Least Squares Support Vector Machines (LSSVM) for classification and regression


		Meta model API, committee models





Optimization Primitives



		Regularized Least Squares Solvers


		Gradient Descent


		Committee model solvers


		Linear Solvers for LSSVM


		Laplace approximation for GPs





Miscellaneous



		Data Pipes API


		Migration to scala version 2.11.8








		Started work on release 1.4.x series with initial progress


Improvements



		Migrated from Maven to Sbt.


		Set Ammonite [http://www.lihaoyi.com/Ammonite/] as default REPL.














June to December



		Released v1.4 with the following features.


Models


The following inference models have been added.



		LSSVM committees.


		Multi-output, multi-task Gaussian Process models as reviewed in Lawrence et. al [https://arxiv.org/abs/1106.6251].


		Student T Processes: single and multi output inspired from Shah, Ghahramani et. al [https://www.cs.cmu.edu/~andrewgw/tprocess.pdf]


		Performance improvement to computation of marginal likelihood and posterior predictive distribution in Gaussian Process models.


		Posterior predictive distribution outputted by the AbstractGPRegression base class is now changed to MultGaussianRV which is added to the dynaml.probability package.





Kernels



		Added StationaryKernel and LocallyStationaryKernel classes in the kernel APIs, converted RBFKernel, CauchyKernel, RationalQuadraticKernel & LaplacianKernel to subclasses of StationaryKernel





		Added MLPKernel which implements the maximum likelihood perceptron kernel as shown here [http://gpss.cc/gpuqss16/slides/gp_gpss16_session2.pdf].





		Added co-regionalization kernels which are used in Lawrence et. al [https://arxiv.org/abs/1106.6251] to formulate kernels for vector valued functions. In this category the following co-regionalization kernels were implemented.



		CoRegRBFKernel


		CoRegCauchyKernel


		CoRegLaplaceKernel


		CoRegDiracKernel






		Improved performance when calculating kernel matrices for composite kernels.


		Added :* operator to kernels so that one can create separable kernels used in co-regionalization models.





Optimization



		Improved performance of CoupledSimulatedAnnealing, enabled use of 4 variants of Coupled Simulated Annealing, adding the ability to set annealing schedule using so called variance control scheme as outlined in de-Souza, Suykens et. al [ftp://ftp.esat.kuleuven.be/sista/sdesouza/papers/CSA2009accepted.pdf].





Pipes



		Added Scaler and ReversibleScaler traits to represent transformations which input and output into the same domain set, these traits are extensions of DataPipe.


		Added Discrete Wavelet Transform based on the Haar wavelet.














		Started work on v1.4.1 with the following progress


Linear Algebra API



		Partitioned Matrices/Vectors and the following operations
		Addition, Subtraction


		Matrix, vector multiplication


		LU, Cholesky


		A\y, A\Y











Probability API



		Added API end points for representing Measurable Functions of random variables.





Model Evaluation



		Added Matthews Correlation Coefficient calculation to BinaryClassificationMetrics via the matthewsCCByThreshold method





Data Pipes API



		Added Encoder[S,D] traits which are reversible data pipes representing an encoding between types S and D.





Miscellaneous



		Updated ammonite version to 0.8.1


		Added support for compiling basic R code with renjin [http://www.renjin.org]. Run R code in the following manner:











val toRDF = csvToRDF("dfWine", ';')
val wine_quality_red = toRDF("data/winequality-red.csv")
//Descriptive statistics
val commands: String = """
print(summary(dfWine))
print("\n")
print(str(dfWine))
"""
r(commands)
//Build Linear Model
val modelGLM = rdfToGLM("model", "quality", Array("fixed.acidity", "citric.acid", "chlorides"))
modelGLM("dfWine")
//Print goodness of fit
r("print(summary(model))")











Ongoing Work


Some projects being worked on right now are.



		Bayesian optimization using Gaussian Process models.


		Implementation of Neural Networks using the akka [http://akka.io] actor API.


		Implementation of kernels which can be decomposed on data dimensions $$k((x_1, x_2), (y_1, y_2)) = k_1(x_1, y_1) + k_2(x_2, y_2)$$
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Student T Processes [https://www.cs.cmu.edu/~andrewgw/tprocess.pdf] (STP) can be viewed as a generalization of Gaussian Processes, in GP models we use the multivariate normal distribution to model noisy observations of an unknown function. Likewise for STP models, we employ the multivariate student t distribution. Formally a student t process is a stochastic process where the finite dimensional distribution is multivariate t.


$$
\begin{align}
\mathbf{y} & \in \mathbb{R}^n \
\mathbf{y} & \sim MVT_{n}(\nu, \phi, K) \
p(\mathbf{y}) & = \frac{\Gamma(\frac{\nu + n}{2})}{((\nu - 2)\pi)^{n/2} \Gamma(\nu/2)} |K|^{-1/2} \
& \times (1 + (\mathbf{y} - \phi)^T K^{-1} (\mathbf{y} - \phi))^{-\frac{\nu +n}{2}}
\end{align}
$$


It is known that as $$\nu \rightarrow \infty$$, the $$MVT_{n}(\nu, \phi, K)$$ tends towards the multivariate normal distribution $$\mathcal{N}_{n}(\phi, K)$$.



Regression with Student T Processes


The regression formulation for STP models is identical to the GP regression framework, to summarize the posterior predictive distribution takes the following form.


Suppose $$\mathbf{t} \sim MVT_{n_{tr} + n_t}(\nu, \mathbf{0}, K)$$ is the process producing the data.
Let $$[\mathbf{f_*}]{n{t} \times 1}$$ represent the values of the function on the test inputs and $$[\mathbf{y}]{n{tr} \times 1}$$ represent noisy observations made on the training data points.


$$
\begin{align}
& \mathbf{f_*}|X,\mathbf{y},X_* \sim MVT_{\nu + n_{tr}}(\mathbf{\bar{f_*}}, \frac{\nu + \beta - 2}{\nu + n_{tr} - 2} \times cov(\mathbf{f_*}))  \label{eq:posterior}\
& \beta = \mathbf{y}^T K^{-1} \mathbf{y} \
& \mathbf{\bar{f_*}} \overset{\triangle}{=} \mathbb{E}[\mathbf{f_*}|X,y,X_*] = K(X_*,X)[K(X,X) + \sigma^{2}n \it{I}]^{-1} \mathbf{y} \label{eq:posterior:mean} \
& cov(\mathbf{f}) = K(X_*,X_*) - K(X_*,X)[K(X,X) + \sigma^{2}n \it{I}]^{-1}K(X,X)


\end{align}






$$



STP models for a single output


For univariate GP models (single output), use the StudentTRegressionModel class (an extension of AbstractSTPRegressionModel). To construct a STP regression model you would need:



		The degrees of freedom $$\nu$$


		Kernel/covariance instance to model correlation between values of the latent function at each pair of input features.


		Kernel instance to model the correlation of the additive noise, generally the DiracKernel (white noise) is used.


		Training data





val trainingdata: Stream[(DenseVector[Double], Double)] = ...
val num_features = trainingdata.head._1.length

// Create an implicit vector field for the creation of the stationary
// radial basis function kernel
implicit val field = VectorField(num_features)

val kernel = new RBFKernel(2.5)
val noiseKernel = new DiracKernel(1.5)
val model = new StudentTRegression(1.5, kernel, noiseKernel, trainingData)









STP models for Multiple Outputs


Working with multi-output Student T models is similar to multi-output GP models. We need to create a kernel function over the combined index set (DenseVector[Double], Int). This can be done using the sum of separable kernel idea.



val linearK = new PolynomialKernel(2, 1.0)
val tKernel = new TStudentKernel(0.2)
val d = new DiracKernel(0.037)

val mixedEffects = new MixedEffectRegularizer(0.5)
val coRegCauchyMatrix = new CoRegCauchyKernel(10.0)
val coRegDiracMatrix = new CoRegDiracKernel

val sos_kernel: CompositeCovariance[(DenseVector[Double], Int)] =
  (linearK :* mixedEffects)  + (tKernel :* coRegCauchyMatrix)

val sos_noise: CompositeCovariance[(DenseVector[Double], Int)] = d :* coRegDiracMatrix






You can use the MOStudentTRegression[I] class to create multi-output GP models.


val trainingdata: Stream[(DenseVector[Double], DenseVector[Double])] = ...

val model = new MOStudentTRegression[DenseVector[Double]](
          sos_kernel, sos_noise, trainingdata,
          trainingdata.length, trainingdata.head._2.length)
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System identification refers to the process of learning a predictive model for a given dynamic system i.e. a system whose dynamics evolve with time. The most important aspect of these models is their structure, specifically the following are the common dynamic system models for discretely sampled time dependent systems.



DaISy: System Identification Database


DaISy [http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html] is a database of (artificial and real world) dynamic systems maintained by the STADIUS [https://www.esat.kuleuven.be/stadius/] research group at KU Leuven. We will work with the power plant data set listed on the DaISy home page in this post. Using DynaML [https://mandar2812.github.io/DynaML], which comes preloaded with the power plant data, we will train LSSVM [https://github.com/mandar2812/DynaML/wiki/Dual-LSSVM] models to predict the various output indicators of the power plant in question.





System Identification Models


Below is a quick and dirty description of non-linear auto-regressive (NARX) models which are popular in the system identification research community and among practitioners.



Nonlinear AutoRegresive (NAR)


Signal $$y(t)$$ modeled as a function of its previous $$p$$ values


$$
\begin{align}
y(t) = f(y(t-1), y(t-2), \cdots, y(t-p)) + \epsilon(t)
\end{align}
$$





Nonlinear AutoRegressive with eXogenous inputs (NARX)


Signal $$y(t)$$ modeled as a function of the previous $$p$$ values of itself and the $$m$$ exogenous inputs $$u_{1}, \cdots u_{m}$$


$$
\begin{align}
\begin{split}
y(t) = & f(y(t-1), y(t-2), \cdots, y(t-p), \
& u_{1}(t-1), u_{1}(t-2), \cdots, u_{1}(t-p),\
& \cdots, \
& u_{m}(t-1), u_{m}(t-2), \cdots, u_{m}(t-p)) \
& + \epsilon(t)
\end{split}
\end{align}
$$











Pont-sur-Sambre Power Plant Data


![Pont-sur-Sambre: Representative Image]({{ site.baseurl }}/images/powerplant.jpg)


You can obtain the metadata from this link [ftp://ftp.esat.kuleuven.be/pub/SISTA/data/process_industry/powerplant.txt], it is also summarized below.



Data Attributes


Instances: 200


Inputs:



		Gas flow


		Turbine valves opening


		Super heater spray flow


		Gas dampers


		Air flow





Outputs:



		Steam pressure


		Main stem temperature


		Reheat steam temperature










System Model


An LS-SVM NARX of autoregressive order $$p = 2$$ is chosen to model the plant output data. An LS-SVM model builds a predictor of the following form.


$$
\begin{align}
y(x) = \sum_{k = 1}^{N}\alpha_k K(\mathbf{x}, \mathbf{x_k}) + b
\end{align}
$$


Which is the result of solving the following linear system.


$$
\left[\begin{array}{c|c}
0  & 1^\intercal_v   \ \hline
1_v & K + \gamma^{-1} \mathit{I}
\end{array}\right]
\left[\begin{array}{c}
b    \ \hline
\alpha\end{array}\right] = \left[\begin{array}{c}
0    \ \hline
y\end{array}\right]
$$


Here the matrix $$K$$ is constructed from the training data using a kernel function $$ K(\mathbf{x}, \mathbf{y}) $$.



Choice of Kernel Function


For this problem we choose a polynomial kernel.


$$
\begin{align}
K(\mathbf{x},\mathbf{y}) = K_{poly}(\mathbf{x},\mathbf{y}) = (\mathbf{x}^{T}.\mathbf{y} + \alpha)^{d}
\end{align}
$$







Syntax


The DaisyPowerPlant program can be used to train and test LS-SVM models on the Pont Sur-Sambre power plant data.


Parameter | Type | Default value |Notes
——–|———–|———–|————|
kernel | CovarianceFunction | - | The kernel function driving the LS-SVM model.
deltaT | Int | 2 | Order of auto-regressive model i.e. number of steps in the past to look for input features.
timelag | Int | 0 | The number of steps in the past to start using inputs.
num_training | Int | 150 | Number of training data instances.
column| Int | 7 | The column number of the output variable (indexed from 0).opt | Map[String, Double]| - | Extra options for model selection routine.





Steam Pressure


DynaML>DaisyPowerPlant(new PolynomialKernel(2, 0.5),
opt = Map("regularization" -> "2.5", "globalOpt" -> "GS",
"grid" -> "4", "step" -> "0.1"),
num_training = 100, deltaT = 2,
column = 6)






16/03/04 17:13:43 INFO RegressionMetrics: Regression Model Performance: steam pressure
16/03/04 17:13:43 INFO RegressionMetrics: ============================
16/03/04 17:13:43 INFO RegressionMetrics: MAE: 82.12740530161123
16/03/04 17:13:43 INFO RegressionMetrics: RMSE: 104.39251587470388
16/03/04 17:13:43 INFO RegressionMetrics: RMSLE: 0.9660077848586197
16/03/04 17:13:43 INFO RegressionMetrics: R^2: 0.8395534877128238
16/03/04 17:13:43 INFO RegressionMetrics: Corr. Coefficient: 0.9311734118932473
16/03/04 17:13:43 INFO RegressionMetrics: Model Yield: 0.6288000962818303
16/03/04 17:13:43 INFO RegressionMetrics: Std Dev of Residuals: 87.82754320038951






![Steam Pressure]({{ site.baseurl }}/images/steampressure.png)


![Steam Pressure]({{ site.baseurl }}/images/steampressure-fit.png)





Reheat Steam Temperature


DaisyPowerPlant(new PolynomialKernel(2, 1.5),
opt = Map("regularization" -> "2.5", "globalOpt" -> "GS",
"grid" -> "4", "step" -> "0.1"), num_training = 150,
deltaT = 1, column = 8)






16/03/04 16:50:42 INFO RegressionMetrics: Regression Model Performance: reheat steam temperature
16/03/04 16:50:42 INFO RegressionMetrics: ============================
16/03/04 16:50:42 INFO RegressionMetrics: MAE: 124.60921194767073
16/03/04 16:50:42 INFO RegressionMetrics: RMSE: 137.33314302068544
16/03/04 16:50:42 INFO RegressionMetrics: RMSLE: 0.5275727128626408
16/03/04 16:50:42 INFO RegressionMetrics: R^2: 0.8247581957573777
16/03/04 16:50:42 INFO RegressionMetrics: Corr. Coefficient: 0.9744133881055823
16/03/04 16:50:42 INFO RegressionMetrics: Model Yield: 0.7871288689840381
16/03/04 16:50:42 INFO RegressionMetrics: Std Dev of Residuals: 111.86852905896446






![Steam Temp]({{ site.baseurl }}/images/temperature.png)


![Steam Temp]({{ site.baseurl }}/images/temperature-fit.png)









Source Code


Below is the example program as a github gist, to view the original program in DynaML, click here [https://github.com/mandar2812/DynaML/blob/master/src/main/scala/io/github/mandar2812/dynaml/examples/DaisyPowerPlant.scala].


{% gist mandar2812/eb23b47adad66deb2f65 %}
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Apart from just creating wrapper code around sampling procedures which represent random variables, it is also important to do transformations on random variables to yield new more interesting random variables and distributions. In statistics one often formulates certain random variables as algebraic operations on other simpler random variables.



Algebraic Operations


It is possible to do common algebraic operations on instances of continuous random variables.


import spire.implicits._

val b = RandomVariable(new Beta(7.5, 7.5))
val g = RandomVariable(new Gamma(1.5, 1.2))
val n = GaussianRV(0.0, 1.0)

val addR = b + n - g

val multR = b * (n + g)

histogram((1 to 1000).map(_ => multR.sample()))






[image: histogram]





Measurable Functions


In many cases random variables can be expressed as functions of one another, for example chi square random variables are obtained by squaring normally distributed samples.


val chsq = MeasurableFunction(n)(DataPipe((x: Double) => x*x))

//Generate a chi square distribution with one degree of freedom
histogram((1 to 1000).map(_ => chsq.sample()))






[image: histogram]
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The Housing data set is a popular regression benchmarking data set hosted on the UCI Machine Learning Repository [https://archive.ics.uci.edu/ml/datasets/Housing]. It contains 506 records consisting of multivariate data attributes for various real estate zones and their housing price indices. The task is then to learn a regression model that can predict the price index or range.



Attribute Information:



		CRIM: per capita crime rate by town


		ZN: proportion of residential land zoned for lots over 25,000 sq.ft.


		INDUS: proportion of non-retail business acres per town


		CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)


		NOX: nitric oxides concentration (parts per 10 million)


		RM: average number of rooms per dwelling


		AGE: proportion of owner-occupied units built prior to 1940


		DIS: weighted distances to five Boston employment centres


		RAD: index of accessibility to radial highways


		TAX: full-value property-tax rate per $10,000


		PTRATIO: pupil-teacher ratio by town


		B: 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town


		LSTAT: % lower status of the population


		MEDV: Median value of owner-occupied homes in $1000’s








Model


Below is a GP model for predicting the MEDV


$$
\begin{align}
& MEDV(\mathbf{u}) = f(\mathbf{u}) + \epsilon(\mathbf{u}) \
& f \sim \mathcal{GP}(m(\mathbf{u}), K(\mathbf{u},\mathbf{v})) \
& \mathbb{E}[\epsilon(\mathbf{u}).\epsilon(\mathbf{v})] = K_{noise}(\mathbf{u}, \mathbf{v})\
\end{align}
$$





Syntax


The TestGPHousing() program can be run in the REPL, below is a description of each of its arguments.


Parameter | Type | Default value |Notes
——–|———–|———–|————|
kernel | CovarianceFunction | - | The kernel function driving the GP model.
noise | CovarianceFunction | - | The additive noise that corrupts the values of the latent function.
trainFraction | Double | 0.75 | Fraction of the data to be used for model training and hyper-parameter selection.
columns | List[Int] | 13, 0,.., 12 | The columns to be selected for analysis (indexed from 0), first one is the target column.
grid| Int | 5 | The number of grid points for each hyper-parameterstep | Double| 0.2| The space between grid points.
globalOpt | String | ML | The model selection procedure "GS", "CSA", or "ML"
stepSize | Double | 0.01 | Only relevant if globalOpt = "ML", determines step size of steepest ascent.
maxIt | Int | 300 | Maximum iterations for ML model selection procedure.


DynaML>TestGPHousing(kernel = new FBMKernel(0.55) +
new LaplacianKernel(2.5), noise = new RBFKernel(1.5),
grid = 5, step = 0.03, globalOpt = "GS", trainFraction = 0.45)






16/03/03 20:45:41 INFO GridSearch: Optimum value of energy is: 278.1603309851301
Configuration: Map(hurst -> 0.4, beta -> 2.35, bandwidth -> 1.35)
16/03/03 20:45:41 INFO SVMKernel$: Constructing kernel matrix.






16/03/03 20:45:42 INFO GPRegression: Generating error bars
16/03/03 20:45:42 INFO RegressionMetrics: Regression Model Performance: MEDV
16/03/03 20:45:42 INFO RegressionMetrics: ============================
16/03/03 20:45:42 INFO RegressionMetrics: MAE: 5.800070254265218
16/03/03 20:45:42 INFO RegressionMetrics: RMSE: 7.739266267762397
16/03/03 20:45:42 INFO RegressionMetrics: RMSLE: 0.4150438478412412
16/03/03 20:45:42 INFO RegressionMetrics: R^2: 0.3609909626630624
16/03/03 20:45:42 INFO RegressionMetrics: Corr. Coefficient: 0.7633838930006132
16/03/03 20:45:42 INFO RegressionMetrics: Model Yield: 0.7341944950376289
16/03/03 20:45:42 INFO RegressionMetrics: Std Dev of Residuals: 6.287519509352036









Source Code


Below is the example program as a github gist, to view the original program in DynaML, click here [https://github.com/mandar2812/DynaML/blob/master/src/main/scala/io/github/mandar2812/dynaml/examples/TestGPHousing.scala].


{% gist bc5ff898ca921f22b5ee %}
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[image: kernel]


Positive definite functions or positive type functions occupy an important place in various areas of mathematics, from the construction of covariances of random variables to quantifying distance measures in Hilbert spaces. Symmetric positive type functions defined on the cartesian product of a set with itself $$K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$$ are also known as kernel functions in machine learning. They are applied extensively in problems such as.



		Model non-linear behavior in SVM models: SVM [https://en.wikipedia.org/wiki/Support_vector_machine] and LSSVM [http://www.worldscientific.com/worldscibooks/10.1142/5089]


		Quantify covariance between input patterns: Gaussian Processes [http://www.gaussianprocess.org/gpml/]


		Represent degree of ‘closeness’ or affinity in unsupervised learning: Kernel Spectral Clustering [http://arxiv.org/pdf/1505.00477.pdf]





For an in depth review of the various applications of kernels in the machine learning domain, refer to Scholkopf et. al [http://www.kernel-machines.org/publications/pdfs/0701907.pdf]



Kernel API


The kernel class hierarchy all stems from a simple trait shown here.


trait Kernel[T, V] {
  def evaluate(x: T, y: T): V
}






This outlines only one key feature for kernel functions i.e. their evaluation functional which takes two inputs from $$\mathcal{X}$$ and yields a scalar value.


For practical purposes, the Kernel[T, V] trait does not have enough functionality for usage in varied models like Gaussian Processes, Student’s T Processes, LS-SVM etc. For this purpose there is the CovarianceFunction[T, V, M] abstract class. It contains methods to construct kernel matrices, keep track of hyper-parameter assignments among other things.





Creating arbitrary kernel functions


Apart from off the shelf kernel functions, it is also possible to create custom kernels on the fly by using the CovarianceFunction object.



Constructing kernels via feature maps


It is known from Mercer’s theorem [https://en.wikipedia.org/wiki/Mercer%27s_theorem] that any valid kernel function must be decomposable as a dot product between certain basis function representation of the inputs. This translates mathematically into.


$$
\begin{align}
& K(\mathbf{x}, \mathbf{y}) = \varphi^{T}(\mathbf{x}) . \varphi(\mathbf{y}) \
& \varphi(.): \mathcal{X} \rightarrow \mathbb{R}^n
\end{align}
$$


The function $$\varphi(.)$$ is some higher (possibly infinite) dimensional representation of the input features of a data point. Note that the input space $$\mathcal{X}$$ could be any of the following (but not limited to).



		The space of all connection graphs with specific number of nodes.


		A multi-dimensional vector.


		The space of all character sequences (binary or otherwise) up to a certain length.


		The set of all integer tuples e.g. $$(1,2), (6,10), \cdots$$





We can use any function from some domain $$\mathcal{X}$$ yielding a DenseVector[Double] to define a particular inner product/kernel function.


// First create a function mapping from some input space to
// Breeze dense vectors.

val mapFunc = (vec: DenseVector[Double]) => {
    val mat = vec * vec.t
    mat.toDenseVector
}

val kernel = CovarianceFunction(mapFunc)









Constructing kernels via direct evaluation


Instead of defining a feature representation like $$\varphi(.)$$ as in the section above, you can also directly define the evaluation expression of the kernel.



// Create the expression for the required kernel.
val mapFunc =
(state: Map[String, Double]) => (x: DenseVector[Double], y: DenseVector[Double]) => {
    state("alpha")*(x dot y) + state("intercept")
}

//Creates kernel with two hyper-parameters: alpha and intercept
val kernel = CovarianceFunction(mapFunc)(Map("alpha" -> 1.5, "intercept" -> 0.01))













Creating Composite Kernels


In machine learning it is well known that kernels can be combined to give other valid kernels. The symmetric positive semi-definite property of a kernel is preserved as long as it is added or multiplied to another valid kernel. In DynaML adding and multiplying kernels is elementary.



val k1 = new RBFKernel(2.5)
val k2 = new RationalQuadraticKernel(2.0)

val k = k1 + k2
val k3 = k*k2











Implementing Custom Kernels


For more details on implementing user defined kernels, refer to the wiki [https://github.com/mandar2812/DynaML/wiki/Kernels].


{% include links.html %}
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Gaussian Process models are well supported in DynaML, the AbstractGPRegressionModel[T, I] and AbstractGPClassification[T, I] classes which extend the StochasticProcess[T, I, Y, W] base trait are the starting point for all GP implementations.


The StochasticProcess[T, I, Y, W] trait contains the predictiveDistribution[U <: Seq[I]](test: U): W method which returns the posterior predictive distribution (represented by the generic type W).


The base trait is extended by SecondOrderProcess[T, I, Y, K, M, W] which defines a skeleton for processes which are defined by their first and second order statistics (mean functions and covariance functions).


Since for most applications it is assumed that the training data is standardized, the mean function is often chosen to be zero $$\mu(\mathbf{x}) = 0$$, thus the covariance function or kernel defines all the interesting behavior of second order processes. For a more in depth information on the types of covariance functions available visit the kernels page.



Gaussian Process Regression


The GP regression framework aims to infer an unknown function $$f(x)$$ given $$y_i$$ which are noise corrupted observations of this unknown function. This is done by adopting an explicit probabilistic formulation to the multi-variate distribution of the noise corrupted observations $$y_i$$ conditioned on the input features (or design matrix) $$X$$


$$
\begin{align}
& y = f(x) + \epsilon \
& f \sim \mathcal{GP}(m(x), C(x,x’)) \
& \left(\mathbf{y} \ \ \mathbf{f_*} \right)^T | X \sim \mathcal{N}\left(\mathbf{0}, \left[ \begin{matrix} K(X, X) + \sigma^{2} \it{I} & K(X, X_*) \ K(X_*, X) & K(X_*, X_*) \end{matrix} \right ] \right)


\end{align}






$$


In the presence of training data


$$
X = (x_1, x_2, \cdot , x_n) \ \mathbf{y} = (y_1, y_2, \cdot , y_n)
$$


Inference is carried out by calculating the posterior predictive distribution over the unknown targets


$$
\mathbf{f_*}|X,\mathbf{y},X_*
$$


assuming $$ X_* $$, the test inputs are known.


$$
\begin{align}
& \mathbf{f_*}|X,\mathbf{y},X_* \sim \mathcal{N}(\mathbf{\bar{f_*}}, cov(\mathbf{f_*}))  \label{eq:posterior}\
& \mathbf{\bar{f_*}} \overset{\triangle}{=} \mathbb{E}[\mathbf{f_*}|X,y,X_*] = K(X_*,X)[K(X,X) + \sigma^{2}n \it{I}]^{-1} \mathbf{y} \label{eq:posterior:mean} \
& cov(\mathbf{f}) = K(X_*,X_*) - K(X_*,X)[K(X,X) + \sigma^{2}n \it{I}]^{-1}K(X,X)


\end{align}






$$



GP models for a single output


For univariate GP models (single output), use the GPRegression class (an extension of AbstractGPRegressionModel). To construct a GP regression model you would need:



		Training data


		Kernel/covariance instance to model correlation between values of the latent function at each pair of input features.


		Kernel instance to model the correlation of the additive noise, generally the DiracKernel (white noise) is used.





val trainingdata: Stream[(DenseVector[Double], Double)] = ...
val num_features = trainingdata.head._1.length

// Create an implicit vector field for the creation of the stationary
// radial basis function kernel
implicit val field = VectorField(num_features)

val kernel = new RBFKernel(2.5)
val noiseKernel = new DiracKernel(1.5)
val model = new GPRegression(kernel, noiseKernel, trainingData)









GP models for multiple outputs


As reviewed in Lawrence et.al [https://arxiv.org/abs/1106.6251], Gaussian Processes for multiple outputs can be interpreted as single output GP models with an expanded index set. Recall that GPs are stochastic processes and thus are defined on some index set, for example in the equations above it is noted that $$x \in \mathbb{R}^p$$ making $$\mathbb{R}^p$$ the index set of the process.


In case of multiple outputs the index set is expressed as a cartesian product $$x \in \mathbb{R}^{p} \times {1,2, \cdots, d }$$, where $$d$$ is the number of outputs to be modeled.


It needs to be noted that now we will also have to define the kernel function on the same index set i.e. $$\mathbb{R}^{p} \times {1,2, \cdots, d }$$.


In multi-output GP literature a common way to construct kernels on such index sets is to multiply base kernels on each of the parts $$\mathbb{R}^p$$ and $${1,2,\cdots,d}$$, such kernels are known as separable kernels.


$$
\begin{equation}
K((\mathbf{x}, d), (\mathbf{x}’, d’)) = K_{x}(\mathbf{x}, \mathbf{x}’) . K_{d}(d, d’)
\end{equation}
$$


Taking this idea further sum of separable kernels (SoS) are often employed in multi-output GP models. These models are also known as Linear Models of Co-Regionalization (LMC) and the kernels which encode correlation between the outputs $$K_d(.,.)$$ are known as co-regionalization kernels.


$$
\begin{equation}
K((\mathbf{x}, d), (\mathbf{x}’, d’)) = \sum_{i = 1}^{D} K^{i}{x}(\mathbf{x}, \mathbf{x}’) . K^{i}{d}(d, d’)
\end{equation}
$$


Creating such SoS kernels in DynaML is quite straightforward, use the :* operator to multiply a kernel defined on DenseVector[Double] with a kernel defined on Int.



val linearK = new PolynomialKernel(2, 1.0)
val tKernel = new TStudentKernel(0.2)
val d = new DiracKernel(0.037)

val mixedEffects = new MixedEffectRegularizer(0.5)
val coRegCauchyMatrix = new CoRegCauchyKernel(10.0)
val coRegDiracMatrix = new CoRegDiracKernel

val sos_kernel: CompositeCovariance[(DenseVector[Double], Int)] =
  (linearK :* mixedEffects)  + (tKernel :* coRegCauchyMatrix)

val sos_noise: CompositeCovariance[(DenseVector[Double], Int)] = d :* coRegDiracMatrix






You can use the MOGPRegressionModel[I] class to create multi-output GP models.


val trainingdata: Stream[(DenseVector[Double], DenseVector[Double])] = ...

val model = new MOGPRegressionModel[DenseVector[Double]](
          sos_kernel, sos_noise, trainingdata,
          trainingdata.length, trainingdata.head._2.length)















Gaussian Process Binary Classification


Gaussian process models for classification are formulated using two components.



		A latent (nuisance) function $$f(x)$$


		A transfer function $$\sigma(.)$$ which transforms the value $$f(x)$$ to a class probability





$$
\begin{align}
& \pi(x) \overset{\triangle}{=} p(y = +1| x) = \sigma(f(x)) \
& f \sim \mathcal{GP}(m(x), C(x,x’)) \
\end{align}
$$


Inference is divided into two steps.



		Computing the distribution of the latent function corresponding to a test case





$$
\begin{align}
& p(f_*|X, \mathbf{y}, x_*) = \int p(f_*|X, \mathbf{y}, x_*, \mathbf{f}) p(\mathbf{f}|X, \mathbf{y}) d\mathbf{f} \
& p(\mathbf{f}|X, \mathbf{y}) = p(\mathbf{y}| \mathbf{f}) p(\mathbf{f}|X)/ p(\mathbf{y}|X)
\end{align}


$$



		Generating probabilistic prediction for a test case.





$$
\bar{\pi_*} \overset{\triangle}{=} p(y_* = +1| X, \mathbf{y}, x_*) = \int \sigma(f_*) p(f_*|X, \mathbf{y}, x_*) df_*
$$


val trainingdata: Stream[(DenseVector[Double], Double)] = ...
val num_features = trainingdata.head._1.length

// Create an implicit vector field for the creation of the stationary
// radial basis function kernel
implicit val field = VectorField(num_features)

val kernel = new RBFKernel(2.5)
val likelihood = new VectorIIDSigmoid()
val model = new LaplaceBinaryGPC(trainingData, kernel, likelihood)






To learn more about extending the Gaussian Process base classes/traits refer to the wiki [https://github.com/mandar2812/DynaML/wiki/Gaussian-Processes].
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Model Selection Routines


These routines are also known as global optimizers, paradigms/algorithms such as genetic algorithms, gibbs sampling, simulated annealing, evolutionary optimization fall under this category. They can be used in situations when the objective function in not “smooth”.


In DynaML they are most prominently used in hyper-parameter optimization in kernel based learning methods. All global optimizers in DynaML extend the GlobalOptimizer trait, which implies that they provide an implementation for its optimize method.


In order to use a global optimization routine on an model, the model implementation in question must be extending the GloballyOptimizable trait in the dynaml.optimization package, this trait has only one method called energy which is to be implemented by all sub-classes/traits.


The energy method calculates the value of the global objective function for a particular configuration i.e. for particular values of model hyper-parameters. This objective function can be defined differently for each model class (marginal likelihood for Gaussian Processes, cross validation score for parametric models, etc).


The following model selection routines are available in DynaML so far.



Grid Search


The most elementary (naive) method of model selection is to evaluate its performance (value returned by energy) on a fixed set of grid points which are initialized for the model hyper-parameters.


val kernel = ...
val noise = ...
val data = ...
val model = new GPRegression(kernel, noise, data)

val grid = 5
val step = 0.2

val gs = new GridSearch[model.type](model)
    .setGridSize(grid)
    .setStepSize(step)
    .setLogScale(false)

val startConf = kernel.state ++ noise.state
val (_, conf) = gs.optimize(startConf, opt)

model.setState(conf)









Coupled Simulated Annealing


Coupled Simulated Annealing [ftp://ftp.esat.kuleuven.be/sista/sdesouza/papers/CSA2009accepted.pdf] (CSA) is an iterative search procedure which evaluates model performance on a grid and in each iteration perturbs the grid points in a randomized manner. Each perturbed point is accepted using a certain acceptance probability which is a function of the performance on the whole grid.


Coupled Simulated Annealing can be seen as an extension to the classical Simulated Annealing algorithm, since the acceptance probability and perturbation function are design choices, we can formulate a number of variants of CSA. Any CSA-like algorithm must have the following components.



		An ensemble or grid of points $$x_i \in \Theta$$.


		A perturbation distribution or function $$P: x_i \rightarrow y_i $$.


		A coupling term $$\gamma$$ for an ensemble.


		An acceptance probability function $$A_{\Theta}(\gamma, x_i \rightarrow y_i)$$.


		An annealing schedule $$T_{k}^{ac}, k = 0, 1, \cdots $$.







The CoupledSimulatedAnnealing class has a companion object with the following available variants.




Method | Variant |Acceptance Probability | Coupling term $$\gamma$$
——–|———–|———–
SA | Classical Simulated Annealing| $$1/(1 + exp(\frac{E(y) - E(x)}{T^{ac}{k}}))$$ | -
MuSA |Multi-state Simulated Annealing: Direct generalization of Simulated Annealing| $$exp(-E(y_i))/(exp(-E(y_i)) + \gamma)$$ | $$\sum{x_j \in \Theta}{exp(-E(x_j)/T^{ac}{k})}$$
BA | Blind Acceptance CSA| $$1 - exp(-E(x_i)/T{k}^{ac})/\gamma $$ | $$\sum_{x_j \in \Theta}{exp(-E(x_j)/T^{ac}{k})}$$
M | Modified CSA |  $$exp(E(x_i)/T{k}^{ac})/\gamma $$ | $$\sum_{x_j \in \Theta}{exp(E(x_j)/T^{ac}{k})}$$
MwVC | Modified CSA with Variance Control: Employs an annealing schedule that controls the variance of the acceptance probabilities of states | $$exp(E(x_i)/T{k}^{ac})/\gamma $$ | $$\sum_{x_j \in \Theta}{exp(E(x_j)/T^{ac}_{k})}$$


val kernel = ...
val noise = ...
val data = ...
val model = new GPRegression(kernel, noise, data)

//The default variant of CSA is Mw-VC
val gs = new CoupledSimulatedAnnealing[model.type](model)
    .setGridSize(grid)
    .setStepSize(step)
    .setLogScale(false)
    .setVariant(CoupledSimulatedAnnealing.MuSA)

val startConf = kernel.state ++ noise.state
val (_, conf) = gs.optimize(startConf, opt)

model.setState(conf)











Gradient based Model Selection


Gradient based model selection can be used if the model fitness function implemented in the energy method has differentiability properties (e.g. using marginal likelihood in the case of stochastic process inference). The GloballyOptWithGrad trait is an extension of GlobalOptimizer and adds a method gradEnergy that should return the gradient of the fitness function in each hyper-parameter in the form of a Map[String, Double].



Maximum Likelihood ML-II


In the Maximum Likelihood (ML-II) algorithm (refer to Ramussen & Williams [https://books.google.nl/books/about/Gaussian_Processes_for_Machine_Learning.html?id=vWtwQgAACAAJ&hl=en] for more details), we aim to maximize the log marginal likelihood by calculating its gradient with respect to the hyper-parameters $$\theta_j$$ in each iteration and performing steepest ascent. The calculations are summarized below.


$$
\begin{equation}
log p(\mathbf{y}| X, \mathbf{\theta}) = - \frac{1}{2} \mathbf{y}^T K^{-1} \mathbf{y} - \frac{1}{2} log |K| - \frac{n}{2} log 2\pi
\end{equation}
$$


$$
\begin{align}
& \frac{\partial }{\partial \theta_j} log p(\mathbf{y}| X, \mathbf{\theta}) = \frac{1}{2} tr ((\mathbf{\alpha} \mathbf{\alpha}^T - K^{-1}) \frac{\partial }{\partial K\theta_j}) \
& \mathbf{\alpha} = K^{-1} \mathbf{y}
\end{align}


$$


The GPMLOptimizer[I, T, M] class implements ML-II, by using the gradEnergy method implemented by the system: M member value (which refers to a model extending  GloballyOptWithGrad).


val kernel = ...
val noise = ...
val data = ...
val model = new GPRegression(kernel, noise, data)

val ml = new GPMLOptimizer[DenseVector[Double],
    Seq[(DenseVector[Double], Double)],
    GPRegression](model)

val startConf = kernel.state ++ noise.state
val (_, conf) = ml.optimize(startConf, opt)

model.setState(conf)
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DynaML aims to make a versatile and powerful data analysis and machine learning toolkit available as a shell and runtime environment. As is the case with any tool, relevant background and knowledge is crucial in order to yield its power. This post is intended to be a starting point for online resources which are relevant to DynaML.



Machine Learning


Machine Learning [https://en.wikipedia.org/wiki/Machine_learning] refers to the ability to make predictions and decisions from data. It is a field that has evolved from the study of pattern recognition [https://en.wikipedia.org/wiki/Pattern_recognition] and computational learning theory [https://en.wikipedia.org/wiki/Computational_learning_theory] in artificial intelligence.


Machine Learning theory and applications lie at the intersection of a number of concepts in the domains of Mathematics, Physics and Computer Science. It is no surprise that machine learning is a rich and deep domain with much intellectual and practical rewards to offer to the persistent and observant student.


The following is a non-exhaustive list of educational resources for learning ML.



Online Courses



		Andrew Ng’s famous course [https://www.coursera.org/learn/machine-learning] on Coursera [https://www.coursera.org].


		Intro to Machine Learning [https://www.udacity.com/course/intro-to-machine-learning–ud120] at Udacity [https://www.udacity.com]


		Machine Learning [https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/]: MIT Open Course Ware








Videos/Youtube



		Machine Learning Playlist [https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA] by mathematicalmonk


		Machine Learning Course [https://www.youtube.com/playlist?list=PLD63A284B7615313A] by caltech








Books



		Bayesian Reasoning and Machine Learning [http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage] by David Barber


		Machine Learning: A Probabilistic Perspective [https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020] by Kevin P. Murphy


		Pattern Recognition and Machine Learning [https://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738/ref=pd_sbs_14_t_2/156-5589722-3310315?_encoding=UTF8&psc=1&refRID=EAC2N4R3XJE5G7Q7V7ZD] by Christopher Bishop


		Understanding Machine Learning: From Theory to Algorithms [http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/] by Shai Shalev-Shwartz and Shai Ben-David


		The Elements of Statistical Learning: Data Mining, Inference, and Prediction [http://statweb.stanford.edu/~tibs/ElemStatLearn/] by Trevor Hastie, Robert Tibshirani and Jerome Friedman








Forums



		How do I learn machine learning on Quora [https://www.quora.com/How-do-I-learn-machine-learning-1]








Blogs



		Deepmind Blog [https://deepmind.com/blog/]


		Cortana Blog [https://blogs.technet.microsoft.com/machinelearning/]


		Shakir Mohammad’s Blog [http://blog.shakirm.com]


		Darren Wilkinson’s research blog [https://darrenjw.wordpress.com]


		John’s Langford’s Blog [http://hunch.net].


		Kyle Kastner’s Blog [http://kastnerkyle.github.io]


		Sander Dieleman’s Blog [http://benanne.github.io]










Programming Environment: Scala


Scala [http://www.scala-lang.org] is the implementation language for DynaML, it is a hybrid language which gives the user the ability to leverage functional and object oriented programming styles. Scala code compiles to Java byte code [https://en.wikipedia.org/wiki/Java_bytecode] giving Scala complete interoperability with Java, i.e. you can use Java libraries and classes in Scala code.


The Java Virtual Machine [https://en.wikipedia.org/wiki/Java_virtual_machine] which executes byte code is the run time for the complete Java ecosystem. This enables Scala, Java, Groovy and Clojure programs to run on a common platform, which is a boon for Machine Learning applications as we can leverage all the libraries in the Java ecosystem.


Learning Scala can be a significant investment as the language has a large number of features which require varying levels of skill and practice to master. Some resources for learning Scala are given below.



Courses



		Functional Programming Principles with Scala [https://www.coursera.org/learn/progfun1] by Martin Odersky.


		Functional Program Design in Scala [https://www.coursera.org/learn/progfun2] by Martin Odersky.








Videos/Youtube



		Scala tutorials playlist [https://www.youtube.com/playlist?list=PLrPC0_h8PkNOtAr4BRTFf46Gwctb6kE9f]








Blogs



		Haoyi’s Programming Blog [http://www.lihaoyi.com]


		Scala News [http://www.scalais.cool]


		Typelevel Blog [http://typelevel.org/blog/]


		Codacy Blog [http://blog.codacy.com/2015/07/03/how-to-learn-scala/]





{% include links.html %}








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

pages/coreapi/core_opt_hierarchy.html


    
      Navigation


      
        		
          index


        		DynaML latest documentation »

 
      


    


    
      
          
            
  

title: Optimization Package
sidebar: coreapi_sidebar
permalink: core_opt_hierarchy.html
folder: coreapi






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/minus.png





pages/coreapi/core_model_evaluation.html


    
      Navigation


      
        		
          index


        		DynaML latest documentation »

 
      


    


    
      
          
            
  

title: Model Evaluation
sidebar: coreapi_sidebar
permalink: core_model_evaluation.html
folder: coreapi




Model evaluation is the litmus test for knowing if your modeling effort is headed in the right direction and for comparing various alternative models (or hypothesis) attempting to explain a phenomenon. The evaluation package contains classes and traits to calculate performance metrics for DynaML models.


Classes which implement model performance calculation can extend the Metrics[P] trait. The Metrics trait requires that its sub-classes implement three methods or behaviors.



		Print out the performance metrics (whatever they may be) to the screen i.e. print method.


		Return the key performance indicators in the form of a breeze DenseVector[Double], i.e. the kpi method.






Regression Models


Regression models are generally evaluated on a few standard metrics such as mean square error, mean absolute error, coefficient of determination ($$R^2$$), etc. DynaML has implementations for single output and multi-output regression models.



Single Output


Small Test Set


The RegressionMetrics class takes as input a scala list containing the predictions and actual outputs and calculates the following metrics.



		Mean Absolute Error (mae)


		Root Mean Square Error (rmse)


		Correlation Coefficient ($$\rho_{y \hat{y}}$$)


		Coefficient of Determination ($$R^2$$)






//Predictions computed by any model.
val predictionAndOutputs: List[(Double, Double)] = ...

val metrics = new RegressionMetrics(predictionAndOutputs, predictionAndOutputs.length)

//Print results on screen
metrics.print






Large Test Set


The RegressionMetricsSpark class takes as input an Apache Spark RDD [http://spark.apache.org/docs/latest/programming-guide.html#resilient-distributed-datasets-rdds] containing the predictions and actual outputs and calculates the same metrics as above.



//Predictions computed by any model.
val predictionAndOutputs: RDD[(Double, Double)] = ...

val metrics = new RegressionMetricsSpark(predictionAndOutputs, predictionAndOutputs.length)

//Print results on screen
metrics.print









Multiple Outputs


The MultiRegressionMetrics class calculates regression performance for multi-output models.


//Predictions computed by any model.
val predictionAndOutputs: List[(DenseVector[Double], DenseVector[Double])] = ...

val metrics = new MultiRegressionMetrics(predictionAndOutputs, predictionAndOutputs.length)

//Print results on screen
metrics.print











Classification Models


Currently (as of v1.4) there is only a binary classification implementation for calculating model performance.



Binary Classification


Small Test Sets


The BinaryClassificationMetrics class calculates the following performance indicators.



		Classification accuracy


		F-measure


		Precision-Recall Curve (and area under it).


		Receiver Operating Characteristic (and area under it)


		Matthew’s Correlation Coefficient






val scoresAndLabels: List[(Double, Double)] = ...

//Set logisticFlag = true in case outputs are produced via logistic regression
val metrics = new BinaryClassificationMetrics(
          scoresAndLabels,
          scoresAndLabels.length,
          logisticFlag = true)

metrics.print






Large Test Sets


The BinaryClassificationMetricsSpark class takes as input an Apache Spark RDD [http://spark.apache.org/docs/latest/programming-guide.html#resilient-distributed-datasets-rdds] containing the predictions and actual labels and calculates the same metrics as above.
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Stationary kernels can be expressed as a function of the difference between their inputs.


$$
C(\mathbf{x}, \mathbf{y}) = K(||\mathbf{x} - \mathbf{y}||_{p})
$$


Note that any norm may be used to quantify the distance between the two vectors $$\mathbf{x} \ & \ \mathbf{y}$$. The values $$p = 1$$ and $$p = 2$$ represent the Manhattan distance and Euclidean distance respectively.


Stationary kernels are implemented as a subset of the StationaryKernel[T, V, M] class which requires a Field[T] implicit object (an algebraic field which has definitions for addition, subtraction, multiplication and division of its elements much like the number system). You may also import spire.implicits._ in order to load the default field implementations for basic data types like Int, Double and so on. Before instantiating any child class of StationaryKernel one needs to enter the following code.


import spire.algebra.Field
import io.github.mandar2812.dynaml.analysis.VectorField
//Calculate the number of input features
//and create a vector field of that dimension
val num_features: Int = ...
implicit val f = VectorField(num_features)







Radial Basis Function Kernel / Squared Exponential Kernel


[image: kernel]


$$
C(\mathbf{x},\mathbf{y}) = e^{-\frac{1}{2}||\mathbf{x}-\mathbf{y}||_{2}^2/\sigma^2}
$$


The RBF kernel is the most popular kernel function applied in machine learning, it represents an inner product space which is spanned by the Hermite polynomials and as such is suitable to model smooth functions. The RBF kernel is also called a universal kernel for the reason that any smooth function can be represented with a high degree of accuracy assuming we can find a suitable value of the bandwidth.


val rbf = new RBFKernel(4.0)






A genralization of the RBF Kernel is the Squared Exponential Kernel


$$
C(\mathbf{x},\mathbf{y}) = h e^{-\frac{||\mathbf{x}-\mathbf{y}||_{2}^2}{2l^2}}
$$


val rbf = new SEKernel(4.0, 2.0)









Laplacian Kernel


$$
C(\mathbf{x},\mathbf{y}) = e^{-\frac{1}{2}||\mathbf{x}-\mathbf{y}||_1/\beta}
$$


The Laplacian kernel is the covariance function of the well known Ornstein Ulhenbeck process [https://en.wikipedia.org/wiki/Ornstein%E2%80%93Uhlenbeck_process], samples drawn from this process are continuous and only once differentiable.


val lap = new LaplacianKernel(4.0)









T-Student Kernel


$$
C(\mathbf{x},\mathbf{y}) = \frac{1}{1 + ||\mathbf{x}-\mathbf{y}||^d}
$$


val tstud = new TStudentKernel(2.0)









Rational Quadratic Kernel


$$
C(\mathbf{x},\mathbf{y}) = \left( 1 + \frac{||\mathbf{x}-\mathbf{y}||^2}{2 \mu \ell^2} \right)^{-\frac{1}{2}  (dim(\mathbf{x})+\mu)}
$$


val rat = new RationalQuadraticKernel(shape = 1.5, l = 1.5)









Cauchy Kernel


$$
C(\mathbf{x},\mathbf{y}) = \frac{1}{1 + \frac{||\mathbf{x}-\mathbf{y}||^2}{\sigma^2}}
$$


val cau = new CauchyKernel(2.5)









Wavelet Kernel


The Wavelet kernel (Zhang et al, 2004 [http://dx.doi.org/10.1109/TSMCB.2003.811113]) comes from Wavelet theory and is given as


$$
C(\mathbf{x},\mathbf{y}) = \prod_{i = 1}^{d} h\left(\frac{x_i-y_i}{a}\right)
$$


Where the function h is known as the mother wavelet function, Zhang et. al suggest the following expression for the mother wavelet function.


$$
h(x) = cos(1.75x)e^{-x^2/2}
$$


val wv = new WaveletKernel(x => math.cos(1.75*x)*math.exp(-1.0*x*x/2.0))(1.5)






{% include links.html %}
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Some Mathematical Background



Definitions


Let $$X_k \ \in \ \mathbb{R}^d \ , \ k = 1, \cdots ,n$$ be a random sample drawn from a distribution $$F(x)$$. Let $$C \in \mathbb{R}^d$$ be a compact set such that, $$\mathcal{H} = \mathcal{L}^2(C)$$ be a Hilbert space of functions given by the inner product below.


$$
\begin{equation}
<f,g>_{\mathcal{H}} = \int f(x)g(x) dF(x)
\end{equation}
$$


Further let $$M(\mathcal{H}, \mathcal{H})$$ be a class of linear operators from $$\mathcal{H}$$ to $$\mathcal{H}$$.





Nyström method


Automatic Feature Extraction (AFE) using the Nyström method [https://en.wikipedia.org/wiki/Nyström_method] aims at finding a finite dimensional approximation to the kernel eigenfunction expansion of Mercer kernels, as shown below.


$$
\begin{equation}
K(x,t) = \sum_i{\lambda_i \phi(x)\phi(t)}
\end{equation}
$$


It is well known that Mercer kernels form a Reproducing Kernel Hilbert Space [https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space] (RHKS) of functions. Every Mercer kernel defines a unique RHKS of functions as shown by the Moore-Aronszajn theorem. For a more involved treatment of RHKS and their applications the reader may refer to the book written by Bertinet et.al.


Mercer’s theorem states that the spectral decomposition of integral operator of $$K$$, $$\mathcal{T} \in M(\mathcal{H},\mathcal{H})$$ defined below yields the eigenfunctions which span the RHKS generated by $$K$$ and having an inner product defined as above.


$$
\begin{equation}
(\mathcal{T}\phi_i)(t) = \int K(x,t) \phi(x) dF(x)
\end{equation}
$$


Equation above is more commonly also known as the Fredholm integral equation [https://en.wikipedia.org/wiki/Fredholm_integral_equation] of the first kind. Nyström’s method method approximates this integral using the quadrature constructed by considering a finite kernel matrix constructed out of a prototype set $$X_k \ k = 1, \cdots, m$$ and calculating its spectral decomposition consisting of eigenvalues $$\lambda_k$$ and eigen-vectors $$u_k$$. This yields an expression for the approximate non-linear feature map $$\hat{\phi} : \mathbb{R}^d \longrightarrow \mathbb{R}^m$$.


$$
\begin{equation}
\hat{\phi}{i}(t) = \frac{\sqrt{m}}{\lambda_i}\sum{k=1}^{m}K(X_k, t)u_{k,i}
\end{equation}
$$







AFE in DynaML Kernels


The SVMKernel[M] contains an implementation of AFE in the method


featureMapping(
  decomposition: (DenseVector[Double], DenseMatrix[Double]))(
    prototypes: List[DenseVector[Double]])(
      data: DenseVector[Double]): DenseVector[Double]






The SVMKernel class is extended by all the implemented library kernels in DynaML thereby enabling the use of AFE in potentially any model employing kernels.


{% include links.html %}
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Polynomial Kernel


A very popular non-stationary kernel used in machine learning, the polynomial represents the data features as polynomial expansions upto an index $$d$$.


$$
C(\mathbf{x},\mathbf{y}) = (\mathbf{x}.\mathbf{y} + a)^{d}
$$


val fbm = new PolynomialKernel(2, 0.99)









Fractional Brownian Field (FBM) Kernel


$$
C(\mathbf{x},\mathbf{y}) = \frac{1}{2}\left(||\mathbf{x}||{2}^{2H} + ||\mathbf{y}||{2}^{2H} - ||\mathbf{x}-\mathbf{y}||_{2}^{2H}\right)
$$


val fbm = new FBMKernel(0.99)






The FBM kernel is the generalization of fractional Brownian motion to multi-variate index sets. Fractional Brownian motion is a stochastic process which is the generalization of Brownian motion, it was first studied by Mandelbrot and Von Ness [https://www.jstor.org/stable/2027184]. It is a self similar stochastic process, with stationary increments. However the process itself is non-stationary (as can be seen from the expression for the kernel) and has long range non vanishing covariance.


{% include links.html %}
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Feed-forward Network


To create a feedforward network we need three entities.



		The training data (type parameter D)


		A data pipe which transforms the original data into a data structure that understood by the FeedForwardNetwork


		The network architecture (i.e. the network as a graph object)






Network graph


A standard feedforward network can be created by first initializing the network architecture/graph.


val gr = FFNeuralGraph(num_inputs = 3, num_outputs = 1,
hidden_layers = 1, List("logsig", "linear"), List(5))






This creates a neural network graph with one hidden layer, 3 input nodes, 1 output node and assigns sigmoid activation in the hidden layer. It also creates 5 neurons in the hidden layer.


Next we create a data transform pipe which converts instances of the data input-output patterns to (DenseVector[Double], DenseVector[Double]), this is required in many data processing applications where the data structure storing the training data is not a breeze [https://github.com/scalanlp/breeze] vector.


Lets say we have data in the form trainingdata: Stream[(DenseVector[Double], Double)], i.e. we have input features as breeze vectors and scalar output values which help the network learn an unknown function. We can write the transform as.


val transform = DataPipe(
    (d: Stream[(DenseVector[Double], Double)]) =>
        d.map(el => (el._1, DenseVector(el._2)))
)









Model Building


We are now in a position to initialize a feed forward neural network model.


val model = new FeedForwardNetwork[
    Stream[(DenseVector[Double], Double)]
](trainingdata, gr, transform)






Here the variable trainingdata represents the training input output pairs, which must conform to the type argument given in square brackets (i.e. Stream[(DenseVector[Double], Double)]).


Training the model using back propagation can be done as follows, you can set custom values for the backpropagation parameters like the learning rate, momentum factor, mini batch fraction, regularization and number of learning iterations.


model.setLearningRate(0.09)
   .setMaxIterations(100)
   .setBatchFraction(0.85)
   .setMomentum(0.45)
   .setRegParam(0.0001)
   .learn()






The trained model can now be used for prediction, by using either the predict() method or the feedForward() value member both of which are members of FeedForwardNetwork (refer to the api docs for more details).


val pattern = DenseVector(2.0, 3.5, 2.5)
val prediction = model.predict(pattern)











Sparse Autoencoder


Sparse autoencoders [https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf] are a feedforward architecture that are useful for unsupervised feature learning. They learn a compressed (or expanded) vector representation of the original data features. This process is known by various terms like feature learning, feature engineering, representation learning etc. Autoencoders are amongst several models used for feature learning. Other notable examples include convolutional neural networks (CNN), principal component analysis (PCA), Singular Value Decomposition (PCA) (a variant of  PCA), Discrete Wavelet Transform (DWT), etc.



Creation


Autoencoders can be created using the AutoEncoder class. Its constructor has the following arguments.


import io.github.mandar2812.dynaml.models.neuralnets._
import io.github.mandar2812.dynaml.models.neuralnets.TransferFunctions._
import io.github.mandar2812.dynaml.optimization.BackPropagation

//Cast the training data as a stream of (x,x),
//where x are the DenseVector of features
val trainingData: Stream[(DenseVector[Double], DenseVector[Double])] = ...

val testData = ...

val enc = new AutoEncoder(
    inDim = trainingData.head._1.length,
    outDim = 4, acts = List(SIGMOID, LIN))









Training


The training algorithm used is a modified version of standard back-propagation. The objective function can be seen as an addition of three terms.


$$
\begin{align}


\mathcal{J}(\mathbf{W}, \mathbf{X}; \lambda, \rho) &= \mathcal{L}(\mathbf{W}, \mathbf{X}) + \lambda \mathcal{R}(\mathbf{W}) + KL(\hat{\rho}\ ||\ \rho) \
KL(\hat{\rho}\ ||\ \rho) &= \sum_{i = 1}^{n_h} \rho log(\frac{\rho}{\hat{\rho}_i}) + (1 - \rho) log(\frac{1-\rho}{1-\hat{\rho}i}) \
\hat{\rho}i &= \frac{1}{m} \sum{j = 1}^{N} a{i}(x_j)


\end{align}
$$



		$$\mathcal{L}(\mathbf{W}, \mathbf{X})$$ is the least squares loss.


		$$\mathcal{R}(\mathbf{W})$$ is the regularization penalty, with parameter $$\lambda$$.


		$$KL(\hat{\rho} | \rho)$$ is the Kullback Leibler [https://en.wikipedia.org/wiki/Kullback–Leibler_divergence] divergence, between the average activation (over all data instances $$x \in \mathbf{X}$$) of each hidden node and a specified value $$\rho \in [0,1]$$ which is also known as the sparsity weight.





//Set sparsity parameter for back propagation
BackPropagation.rho = 0.5

enc.optimizer
  .setRegParam(0.0)
  .setStepSize(1.5)
  .setNumIterations(200)
  .setMomentum(0.4)
  .setSparsityWeight(0.9)

enc.learn(trainingData.toStream)

val metrics = new MultiRegressionMetrics(
    testData.map(c => (enc.i(enc(c._1)), c._2)).toList,
    testData.length)






{% include links.html %}
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Generalized Linear Models (GLM) are available in the context of regression and binary classification, more specifically in DynaML the following members of the GLM family are implemented. The GeneralizedLinearModel[T] class is the base of the GLM hierarchy in DynaML, all linear models are extensions of it. It’s companion object is used for the creation of GLM instances as follows.


val data: Stream[(DenseVector[Double], Double)] = ...

//The task variable is a string which is set to "regression" or "classification"
val task = ...

//The map variable defines a possibly higher dimensional function of the input
//which is akin to a basis function representation of the original features
val map: DenseVector[Double] => DenseVector[Double] = ...

//modeltype is set to "logit" or "probit"
//if one wishes to create a binary classification model,
//depending on the classification model involved
val modeltype = "logit"

val glm = GeneralizedLinearModel(data, task, map, modeltype)







Normal GLM


The most common regression model, also known as least squares linear regression, implemented as the class RegularizedGLM which represents a regression model with the following prediction:
$$
\begin{equation}
y \ | \ \mathbf{x} \sim \mathcal{N}(w^T \varphi(\mathbf{x}), \sigma^{2})
\end{equation}
$$. Here $$\varphi(.)$$ is an appropriately chosen set of basis functions. The inference problem is formulated as
$$
\begin{equation}
\min_{w} \ \mathcal{J}P(w) = \frac{1}{2} \gamma \  w^Tw + \frac{1}{2} \sum{k = 1}^{N} (y_k - w^T \varphi(x_k))^2
\end{equation}
$$





Logit GLM


In binary classification the most common GLM used is the logistic regression model which is given by
$$
\begin{equation}
P(y \ = 1 \ | \ \mathbf{x}) = \sigma(w^T \varphi(\mathbf{x}) + b)
\end{equation}
$$.
Where $$\sigma(z) = \frac{1}{1 + exp(-z)} $$ is the logistic function which maps the output of the linear function $$w^T \varphi(\mathbf{x}) + b$$ to a probability value.





Probit GLM


The probit regression model is an alternative to the logit model it is represented as:
$$
\begin{equation}
P(y \ = 1 \ | \ \mathbf{x}) = \Phi(w^T \varphi(\mathbf{x}) + b)
\end{equation}
$$.
Where $$\Phi(z)$$ is the cumulative distribution function of the standard normal distribution.
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Sampling is the core functionality of the classes extending RandomVariable but in some cases representing random variables having an underlying (tractable and known) distribution is a requirement, for that purpose there exists the  RandomVarWithDistr[Domain, Dist] trait which is a bare bones extension of RandomVariable; it contains only one other member, underlyingDist which is of abstract type Dist.


The type Dist is any breeze distribution, which is either contained in the package breeze.stats.distributions or a user written extension of a breeze probability distribution.


Creating a random variable backed by a breeze distribution is easy, simply pass the breeze distribution to the RandomVariable companion object.


val p = RandomVariable(new Beta(7.5, 7.5))






Continuous and discrete distribution random variables are implemented through the ContinuousDistrRV[Domain] and DiscreteDistrRV[Domain] respectively. The RandomVariable object recognizes the breeze distribution passed to it and creates a continuous or discrete random variable accordingly.
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LSSVM Regression


In case of LSSVM regression one solves (by applying the KKT [https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions] conditions) the following constrained optimization problem.


$$
\begin{align}
& \min_{w,b,e} \ \mathcal{J}P(w,e) = \frac{1}{2}w^\intercal w + \gamma \frac{1}{2} \sum{k = 1}^{N} e^2_k \
& y_k = w^\intercal \varphi(x) + b + e_k, \ k =1, \cdots, N
\end{align}
$$


Leading to a predictive model of the form.


$$
\begin{equation}
y(x) = \sum_{k = 1}^{N}\alpha_k K(x, x_k) + b
\end{equation}
$$


Where the values $$\alpha \ & \ b $$ are the solution of


$$
\begin{equation}
\left[\begin{array}{c|c}
0  & 1^\intercal_v   \ \hline
1_v & K + \gamma^{-1} \mathit{I}
\end{array}\right]
\left[\begin{array}{c}
b    \ \hline
\alpha\end{array}\right] = \left[\begin{array}{c}
0    \ \hline
y\end{array}\right]
\end{equation}
$$


Here K is the $$N \times N$$ kernel matrix whose entries are given by $$ K_{kl} = \varphi(x_k)^\intercal\varphi(x_l), \ \ k,l = 1, \cdots, N$$ and $$I$$ is the identity matrix of order $$N$$.





LSSVM Classification


In case of LSSVM for binary classification one solves (by applying the KKT [https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions] conditions) the following constrained optimization problem.


$$
\begin{align}
& \min_{w,b,e} \ \mathcal{J}P(w,e) = \frac{1}{2}w^\intercal w + \gamma \frac{1}{2} \sum{k = 1}^{N} e^2_k \
& y_k[w^\intercal \varphi(x) + b] = 1 - e_k, \ k =1, \cdots, N
\end{align}
$$


Leading to a classifier of the form.


$$
\begin{equation}
y(x) = sign \left[ \sum_{k = 1}^{N}\alpha_k K(x, x_k) + b \right]
\end{equation}
$$


Where the values $$\alpha \ & \ b $$ are the solution of


$$
\begin{equation}
\left[\begin{array}{c|c}
0  & y^\intercal   \ \hline
y & \Omega + \gamma^{-1} \mathit{I}
\end{array}\right]
\left[\begin{array}{c}
b    \ \hline
\alpha\end{array}\right] = \left[\begin{array}{c}
0    \ \hline
1_v\end{array}\right]
\end{equation}
$$


Here $$\Omega$$ is the $$N \times N$$ matrix whose entries are given by


$$
\begin{align}
\Omega_{kl} & = y_{k} y_{l} \varphi(x_k)^\intercal\varphi(x_l), \ \ k,l = 1, \cdots, N \
& = y_{k} y_{l} K(x_k, x_l)
\end{align}
$$


and $$I$$ is the identity matrix of order $$N$$.


// Create the training data set

val data: Stream[(DenseVector[Double], Double)] = ...
val numPoints = data.length
val num_features = data.head._1.length

// Create an implicit vector field for the creation of the stationary
// radial basis function kernel

implicit val field = VectorField(num_features)
val kern = new RBFKernel(2.0)

//Create the model
val lssvmModel = new DLSSVM(data, numPoints, kern, modelTask = "regression")

//Set the regularization parameter and learn the model
model.setRegParam(1.5).learn()
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DynaML Library Pipes


DynaML comes bundled with a set of data pipes which enable certain standard data processing tasks, they are defined in the DynaMLPipe object in the io.github.mandar2812.dynaml.pipes package and they can be invoked as DynaMLPipe.<pipe name>.







Example


As a simple motivating example consider the following hypothetical csv data file called sample.csv.


a  b  c  NA  e f
r  s  q  t  l   m
u v w x z d






Lets say one wants to extract only the first, fourth and last columns of this file for further processing, also one is only interested in records which do not have missing values in any of the columns we want to extract. One can think of a data pipe as follows.



		Replace the erratic white space separators with a consistent separator character


		Extract a subset of the columns


		Remove the records with missing values NA


		Write output to another file processedsample.csv with the comma character as separator





We can do this by ‘composing’ data flow pipes which achieve each of the sub tasks.


//Import the workflow library.
import io.github.mandar2812.dynaml.DynaMLPipe._

val columns = List(0,3,5)
val dataPipe =
  fileToStream >
  replaceWhiteSpaces >
  extractTrainingFeatures(
    columns, Map(0 -> "NA", 3 -> "NA", 5 -> "NA")
  ) >
  removeMissingLines >
  streamToFile("processed_sample.csv")

val result = dataPipe("sample.csv")






Lets go over the code snippet piece by piece.



		First convert the text file to a Stream using fileToStream


		Replace white spaces in each line by using replaceWhiteSpaces


		Extract the required columns by extractTrainingFeatures, be sure to supply it the column numbers (indexed from 0) and the missing value strings for each column to be extracted.


		Remove missing records removeMissingLines


		Write the resulting data stream to a file streamToFile("processed_sample.csv")







{% include links.html %}
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DynaML takes a sampling first approach to a probability API and so there are many operations and
transformations that can easily be applied to random variables created in the DynaML REPL. Probability models enable
the user to express multivariate distributions in terms of conditional probability factorizations.


$$
p(x,\theta) = p(x|\theta) \times p(\theta) = p(\theta|x) \times p(x)
$$


Conditional probability factorizations are at the center of Bayes Theorem


$$
p(\theta|x) = \frac{p(x|\theta) \times p(\theta)}{p(x)}
$$


In Bayesian analysis, $$p(\theta)$$ is known as the prior probability or just prior while
$$
p(x|\theta)
$$ is called the data likelihood or just likelihood. The prior distribution encodes our belief about which areas of the parameter space are more likely. The likelihood distribution states how likely it is for some data $$x$$ is produced for a specific value of parameters $$\theta$$.



Probability Models


In DynaML the ProbabilityModel class can be used to create arbitrary kinds of conditional probability factorizations, for example consider the simple Beta-Bernoulli coin toss model.


The Beta-Bernoulli model can be specified as follows.


Prior


The prior is a Beta distribution with parameters $$\alpha, \beta$$.


$$
\begin{align}
p(\theta) &= \frac{1}{B(\alpha, \beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \
B(\alpha, \beta) &= \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}
\end{align}
$$


Likelihood


For a value $$\theta$$ sampled from the prior distribution, we generate $$n$$ coin tosses with probability of heads for each toss being $$\theta$$. The Binomial distribution gives the probability that out of such $$n$$ loaded coin tosses; $$k$$ tosses will turn up heads.


$$
\begin{align}
p(x = k|\theta;n) = \binom{n}{k}\theta^k (1 - \theta)^{n-k}
\end{align}
$$



Creation


//Start with a beta prior
val p = RandomVariable(new Beta(7.5, 7.5))

//Simulate 500 coin tosses with probability of heads; p ~ Beta(7.5, 7.5)
val coinLikelihood = DataPipe((p: Double) => new BinomialRV(500, p))

//Construct a probability model.
val c_model = ProbabilityModel(p, coinLikihood)









Prior Sampling


We can now visualize the prior.


histogram((1 to 2000).map(_ => p.sample()))






[image: histogram]





Posterior Sampling


The ProbabilityModel class has a built in value member called posterior, which is an instance of the RandomVariable class. It can be used to sample from the posterior distribution of the model parameters given a set of data observations. In the Beta-Bernoulli coin toss example, we created a likelihood model that was a Binomial distribution over 500 coin tosses.


To generate samples from the posterior distribution, we must provide data or in our case; the number of heads observed in 500 coin tosses.



// The posterior distribution for the situation
// when 350 heads are observed out of 500 coin tosses
val post = c_model.posterior(350)
val postSample = (1 to 2000).map(_ => post.sample())
//Generate samples from posterior and visualize as a histogram.
hold()
histogram(postSample)
unhold()






[image: histogram]


From the posterior samples generated we can now examine sufficient statistics, such as the posterior mean. From Bayesian theory it is known that for a Beta-Bernoulli model, the posterior is another Beta distribution specified by
$$
p(\theta|x = k) = Beta(\alpha + k, \beta + n - k)
$$. From the properties of the Beta distribution the mean is given in our case by $$\frac{\alpha+k}{\alpha + \beta + n}$$ giving a value of about $$0.694174$$. We can verify this from out posterior sample.


val postMean = postSample.sum/postSample.length

postMean: Double = 0.6851085955685318
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General



Duplicate a pipe


duplicate[S, D](pipe: DataPipe[S, D])







		Type: DataPipe[(S, S), (D, D)]


		Result: Takes a base pipe and creates a parallel pipe by duplicating it.





{% include links.html %}
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Model Solvers


Model solvers are implementations which either solve for the parameters/coefficients which determine the prediction of a model. Below is a list of all model solvers currently implemented, they are all sub-classes/subtraits of the top level optimization API. Refer to the wiki page [https://github.com/mandar2812/DynaML/wiki/Optimization-%26-Model-Selection] on optimizers for more details on extending the API and writing your own optimizers.



Gradient Descent


The bread and butter of any machine learning framework, the GradientDescent class in the io.github.mandar2812.dynaml.optimization package provides gradient based optimization primitives for solving optimization problems of the form.


$$
\begin{equation}
f(w) :=
\lambda, R(w) +
\frac1n \sum_{k=1}^n L(w;x_k,y_k)
\label{eq:regPrimal}
\ .
\end{equation}
$$



Gradients


Name | Class | Equation
———— | ————- | ————-
Logistic Gradient | LogisticGradient | $$ L = \frac1n \sum_{k=1}^n \log(1+\exp( -y_k w^T x_k)), y_k \in {-1, +1}$$
Least Squares Gradient | LeastSquaresGradient | $$ L = \frac1n \sum_{k=1}^n |w^{T} \cdot x_k - y_k|^2 $$





Updaters


Name | Class | Equation
———— | ————- | ————-
$$ L_1 $$ Updater | L1Updater| $$R = ||w||_1 $$
$$ L_2 $$ Updater | SquaredL2Updater | $$R = \frac{1}{2} ||w||^2 $$
BFGS Updater      | SimpleBFGSUpdater |


val data: Stream[(DenseVector[Double], Double)] = ...
val num_points = data.length
val initial_params: DenseVector[Double] = ...
val optimizer = new GradientDescent(
    new LogisticGradient,
    new SquaredL2Updater
)
val params = optimizer.setRegParam(0.002)
.optimize(num_points, data, initial_params)











Quasi-Newton (BFGS)


The Broydon-Fletcher-Goldfarb-Shanno (BFGS) is a Quasi-Newton based second order optimization method. To calculate an update to the parameters, it requires calculation of the inverse Hessian $$\mathit{H}^{-1}$$ as well as the gradient at each iteration.


val optimizer = QuasiNewtonOptimizer(
  new LeastSquaresGradient,
  new SimpleBFGSUpdater)

val data: Stream[(DenseVector[Double], Double)] = ...
val num_points = data.length
val initial_params: DenseVector[Double] = ...

val params = optimizer
.setRegParam(0.002)
.optimize(num_points, data, initial_params)










Regularized Least Squares


This subroutine solves the regularized least squares optimization problem as shown below.


$$
\begin{equation}
\min_{w} \ \mathcal{J}{P}(w) = \frac{1}{2} \gamma \ w^Tw + \frac{1}{2} \sum{k = 1}^{N} (y_k - w^T \varphi(x_k))^2
\end{equation}
$$


val num_dim = ...
val designMatrix: DenseMatrix[Double] = ...
val response: DenseVector[Double] = ...

val optimizer = new RegularizedLSSolver()


val x = optimizer.setRegParam(0.05)
    .optimize(designMatrix.nrow,
        (designMatrix, response),
        DenseVector.ones[Double](num_dim))









Backpropagation with Momentum


This is the most common learning methods for supervised training of feed forward neural networks, the edge weights are adjusted using the generalized delta rule.


val data: Stream[(DenseVector[Double], DenseVector[Double])] = ...

val initParam = FFNeuralGraph(num_inputs = data.head._1.length,
    num_outputs = data.head._2.length,
    hidden_layers = 1, List("logsig", "linear"),
    List(5))

val optimizer = new BackPropogation()
    .setNumIterations(100)
    .setStepSize(0.01)

val newparams = optimizer.optimize(data.length, data, initParam)









Conjugate Gradient


The conjugate gradient method is used to solve linear systems of the form $$Ax = b$$ where $$A$$ is a symmetric positive definite matrix.


val num_dim = ...
val A: DenseMatrix[Double] = ...
val b: DenseVector[Double] = ...

///Solves A.x = b
val x = ConjugateGradient.runCG(A, b,
    DenseVector.ones[Double](num_dim),
    epsilon = 0.005, MAX_ITERATIONS = 50)









Dual LSSVM Solver


The LSSVM solver solves the linear program that results from the application of the Karush, Kuhn Tucker conditions on the LSSVM optimization problem.


$$
\begin{equation}
\left[\begin{array}{c|c}
0  & 1^\intercal_v   \ \hline
1_v & K + \gamma^{-1} \mathit{I}
\end{array}\right]
\left[\begin{array}{c}
b    \ \hline
\alpha\end{array}\right] = \left[\begin{array}{c}
0    \ \hline
y\end{array}\right]
\end{equation}
$$


val data: Stream[(DenseVector[Double], Double)] = ...

val kernelMatrix: DenseMatrix[Double] = ...

val initParam =  DenseVector.ones[Double](num_points+1)

val optimizer = new LSSVMLinearSolver()

val alpha = optimizer.optimize(num_points,
    (kernelMatrix, DenseVector(data.map(_._2).toArray)),
    initParam)









Committee Model Solver


The committee model solver aims to find the optimum values of weights applied to the predictions of a set of base models. The weights are calculated as follows.


$$
\alpha = \frac{C^{-1} \overrightarrow{1}}{\overrightarrow{1}^T C^{-1} \overrightarrow{1}}
$$


Where $$C$$ is the sample correlation matrix of errors for all combinations of the base models calculated on the training data.


val optimizer= new CommitteeModelSolver()
//Data Structure containing for each training point the following couple
//(predictions from base models as a vector, actual target)
val predictionsTargets: Stream[(DenseVector[Double], Double)] = ...
val params = optimizer.optimize(num_points,
    predictionsTargets,
    DenseVector.ones[Double](num_of_models))
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Base


At the top of the pipes hierarchy is the base trait DataPipe[Source, Destination] which is a thin wrapper for a Scala function having the type (Source) => Destination. Along with that the base trait also defines how pipes are composed with each other to yield more complex workflows.



Pipes in Parallel


The ParallelPipe[Source1, Result1, Source2, Result2] trait models pipes which are attached to each other, from an implementation point of view these can be seen as data pipes taking input from (Source1, Source2) and yielding values from (Result1, Result2). They can be created in two ways:


By supplying two pipes to the DataPipe() object.


val pipe1 = DataPipe((x: Double) => math.sin(2.0*x)*math.exp(-2.0*x))
val pipe2 = DataPipe((x: Double) => if(x <= 0.2) "Y" else "N")

val pipe3 = DataPipe(pipe1, pipe2)
//Returns (-0.013, "N")
pipe3((2.0, 15.0))






By duplicating a single pipe using DynaMLPipe.duplicate


val pipe1 = DataPipe((x: Double) => math.sin(2.0*x)*math.exp(-2.0*x))

val pipe3 = DynaMLPipe.duplicate(pipe1)
//Returns (-0.013, -9E-14)
pipe3((2.0, 15.0))









Diverging Pipes


The BifurcationPipe[Source, Result1, Result2] trait represents pipes which start from the same source and yield two result types, from an implementation point of view these can be seen as data pipes taking input from Source1 and yielding values from (Result1, Result2). They can be created in two ways:


By supplying a function of type (Source) => (Result1, Result2) to the DataPipe() object.


val pipe1 = DataPipe((x: Double) => (1.0*math.sin(2.0*x)*math.exp(-2.0*x), math.exp(-2.0*x)))

pipe1(2.0)






By using the BifurcationPipe() object


val pipe1 = DataPipe((x: Double) => math.sin(2.0*x)*math.exp(-2.0*x))
val pipe2 = DataPipe((x: Double) => if(x <= 0.2) "Y" else "N")

val pipe3 = BifurcationPipe(pipe1, pipe2)
pipe3(2.0)









Side Effects


In order to enable pipes which have side effects i.e. writing to disk, the SideEffectPipe[Source] trait is used. Conceptually it is a pipe taking as input a value from Source but has a return type of Unit.







Stream Processing


To simplify writing pipes for scala streams, the StreamDataPipe[I, J, K] and its subclasses implement workflows on streams.



Map


Map every element of a stream.


val pipe1 = StreamDataPipe((x: Double) => math.sin(2.0*x)*math.exp(-2.0*x))

val str: Stream[Double] = (1 to 5).map(_.toDouble).toStream
pipe1(str)









Filter


Filter certain elements of a stream.


val pipe1 = StreamDataPipe((x: Double) => x <= 2.5)

val str: Stream[Double] = (1 to 5).map(_.toDouble).toStream
pipe1(str)









Bifurcate stream


val pipe1 = StreamPartitionPipe((x: Double) => x <= 2.5)

val str: Stream[Double] = (1 to 5).map(_.toDouble).toStream
pipe1(str)









Side effect


val pipe1 = StreamDataPipe((x: Double) => println("Number is: "+x))

val str: Stream[Double] = (1 to 5).map(_.toDouble).toStream
pipe1(str)
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Time Series Data



Extract Data as Univariate Time Series


extractTimeSeries(Tfunc)







		Type: DataPipe[Stream[String], Stream[(Double, Double)]]


		Result: This pipe assumes its input to be of the form YYYY,Day,Hour,Value. It takes as input a function (TFunc) which converts a (Double, Double, Double) into a single “timestamp” like value. The pipe processes its data source line by line and outputs a Tuple2 in the following format (Timestamp,Value).








Extract data as Multivariate Time Series


extractTimeSeriesVec(Tfunc)







		Type: DataPipe[Stream[String], Stream[(Double, DenseVector[Double])]]


		Result: This pipe is similar to extractTimeSeries but for application in multivariate time series analysis such as nonlinear autoregressive models with exogenous inputs. The pipe processes its data source line by line and outputs a (Double, DenseVector[Double]) in the following format (Timestamp,Values).








Construct Time differenced Data


deltaOperation(deltaT, timelag)







		Type: DataPipe[Stream[(Double, Double)], Stream[(DenseVector[Double], Double)]]


		Result: In order to generate features for auto-regressive models, one needs to construct sliding windows in time. This function takes two parameters deltaT: the auto-regressive order and timelag: the time lag after which the windowing is conducted. E.g Let deltaT = 2 and timelag = 1 This pipe will take stream data of the form $$(t, y(t))$$ and output a stream which looks like $$(t, [y(t-2), y(t-3)])$$








Construct multivariate Time differenced Data


deltaOperationVec(deltaT: Int)







		Type: DataPipe[Stream[(Double, Double)], Stream[(DenseVector[Double], Double)]]


		Result: A variant of deltaOperation for NARX models.








Haar Discrete Wavelet Transform


haarWaveletFilter(order: Int)







		Type: DataPipe[DenseVector[Double], DenseVector[Double]]


		Result: A Haar Discrete wavelet transform.





{% include links.html %}








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

pages/product1/p1_sample7.html


    
      Navigation


      
        		
          index


        		DynaML latest documentation »

 
      


    


    
      
          
            
  

title: Model Pipes
keywords: model pipes
summary: “This page summarizes workflows which take data sets and yield ML models.”
sidebar: product1_sidebar
permalink: p1_sample7.html
tags: [pipes, workflow]
folder: product1





DynaML Model Pipes


We saw in the previous section that certain operations like training/tuning of models are expressed as pipes which take input the relevant model and perform an operation on it. But it is evident that the model creation itself is a common step in the data analysis workflow, therefore one needs library pipes which instantiate DynaML machine learning models given the training data and other relevant inputs. Model creation pipes are not in the DynaMLPipe object but exist as an independent class hierarchy. Below we explore a section of it.



Generalized Linear Model pipe


GLMPipe[T, Source](pre: (Source) => Stream[(DenseVector[Double], Double)],
                         map: (DenseVector[Double]) => (DenseVector[Double]) = identity _,
                         task: String = "regression", modelType: String = "")







		Type: DataPipe[Source, GeneralizedLinearModel[T]]


		Result: Takes as input a data of type Source and outputs a Generalized Linear Model.








Gaussian Process Regression Model Pipe


GPRegressionPipe[
M <: AbstractGPRegressionModel[Seq[(DenseVector[Double], Double)], DenseVector[Double]],
Source](pre: (Source) => Seq[(DenseVector[Double], Double)],
        cov: LocalScalarKernel[DenseVector[Double]],
        n: LocalScalarKernel[DenseVector[Double]],
        order: Int = 0, ex: Int = 0)







		Type: DataPipe[Source, M]


		Result: Takes as input data of type Source and intializes a Gaussian Process regression model as the output.








Dual LS-SVM Model Pipe


DLSSVMPipe[Source](pre: (Source) => Stream[(DenseVector[Double], Double)],
                   cov: LocalScalarKernel[DenseVector[Double]],
                   task: String = "regression")







		Type: DataPipe[Source, DLSSVM]


		Result: Takes as input data of type Source and intializes a LS-SVM regression/classification model as the output.
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Operations on Models



Train a parametric model


trainParametricModel[
  G, T, Q, R,
  S, M <: ParameterizedLearner[G, T, Q, R, S]](
  regParameter: Double, step: Double, maxIt: Int, mini: Double)







		Type: DataPipe[M, M]


		Result: Takes as input a parametric model i.e. a subclass of ParameterizedLearner[G, T, Q, R, S], trains it and outputs the trained model.








Tune a model using global optimization


modelTuning[M <: GloballyOptWithGrad](
  startingState: Map[String, Double], globalOpt: String,
  grid: Int, step: Double)







		Type: DataPipe[(S, S), (D, D)]


		Result: Takes as input a parametric model i.e. a subclass of GloballyOptimizableWithGrad, tunes it using a global optimization procedure globalOpt and outputs the tuned model.
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Feature Processing



Extract features and targets


splitFeaturesAndTargets







		Type: DataPipe[Stream[String], Stream[(DenseVector[Double], Double)]]


		Result: Take each line which is a comma separated string and extract all but the last element into a feature vector and leave the last element as the “target” value.








Extract Specific Columns


extractTrainingFeatures(columns, missingVals)







		Type: DataPipe[Stream[String], Stream[String]]


		Result: Extract a subset of columns from a stream of comma separated string also replace any missing value strings with the empty string.


		Usage: DynaMLPipe.extractTrainingFeatures(List(1,2,3), Map(1 -> "N.A.", 2 -> "NA", 3 -> "na"))








Gaussian Scaling of Data


gaussianScaling







		Result:  Perform gaussian normalization of features & targets, on a data stream which is a of the form Stream[(DenseVector[Double], Double)].








Gaussian Scaling of Train/Test Splits


gaussianScalingTrainTest







		Result:  Perform gaussian normalization of features & targets, on a data stream which is a Tuple2 of the form (Stream(training data), Stream(test data)).








Min-Max Scaling of Data


minMaxScaling







		Result:  Perform 0-1 scaling of features & targets, on a data stream which is a of the form Stream[(DenseVector[Double], Double)].








Min-Max Scaling of Train/Test Splits


minMaxScalingTrainTest







		Result:  Perform 0-1 scaling of features & targets, on a data stream which is a Tuple2 of the form (Stream(training data), Stream(test data)).
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Data munging or pre-processing is one of the most time consuming activities in the analysis and modeling cycle, yet very few libraries do justice to this need. In DynaML the aim has been to make data analysis more reproducible and easy, hence designing, maintaining and improving a powerful data workflow framework is at the center of the development endeavour. In this section we attempt to give a simple yet effective introduction to the data pipes module of DynaML.



What are DynaML Data Pipes?


At their heart data pipes in DynaML are (thinly wrapped) Scala functions. Every pre-processing workflow can be visualized as a chain of functional transformations on the data. These functional transformations are applied one after another (in fancy language composed) to yield a result which is then suitable for modeling/training.



Creating an arbitrary pipe


As we mentioned earlier a DynaML pipe is nothing but a thin wrapper around a scala function. Creating a new data pipe is very easy, you just create a scala function and give it to the DataPipe() object.



val func = (x: Double) => math.sin(2.0*x)*math.exp(-2.0*x)

val tPipe = DataPipe(func)









Stacking/Composing Data Pipes


You can compose or stack any number of pipes using the > character to create a composite data workflow. There is only one constraint when joining two pipes, that the destination type of the first pipe must be the same as the source type of the second pipe, in other words:



dont put square pegs into round holes



val pre_processing = DataPipe((x: Double) => math.sin(2.0*x)*math.exp(-2.0*x))
val post_processing = DataPipe((x: Double) => if(x <= 0.2) "Y" else "N")

//Compose the two pipes
//The result will be "Y"
val tPipe = pre_processing > post_processing

tPipe(15.5)
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Data Pre-processing



File to Stream of Lines


fileToStream







		Type: DataPipe[String, Stream[String]]


		Result: Converts a text file (inputted as a file path string) into Stream[String]








Write Stream of Lines to File


streamToFile(fileName: String)







		Type: DataPipe[Stream[String], Unit]


		Result: Writes a stream of lines to the file specified by filePath








Drop first line in Stream


dropHead







		Type: DataPipe[Stream[String], Stream[String]]


		Result: Drop the first element of a Stream of String








Replace Occurrences in of a String


replace(original, newString)







		Type: DataPipe[Stream[String], Stream[String]]


		Result: Replace all occurrences of a regular expression or string in a Stream of String with with a specified replacement string.








Replace White Spaces


replaceWhiteSpaces







		Type: DataPipe[Stream[String], Stream[String]]


		Result: Replace all white space characters in a stream of lines.








Remove Trailing White Spaces



		Type: DataPipe[Stream[String], Stream[String]]


		Result: Trim white spaces from both sides of every line.








Remove White Spaces


replaceWhiteSpaces







		Type: DataPipe[Stream[String], Stream[String]]


		Result: Replace all white space characters in a stream of lines.








Remove Missing Records


removeMissingLines







		Type: DataPipe[Stream[String], Stream[String]]


		Result: Remove all lines/records which contain missing values








Create Train/Test splits


splitTrainingTest(num_training, num_test)







		Type: DataPipe[(Stream[(DenseVector[Double], Double)], Stream[(DenseVector[Double], Double)]), (Stream[(DenseVector[Double], Double)], Stream[(DenseVector[Double], Double)])]


		Result: Extract a subset of the data into a Tuple2 which can be used as a training, test combo for model learning and evaluation.
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Reversible transformations are quite important in computational sciences (Machine Learning included), some examples include auto-encoders, min-max scaling, gaussian scaling etc. In DynaML they occupy a special place in the pipes API.



Scalers and Reversible Scalers


It is quite common in data processing operations to carry out transformations on the data such as feature scaling, wavelet transform, Fourier transform etc. The Scaler[S] trait represents all such transformations (by extending DataPipe[Source, Target]) which map values from a type S to itself.


The trait ReversibleScaler[S] extends Scaler[S] by adding the inverse transformation (i) as a value member. Some common implementations of the reversible scaler type are.


Gaussian Feature Scaling: Implemented in the GaussianScaler case class which takes two arguments $$\mu$$ and $$\sigma$$ as instances of breeze DenseVector.


val gSc = GaussianScaler(DenseVector(0.0, 1.0, 0.5), DenseVector(1.0, 2.5, 1.5))
//Scale the value of a sample point.
val scVal = gSc(DenseVector(1.0, 1.0, 1.0))






Min Max Feature Scaling: Implemented in the MinMaxScaler case class which takes two arguments min: DenseVector[Double] and max: DenseVector[Double].


val mmSc = MinMaxScaler(DenseVector(0.0, 1.0, 0.5), DenseVector(1.0, 2.5, 1.5))
//Scale the value of a sample point.
val scVal = mmSc(DenseVector(1.0, 1.0, 1.0))
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Affliations


DynaML is proud to be a part of the Mozilla Science Collaborate platform [https://www.mozillascience.org/projects/dynaml]
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Models


Model Family | Supported | Notes
——–|———–|———–
Generalized Linear Models | Yes | Supports regularized least squares based models for regression as well as logistic and probit models for classification.
Least Squares Support Vector Machines | Yes | Contains implementation of dual LS-SVM applied to classification and regression.
Gaussian Processes | Yes | Supports gaussian process inference models for regression and binary classification; the binary classification GP implementation uses the Laplace approximation for posterior mode computation. For regression problems, there are also multi-output and multi-task GP implementations.
Feed forward Neural Networks| Yes | Can build and learn feedforward neural nets of various sizes.
Committee/Meta Models | Yes | Supports creation of gating networks or committee models.





Optimizers & Solvers



Parametric Solvers


Solver | Supported | Notes
——–|———–|———–
Regularized Least Squares | Yes | Solves the Tikhonov Regularization [https://en.wikipedia.org/wiki/Tikhonov_regularization] problem exactly (not suitable for large data sets)
Gradient Descent | Yes | Stochastic and batch gradient descent is implemented.
Quasi-Newton BFGS | Yes | Second order convex optimization (using Hessian).
Conjugate Gradient | Yes | Supports solving of linear systems of type $$ A.x = b $$, where $$A$$ is a symmetric positive definite matrix.
Committee Model Solver | Yes | Solves any committee based model to calculate member model coefficients or confidences.
Back-propagation | Yes | Least squares based back-propagation with momentum and regularization.





Global Optimization Solvers


Solver | Supported | Notes
——–|———–|———–
Grid Search | Yes | Simple search over a grid of configurations.
Coupled Simulated Annealing | Yes | Supports vanilla (simulated annealing) along with variants of CSA such as CSA with variance (temperature) control.
ML-II| Yes | Gradient based optimization of log marginal likelihood in Gaussian Process regression models.
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You can create a glossary for your content. First create your glossary items in a data file such as glossary.yml.


Then create a page and use definition list formatting, like this:


fractious
: {{site.data.glossary.fractious}}


gratuitous
: {{site.data.glossary.gratuitous}}


haughty
: {{site.data.glossary.haughty}}


gratuitous
: {{site.data.glossary.gratuitous}}


impertinent
: {{site.data.glossary.intrepid}}


Here’s the code:


{% raw %}fractious
: {{site.data.glossary.fractious}}

gratuitous
: {{site.data.glossary.gratuitous}}

haughty
: {{site.data.glossary.haughty}}

gratuitous
: {{site.data.glossary.gratuitous}}

impertinent
: {{site.data.glossary.intrepid}}{% endraw %}






The glossary works well as a link in the top navigation bar.



Horizontally styled definiton lists


You can also change the definition list (dl) class to dl-horizontal. This is a Bootstrap specific class. If you do, the styling looks like this:


		fractious


		{{site.data.glossary.fractious}}

		gratuitous


		{{site.data.glossary.gratuitous}}

		haughty


		{{site.data.glossary.haughty}}

		gratuitous


		{{site.data.glossary.gratuitous}}

		impertinent


		{{site.data.glossary.impertinent}}

		intrepid


		{{site.data.glossary.intrepid}}



For this type of list, you must use HTML. The list would then look like this:


{% raw %}<dl class="dl-horizontal">

<dt id="fractious">fractious</dt>
<dd>{{site.data.glossary.fractious}}</dd>

<dt id="gratuitous">gratuitous</dt>
<dd>{{site.data.glossary.gratuitous}}</dd>

<dt id="haughty">haughty</dt>
<dd>{{site.data.glossary.haughty}}</dd>

<dt id="benchmark_id">gratuitous</dt>
<dd>{{site.data.glossary.gratuitous}}</dd>

<dt id="impertinent">impertinent</dt>
<dd>{{site.data.glossary.impertinent}}</dd>

<dt id="intrepid">intrepid</dt>
<dd>{{site.data.glossary.intrepid}}</dd>

</dl>{% endraw %}






If you squish your screen small enough, at a certain breakpoint this style reverts to the regular dl class.


Although I like the side-by-side view for shorter definitions, I found it problematic with longer definitions.


{% include links.html %}
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Maven


To include DynaML in your maven JVM project edit your pom.xml file as follows


<repositories>
   <repository>
       <id>jitpack.io</id>
       <url>https://jitpack.io</url>
     </repository>
</repositories>






<dependency>
    <groupId>com.github.mandar2812</groupId>
    <artifactId>DynaML</artifactId>
    <version>v1.4</version>
</dependency>









SBT


For sbt projects edit your build.sbt (see JitPack [https://jitpack.io/#mandar2812/DynaML] for more details)


    resolvers += "jitpack" at "https://jitpack.io"
    libraryDependencies += "com.github.User" % "Repo" % "Tag"









Gradle


In your gradle project, add the following to the root build.gradle as follows


allprojects {
  repositories {
    ...
    maven { url "https://jitpack.io" }
  }
}






and then add the dependency like


dependencies {
    compile 'com.github.User:Repo:Tag'
}









Leinengen


In project.clj


:repositories [["jitpack" "https://jitpack.io"]]






:dependencies [[com.github.User/Repo "Tag"]]
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Reasons for tags


Tags provide alternate groupings for your content. In the documentation for this theme, there are a number of equally plausible ways I could have grouped the content. The folder names and items I chose for each item could have been grouped in other ways with good reason.


Tags allow you to go beyond the traditional hierarchical classification and provide other groupings. For example, the same item can belong to two different groups. You can also introduce other dimensions not used in your table of contents, such as platform-specific tags or audience-specific tags.


{% include links.html %}
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Motivation


DynaML was born out of the need to have a performant, extensible and easy to use Machine Learning research environment. Scala was a natural choice for these requirements due to its sprawling data science ecosystem (i.e. Apache Spark [http://spark.apache.org/]), its functional object-oriented duality and its interoperability with the Java Virtual Machine.





Organization


  
    
        Modules


    

        <ul id="myTab" class="nav nav-tabs nav-justified">
        <li class="active"><a href="#service-one" data-toggle="tab"><i class="fa fa-tree"></i> Core API </a>
        </li>
        <li class=""><a href="#service-two" data-toggle="tab"><i class="fa fa-car"></i> Pipes API </a>
        </li>
        <li class=""><a href="#service-three" data-toggle="tab"><i class="fa fa-support"></i> REPL </a>
        </li>
        <li class=""><a href="#service-four" data-toggle="tab"><i class="fa fa-database"></i> REPL Examples </a>
        </li>
    </ul>







Core


The core api consists of :


  		Model implementations


  		Optimization solvers


  		Probability distributions/random variables


  		Kernel functions for Non parametric models






To dive further into the different model classes supported in the core api start [here]({{site.baseurl}}/core_model_hierarchy.html)




Pipes & Workflows


The [pipes]({{site.baseurl}}/p1_pipes.html) module aims to separate model pre-processing tasks such as cleaning data files, replacing missing or corrupt records, applying transformations on data etc:






  		Ability to create arbitrary workflows from scala functions and join them


  		Feature transformations such as wavelet transform, gaussian scaling, auto-encoders etc









DynaML Shell


The _read evaluate print loop_ (REPL) gives the user the ability to experiment with the data pre-processing and model building process in a mix and match fashion.


The DynaML shell is based on the [Ammonite](http://www.lihaoyi.com/Ammonite/) project which is an augmented Scala REPL, all the features of the Ammonite REPL are a part of the DynaML REPL. 




REPL Examples


The module ```dynaml-examples``` contains programs which build regression and classification models on various data sets. These examples serve as case studies as well as instructional material to show the capabilities of DynaML in a hands on manner. Click [here]({{site.baseurl}}/p2_examples.html) to get started with the examples.











Libraries Used


DynaML leverages a number of open source projects and builds on their useful features.



		Breeze [https://github.com/scalanlp/breeze] for linear algebra operations with vectors, matrices etc.


		Gremlin [https://github.com/tinkerpop/gremlin] for building graphs in Neural network based models.


		Spire [https://github.com/non/spire] for creating algebraic entities like Fields, Groups etc.


		Ammonite [http://www.lihaoyi.com/Ammonite/] for the shell environment.


		DynaML uses the newly minted Wisp [https://github.com/quantifind/wisp] plotting library to generate aesthetic charts of common model validation metrics. In version 1.4 there is also integration of plotly [https://plot.ly] which can now be imported and used directly in the shell environment.





[image: plots]
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Platform Compatibility


Currently DynaML installs and runs on *nix platforms, though it is possible to build the project on windows, running the generated .bat file might not work and one would need to resort to using the java -jar command.



Pre-requisites



		sbt





		A modern HTML5 enabled browser (to view plots generated by Wisp)





		BLAS, LAPACK and ARPACK binaries for your platform. In case they are not installed, it is possible to disable this feature by commenting out (//) the section of the build.sbt file given below.


  "org.scalanlp" % "breeze-natives_2.11" % "0.11.2" % "compile",

















Steps



		Clone this repository


		Run the following.





  sbt






The sbt shell will open


 [info] Loading project definition from ~/DynaML/project
 [info] Set current project to DynaML
 >






Now enter the following commands


>stage
>console






After the project builds, you should get the following prompt.


       _        _        _          _             _                  _   _         _
      /\ \     /\ \     /\_\       /\ \     _    / /\               /\_\/\_\ _    _\ \
     /  \ \____\ \ \   / / /      /  \ \   /\_\ / /  \             / / / / //\_\ /\__ \
    / /\ \_____\\ \ \_/ / /      / /\ \ \_/ / // / /\ \           /\ \/ \ \/ / // /_ \_\
   / / /\/___  / \ \___/ /      / / /\ \___/ // / /\ \ \         /  \____\__/ // / /\/_/
  / / /   / / /   \ \ \_/      / / /  \/____// / /  \ \ \       / /\/________// / /
 / / /   / / /     \ \ \      / / /    / / // / /___/ /\ \     / / /\/_// / // / /
/ / /   / / /       \ \ \    / / /    / / // / /_____/ /\ \   / / /    / / // / / ____
\ \ \__/ / /         \ \ \  / / /    / / // /_________/\ \ \ / / /    / / // /_/_/ ___/\
 \ \___\/ /           \ \_\/ / /    / / // / /_       __\ \_\\/_/    / / //_______/\__\/
  \/_____/             \/_/\/_/     \/_/ \_\___\     /____/_/        \/_/ \_______\/

Welcome to DynaML v1.4.1-beta.3 
Interactive Scala shell for Machine Learning Research
(Scala 2.11.8 Java 1.8.0_101)
DynaML> 
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