

 Navigation

 	
 index

 	
 next |

 	Drupal Commerce 0.0.1 documentation

Drupal Commerce Documentation

	Introduction
	Contribute to Documentation

	Commerce 1.x Documentation

	Commerce 2.x
	Overview
	Drupal modules

	PHP libraries

	Recommended Tools

	Getting Started
	Getting Started with Drupal Commerce 2

	Libraries and dependencies
	Libraries and dependencies

	Setting up stores
	Setting up stores

	Managing products
	Products

	Catalog and product pages
	Catalog and product pages

	Product merchandising
	Product merchandising

	Working with orders
	Orders

	Configuring Checkout
	Configuring your checkout

	Payments
	Setting up payments

	Code Recipes
	Code Recipes

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

Introduction

Drupal Commerce is the leading flexible eCommerce solution for Drupal,
powering over 50,000 online stores of all sizes.

This documentation is rendered online at http://drupal-commerce.readthedocs.io/en/latest/

Contribute to Documentation

We love contributors! Please help us improve or fix the documentation by
editing a document and making a pull request in Github. Our documentation is
written in Restructured Text(.rst) so please only edit a document if you are familiar
with .rst file formatting guidelines.

Our docs are written in Restructured Text, built locally with Sphinx, managed on
Github and hosted with ReadtheDocs [http://drupal-commerce.readthedocs.io/en/latest/].

If you have trouble understanding any part of the documentation, please
notify those of us who work on this section by creating an issue in our
documentation repository [https://github.com/drupalcommerce/commerce-docs] and clearly explain what you don’t
understand and why - we’re happy to hear from you, your contribution
helps everyone!

You can also contribute directly on our documentation repository [https://github.com/drupalcommerce/commerce-docs] by
editing the files through the GitHub [https://github.com/] interface directly in your
browser. Alternatively, you can clone the repository and edit the book
in your favorite text editor.

Hosting

This site is hosted on Platform.sh [https://platform.sh].

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

Commerce 1.x Documentation

Head on over to DrupalCommerce.org [https://drupalcommerce.org/getting-started]. On the site you will find a nice
overview of the original 1.x build and links to all the relevant user
guides. Linked below for your convenience as well.

	User Guide [https://drupalcommerce.org/user-guide] - A site builder guide with lots of screenshots that
covers installation, order management, product creation, and a myriad
of other topics.

	Developer Guide [https://drupalcommerce.org/developer-guide] - A guide built for developers that outlines
architecture, building payment gateways, code workflow, and utilizing
core APIs.

	Commerce Kickstart 2 [https://drupalcommerce.org/commerce-kickstart-2] - A guide built for site builders that are
demo’ing with Kickstart 2.x

	Commerce Cookbook [https://drupalcommerce.org/site-builders-guide] - A cookbook of common site builder tasks that
covers things like shipping, inventory, reporting, merchandising,
etc.

	API Documentation [http://api.drupalcommerce.org/] - The doxygen output of all the code
documentation that ships with all Commerce installations.

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

Commerce 2.x

At its core, Commerce is a set of Drupal 8 modules, which in turn depend on other best-of-breed modules and libraries.

	Overview
	Drupal modules

	PHP libraries

	Recommended Tools

Getting Started

	Getting Started with Drupal Commerce 2
	Composer: the what, why, and how

	Installing
	Requirements

	New site

	Existing site

	Keeping a Drupal Commerce site up to date

	Getting ready for development
	Preparing the local environment

	Getting Commerce

	Preparing your fork

	Running tests

	Developing
	Choosing an issue

	Creating a pull request

	Keeping up to date

Libraries and dependencies

	Libraries and dependencies
	Address Module

	Zones

	Profile

	State Machine

	Inline Entity Form 8.x-2.x

	Currency

Setting up stores

	Setting up stores
	Create a store

	Overview & Architecture

	Use Cases

	Stores and Carts

Managing products

	Products
	Setup product attributes

	Make a product

	Create a product type

	Purchasable Entities

Catalog and product pages

	Catalog and product pages
	Create a product catalog

	Customize the add to cart form

	Theme a product page

Product merchandising

	Product merchandising
	Create a promotion

Working with orders

	Orders
	Order Types

	Order Items

	Advanced topics

Configuring Checkout

	Configuring your checkout
	Allowing guest checkout, or account login

	Customizing your checkout

	Creating a checkout pane plugin

	Creating a checkout flow plugin

Payments

	Setting up payments
	Install a payment gateway

	Managing order payments

Code Recipes

	Code Recipes
	Store recipes

	Product Variations and types

	Product Attributes and Values

	Products and types

	Orders and order items

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

Overview

At its core, Commerce is a set of Drupal 8 modules, which in turn depend
on other best-of-breed modules and libraries.

Drupal modules

The following Drupal contrib modules are used:

	Address [https://drupal.org/project/address] - Provides functionality for storing, validating and
displaying international postal addresses.

	Entity [https://drupal.org/project/entity] - Extends Drupal 8’s entity API with additional features.

	State Machine [https://drupal.org/project/state_machine] - Provides code-driven workflow functionality.

	Inline Entity Form [https://drupal.org/project/inline_entity_form] - Provides a widget for inline management of
referenced entities.

	Profile [https://drupal.org/project/profile] - Provides configurable user profiles, used for customer
profiles.

PHP libraries

The following PHP libraries are used:

	commerceguys/intl [https://github.com/commerceguys/intl] - An internationalization library powered by
CLDR data. Handles currencies, currency formatting, and more.

	commerceguys/addressing [https://github.com/commerceguys/addressing] - An addressing library, powered by
Google’s dataset. Stores and manipulates postal addresses.

	commerceguys/zone [https://github.com/commerceguys/zone] - A zone library. Zones are territorial
groupings mostly used for shipping or tax purposes.

	commerceguys/tax [https://github.com/commerceguys/tax] - A tax library with a flexible data model,
predefined tax rates, powerful resolving logic.

Recommended Tools

The Drupal Console [https://drupalconsole.com/] command-line tool.

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

Getting Started with Drupal Commerce 2

Drupal Commerce requires using Composer with Drupal. If you are new to
Composer, or new to managing Drupal with Composer, see Composer: the
what, why, and how.

To get Drupal Commerce installed, see the Installing Drupal Commerce
guide.

For keeping Drupal Commerce up to date, review the Keeping a Drupal
Commerce site up to date guide.

	Composer: the what, why, and how

	Installing
	Requirements

	New site

	Existing site

	Keeping a Drupal Commerce site up to date

	Getting ready for development
	Preparing the local environment

	Getting Commerce

	Preparing your fork

	Running tests

	Developing
	Choosing an issue

	Creating a pull request

	Keeping up to date

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Getting Started with Drupal Commerce 2

Composer: the what, why, and how

@todo

	Port contents of
https://glamanate.com/blog/managing-your-drupal-project-composer

	And
https://docs.google.com/presentation/d/1PK9q2dBkGHfyEO76bEVpqS61wTgA0LGbru2PECiwUnk/edit?usp=sharing

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Getting Started with Drupal Commerce 2

Installing

Installing Commerce to contribute back? Check out our
installation instructions for contributors.

Requirements

Commerce 2.x requires Drupal 8.2.0 or newer.

If you already have a web server, make sure it satisfies Drupal 8’s
requirements [https://www.drupal.org/requirements].

The recommended memory limit is 256MB or more.

For local development we recommend Drupal VM [http://www.drupalvm.com/] (advanced users) or
Acquia Dev Desktop [https://www.acquia.com/products-services/dev-desktop] (beginners).

You will also need Composer [https://getcomposer.org/doc/00-intro.rst#installation-linux-unix-osx].

Why must we use Composer? [https://bojanz.wordpress.com/2015/09/18/d8-composer-definitive-intro/]

New site

The following command will download Drupal 8 + Commerce 2.x with all
dependencies to the mystore folder:

composer create-project drupalcommerce/project-base mystore --stability dev

Install it just like a regular Drupal site. Commerce will be
automatically enabled for you.

Tips:

	The bin folder contains Drupal Console [https://drupalconsole.com].

	The web folder represents the document root.

	Composer commands are always run from the site root (mystore in
this case).

	Downloading additional modules:
composer require "drupal/devel:1.x-dev"

	Updating an existing module: composer update drupal/address
–with-dependencies

See the project-base README [https://github.com/drupalcommerce/project-base/blob/8.x/README.rst] for more details.

Existing site

Run these commands in the root of your website:

	Add the Drupal Packagist repository

composer config repositories.drupal composer https://packages.drupal.org/8

This allows Composer to find Commerce and the other Drupal modules.

	Download Commerce

composer require "drupal/commerce 2.x-dev"

This will also download the required libraries and modules (Address,
Entity, State Machine, Inline Entity Form, Profile).

	Enable Commerce (instructions below use Drupal Console [https://drupalconsole.com])

drupal module:install commerce_product commerce_checkout commerce_cart commerce_tax

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Getting Started with Drupal Commerce 2

Keeping a Drupal Commerce site up to date

Note: Drupal Commerce 2 has now hit beta which supports upgrades. If
you have an alpha installation, you will need to implement an
upgrade path manually.

To update to the newest version of Drupal Commerce, you will need to
update with Composer.

composer update drupal/commerce --with-dependencies

Please note the ``--with-dependencies`` option. Without this option
specified any needed, contributed projects and libraries will not
update. Only the Drupal Commerce module will be updated.

Run your Drupal updates once all of the dependencies are updated. We
recommend running them on the command line rather than the
update.php script. See the example below.

drupal update:debug
drupal update:execute

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Getting Started with Drupal Commerce 2

Getting ready for development

Preparing the local environment

Start by setting up a web server, PHP and MySQL.

We recommend Drupal VM [http://www.drupalvm.com/] for advanced users, Acquia Dev Desktop [https://www.acquia.com/products-services/dev-desktop]
for beginners.

You will also need Git [https://git-scm.com/] and Composer [https://getcomposer.org/doc/00-intro.rst#installation-linux-unix-osx].

Note that Drupal VM comes with Composer included.

Getting Commerce

The following command will download Drupal 8 + Commerce 2.x with all
dependencies to the mystore folder:

composer create-project drupalcommerce/project-base mystore --prefer-source --stability dev

The –prefer-source option tells Composer to use Git clone as the
download method.

When prompted, answer n to:

Do you want to remove the existing VCS (.git, .svn..) history? [Y,n]?

This will keep the downloaded git repositories inside their parent
folders (such as web/modules/contrib/commerce).

Tips:

	The bin folder contains Drupal Console [https://drupalconsole.com] and PHPUnit [https://phpunit.de/].

	The web folder represents the document root.

	Composer commands are always run from the site root (mystore in
this case).

	Downloading additional modules:
composer require "drupal/devel:1.x-dev"

	Updating an existing module: composer update drupal/address
–with-dependencies

See the project-base README [https://github.com/drupalcommerce/project-base/blob/8.x/README.rst] for more details.

Preparing your fork

Note: You will need a GitHub account for contributing.

Visit the Commerce repository on GitHub [https://github.com/drupalcommerce/commerce] and click the fork
button.

That will create a copy of the repository on your GitHub account.

Now go to the Commerce folder and add your fork:

cd web/modules/contrib/commerce
git remote add fork git@github.com:YOUR_USER/commerce.git

Replace YOUR_USER with your username (the full url is shown on your
fork’s GitHub page).

You will now be able to push new branches to your fork and create pull
requests [https://help.github.com/articles/using-pull-requests] against the main repository.

Running tests

All of the Drupal Commerce tests are based on the PHPUnit framework. In
order to run the tests you will need to copy the phpunit.xml.dist
from the core directory and modify it for your environment. An in depth
article on getting ready to run the tests can be found here:
https://drupalcommerce.org/blog/45322/commerce-2x-unit-kernel-and-functional-tests-oh-my

cd mystore/web
Run PHPUnit tests
../bin/phpunit -c core/phpunit.xml modules/contrib/commerce

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Getting Started with Drupal Commerce 2

Developing

Choosing an issue

Commerce uses GitHub for code and drupal.org for tracking issues.

To choose an issue, go through the open issues [https://www.drupal.org/project/issues/search/commerce?assigned=&submitted=&project_issue_followers=&status%5B0%5D=Open&version%5B0%5D=8.x&issue_tags_op=%3D&issue_tags=&text=&&&&order=field_issue_priority&sort=desc], pick one you like
and assign it to you.

If you need help choosing an issue or working on one, join the
Commerce 2.x office hours.

They are held every wednesday at 3PM GMT+1 on the #drupal-commerce
IRC channel [https://www.drupal.org/irc].

Tip: You can also view the issue queue as a kanban board [https://contribkanban.com/board/commerce2x].

Creating a pull request

Start by creating a branch for your work.

The branch name should contain a brief summary of its id and the
issue, e.g 2276369-fix-product-form-notice:

cd web/modules/contrib/commerce
git checkout -b 2276369-fix-product-form-notice

Once you’re done with development, push your commits to your fork:

git commit -a -m "Issue 2276369: Fix notice in the product form."
git push fork 2276369-fix-product-form-notice

You can now go to your fork’s GitHub page and create a pull
request [https://help.github.com/articles/using-pull-requests#initiating-the-pull-request].

Your pull request should link to the drupal.org issue, and vice-versa.

After your code has been reviewed, you might be asked to perform some
changes and then have them reviewed again:

Change the desired files.
git commit -a -m "Addressed feedback."
git push fork 2276369-fix-product-form-notice

Updating the branch will automatically update the related pull request.

Keeping up to date

Your forked repository and the original one (called origin) will
eventually get out of sync.

Periodically update your fork by doing:

Update your local branch.
git checkout 8.x-2.x
git pull origin/8.x-2.x
Push the update to your GitHub fork.
git push fork 8.x-2.x

Your pull request might also need rebasing, to re-apply your changes
on top of the latest code.

Once you’ve updated the master branch (8.x-2.x), rebase your branch:

git checkout 2276369-fix-product-form-notice
git rebase 8.x-2.x
git push -f fork 2276369-fix-product-form-notice

That’s it! Happy contributing!

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

Libraries and dependencies

Drupal Commerce is built from many different components. Understanding
these building blocks and their functionality will aid you in building
your Drupal Commerce store.

	Address

	Profile

	State Machine

	Inline Entity Form

	Currency

	Address Module
	Install

	Configure and Customize

	More information on Address formats

	Zones
	Overview

	Taxes and Zones

	Profile

	State Machine
	Architecture

	Inline Entity Form 8.x-2.x

	Currency
	Overview

	Importing Defined Currencies

	Creating and Editing Currencies

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Libraries and dependencies

Address Module

See Also: Address Drupal Module [https://www.drupal.org/project/address] | Addressing library [https://github.com/commerceguys/addressing] |
Address Commerce 2.x Story [https://drupalcommerce.org/blog/16864/commerce-2x-stories-addressing]

For the addressing needs of Commerce 1.x the addressfield module [https://drupal.org/project/addressfield] was
created. It stores addresses using the xNAL standard, accommodates both
name and address data, and provides per-country address forms.

It was a good first try, but we can do better.

Commerce 2.x will depend on the Address 1.x module [https://www.drupal.org/project/address], which will pull
in the commerceguys/addressing [https://github.com/commerceguys/addressing] library, store the address formats and
subdivisions as configuration entities, and use them to generate and
validate Drupal forms.

We gain a much richer dataset and greatly improved support for countries
such as China, Korea, Brazil, and others. Best of all, our efforts
benefit the whole wider PHP community.

Install

This is a dependency and once you have successfully installed commerce,
you will have the address module available. See Installation
Instructions for Commerce 2.x.

Configure and Customize

[image: Address Module location]

To configure or customize address formats, navigate to the Configuration
page (1) and click on (2) “Address Formats” under “Regional and
Language”.

admin/config/regional/address-formats

[image: Address Module landing page]

The landing page for the address module shows all the default
configurations by country. You can edit the postal formatting (order of
fields, locality dependencies, and many many other things) just by
clicking “Edit.”

[image: Address Module format configuration]

The default values are based on an opensource 3rd party that has the
best coverage of all regions in the world. The formatting of the
addresses is for both the form and the display.

More information on Address formats

[image: Address Module Example]

Each country has a different address format that tells us:

	Which fields are used in which order (Is there a state field? Does
the zip code come before the city? After the state?)

	Which fields are required

	Which fields need to be uppercased for the actual mailing to
facilitate automated sorting of mail

	The labels for the administrative area (state, province, parish,
etc.), and the postal code (Postal code or ZIP code)

	Validation rules for postal codes, usually in the form of a regular
expression.

In countries using a non-latin script (such as China, Taiwan, Korea),
the order of fields varies based on the language/script used. Addresses
written in latin script follow the minor-to-major order (start with the
street, end with the country) while addresses written in the chinese scr

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Libraries and dependencies

Zones

See Also: Zone Library [https://github.com/commerceguys/zone] | Addressing Library [https://github.com/commerceguys/addressing] | Address
Drupal Module [https://www.drupal.org/project/address]

Overview

Zones are territorial groupings mostly used for shipping or tax
purposes.

For example, a set of shipping rates associated with a zone where the
rates

become available only if the customer’s address matches the zone.

A zone can match other zones, countries, subdivisions
(states/provinces/municipalities), postal codes.

Postal codes can also be expressed using ranges or regular
expressions.

Examples of zones:

	California and Nevada

	Belgium, Netherlands, Luxemburg

	European Union

	Germany and a set of Austrian postal codes (6691, 6991, 6992, 6993)

	Austria without specific postal codes (6691, 6991, 6992, 6993)

To locate Zones in your Commerce install, (1) click on Configuration and
(2) click on Zones:

[image: Navigate to zones]

Each zone consists of zone members, which represent conditions that
can be matched.

For example, a “France and Germany” zone would have two zone members:
1) France 2) Germany

and an address would match that zone if it matches one of those two
zone members.

Taxes and Zones

The Commerce Tax submodule creates a matching zone for each imported
tax type.

For example, importing the German VAT tax type also creates a German
VAT zone hich contains two zone members: 1) Germany 2) Austria (postal
codes 6691, 6991, 6992, 6993)

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Libraries and dependencies

Profile

See Also: Module on Drupal.org [https://www.drupal.org/project/profile] | Drupal 8 Issue [https://www.drupal.org/node/2598342]

Provides the profile entity type used to collect customer information.
In Commerce 1.x, we called these entities “Customer Profiles” and for
Commerce 2.x we have moved to where the community has extended user
profiles to include fieldable entity bundles. Customer profiles in
Commerce 2.x will be entities and orders will link to revisions,
avoiding the duplication we had in Commerce 1.x.

[image: Profile 2 Landing Page]

The Profile module provides a fieldable entity, that allows
administrators to define different sets of fields for user profiles,
which are then displayed in the My Account section. This permits users
of a site to share more information about themselves, and can help
community-based sites organize users around specific information.

You can pull the latest from the repository on Drupal.org [https://www.drupal.org/project/profile].

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Libraries and dependencies

State Machine

See Also: module on drupal.org [https://www.drupal.org/project/state_machine]

Provides code-driven workflow functionality.

A workflow is a set of states and transitions that an entity goes
through during its lifecycle.

A transition represents a one-way link between two states and has its
own label.

The current state of a workflow is stored in a state field, which
provides an API for getting and

applying transitions. An entity can have multiple workflows, each in
its own state field.

An order might have checkout and payment workflows. A node might have
legal and marketing workflows.

Workflow groups are used to group workflows used for the same purpose
(e.g. payment workflows).

Architecture

Workflow [https://github.com/bojanz/state_machine/blob/8.x-1.x/src/Plugin/Workflow/WorkflowInterface.php] and WorkflowGroup [https://github.com/bojanz/state_machine/blob/8.x-1.x/src/Plugin/WorkflowGroup/WorkflowGroupInterface.php] are plugins defined in YAML, similar to
menu links.

Example: commerce_order.workflow_groups.yml:

order:
 label: Order
 entity_type: commerce_order

Groups can also override the default workflow class, for more advanced
use cases.

Example: commerce_order.workflows.yml:

order_default_validation:
 id: order_default_validation
 group: order
 label: 'Default, with validation'
 states:
 draft:
 label: Draft
 validation:
 label: Validation
 completed:
 label: Completed
 canceled:
 label: Canceled
 transitions:
 place:
 label: 'Place order'
 from: [draft]
 to: validation
 validate:
 label: 'Validate order'
 from: [validation]
 to: completed
 cancel:
 label: 'Cancel order'
 from: [draft, validation]
 to: canceled

Transitions can be further restricted by guards [https://github.com/bojanz/state_machine/blob/8.x-1.x/src/Guard/GuardInterface.php], which are
implemented as tagged services:

mymodule.fulfillment_guard:
 class: Drupal\mymodule\Guard\FulfillmentGuard
 tags:
 - { name: state_machine.guard, group: order }

The group argument allows the guard factory to only instantiate the
guards relevant

to a specific workflow group.

The current state is stored in a StateItem [https://github.com/bojanz/state_machine/blob/8.x-1.x/src/Plugin/Field/FieldType/StateItem.php] field.

A field setting specifies the used workflow, or a value callback that
allows the workflow to be resolved at runtime

(checkout workflow based on the used plugin, etc.).

A validator is provided that ensures that the specified state is valid
(exists in the workflow and is in the allowed

transitions).

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Libraries and dependencies

Inline Entity Form 8.x-2.x

Provides a widget for inline management (creation, modification,
removal) of referenced entities. Commerce uses it extensively for
product variations, line items, and (soon) tax rate amounts.

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Libraries and dependencies

Currency

See Also: Internationalization Commerce Story [https://drupalcommerce.org/blog/15916/commerce-2x-stories-internationalization] |
Internationalization Library [https://github.com/commerceguys/intl]

[image: Currency Landing Page]

Overview

Commerce without borders means we support every language and every
denomination of currency. This is a big undertaking because not only do
we need to support various currencies, we need to support their regional
formatting rules, what each currency is called in every other language,
and many other difficult problems.

Commerce 2’s currency support is built upon the commerceguys/intl [https://github.com/commerceguys/intl]
library which provides a list of currencies, currency formatting,
countries, and languages. This list in not something we cooked up on the
back of a napkin, the intl library uses the internationally-recognized
standard of CLDR [http://cldr.unicode.org/] data. We parse the CLDR definitions into our own
more compact YAML definitions and use them to re-implement intl’s
NumberFormatter and provide currency, country, language data.

Importing Defined Currencies

If you navigate to admin/commerce/config/currency and click on the
“Import” tab, you will see a simple dropdown that shows you all the
supported currencies (157 active currencies).

[image: Importing currency]

When imported, a configuration entity called “commerce_currency” is
created with all the relevant data from the CLDR definition. Once
imported, the configuration entity is unique to your installation, which
means you can make minor changes to formatting and not worry about an
update reverting your changes.

Also, thanks to the CLDR dataset, we import all the translations of the
currency you are importing for all the languages you have in your site.
A small, but very practical and helpful time saver.

Creating and Editing Currencies

[image: Editing a currency]

Once imported (or if you click “+ Add a new currency”) you can change
the name, the numeric code, the symbol and how many minor units we use
in calculations and display

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

Setting up stores

[image: Store landing page]

For Commerce 2, we have native support for stores. Stores are used for
invoicing, tax types, and any other settings necessary for understanding
orders. This has many applications and its important to understand what
use cases are supported out of the box and how that impacts checkout and
other order workflows.

Create a store

To create a store you will need to have at least one currency imported,
and then you can create a store.

Shortcut! - The getting started process can be quickly done
using Drupal Console command:

drupal commerce:create:store

[image: example workflow]

You are welcome to ignore this shortcut if you prefer the user
interface.

Import the currencies your store will use.

The most basic piece of information that defines your store is the
currency(s) you want to use. The vast majority of

Commerce stores will simply have one currency and one store. To set this
up, first you need to locate the currencies page at
admin/commerce/config/currencies

[image: Currency Landing Page]

Next, click the Import tab
(admin/commerce/config/currency/import). The reason currencies need
to be imported is because we don’t want to store all the world’s
currencies in your database if we don’t have to, so we make no
assumptions and let each store request specific access to specific
currencies. The dataset is coming from the intl library which
generates its dataset from an international and frequently updated
standards body.

[image: Currency Import Page]

Once you’ve imported one or more currencies, you can move on to creating
a store.

Create a store.

[image: Store page]

Next, we need to create a store. Every product requires one store.
Additional details will be shared about the power of

having stores baked into the core of Commerce, but for now, all you need
to do is define your store’s name, address, and select a few things
about taxes and billing.

[image: Store create]

Once you’ve got all those details filled out, click save and move on to
creating products! Woohoo!

Overview & Architecture

[image: Store Entity Diagram. Stores are M:M for products and M:1 for Orders.]

Orders will only ever have one store, and it is stored as an entity
attribute.

	Carts (which are Orders with additional functionality) can only
contain products from one store.

	You can use this architecture to limit which products can be put into
carts together, based on physical location or for billing\/taxes
purposes.

Products, by default, have an entity reference field that targets
stores and allows one or more stores to be selected.

Stores are fieldable content entities (not configuration entities)
that contain a lot of information about the physical location of the
merchant. By default stores collect the following:

	Name

	Email Address

	Default Currency

	Address (used for determining taxes)

	Supported billing countries

	Owner

	Default status (used to select a store when one isn’t given)

	Tax information

Use Cases

We optimize for the two use cases:

	One business that has one or more locations

or

	The marketplace model (where you have sellers)

For these use cases and possibly others, it is up to the developer to
fill in the gaps that are present in the order workflow. This is
different from Commerce 1.x in that we will support stores by default,
allowing for community contributions to extend the functionality instead
of trying to build store functionality from scratch.

1. One or more locations

This is the most common eCommerce situation where we have a single
person, company, or organization that is taking payments online.

2. Marketplace model

The marketplace model is where you have many sellers who are taking
payment for unique products.

Stores and Carts

A customer can have one or more Carts (which are a type of Order), if
they have chosen a product from different stores.

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

Products

Using product attributes - Before creating products, you need to
create some attributes that you will

use to differentiate your products. Read here to learn about how to
create, edit, and making some attributes optional.

Products & Variations - Finally, you can create products! Follow
the directions in this section on the

most common use cases.

Purchasable Entities - When it comes to product architectures,
there is no one true answer.

Furthermore, different clients might have different needs. That’s why
it’s important for Commerce 2.x to support any

number of product architectures.

	Setup product attributes
	Creating Attributes and their Values

	Adding fields to Attributes

	Editing Attributes

	Optional Attributes

	Make a product
	Managing Products and their Variations

	Product Fields

	Variation Fields

	Managing the display of the product

	Create a product type

	Purchasable Entities

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Products

Setup product attributes

[image: Product Attribute Entity Relationships]
Product Attribute Entity Relationships

Imagine you need to sell a DrupalCon t-shirt. This t-shirt comes in
different sizes and colors. Each combination of size and color has its
own SKU, so you know which color and size the customer has purchased and
you can track exactly how many of each combination you have in stock.

[image: Product Attribute Entity Relationships]
Product Attribute Entity Relationships

Color and size are product attributes. Blue and small are product
attribute values, belonging to the mentioned attributes. The combination
of attribute values (with a SKU and a price) is called a product
variation. These variations are grouped inside a product.

Creating Attributes and their Values

For our t-shirt we need two attributes: color and size. Let’s start by
creating the color attribute. Go to
admin/commerce/product-attributes and click the Add attribute link.

[image: Product Attribute Creation]
Product Attribute Creation

After you have created the color attribute, we need to define at least
one value. Normally we would simply say the color is “blue” or “red” but
sometimes you might need to further define the attribute using fields.
Adding fields is covered in detail later on in the documentation.

The product attribute values user interface allows creating and
re-ordering multiple values at the same time and a very powerful
translation capability:

[image: Product Attribute Value Creation]
Product Attribute Value Creation

Next, you will need to add the attribute to the product variation type.
You can find these at /admin/commerce/config/product-variation-types
and you just need to add/edit a product variation type that requires
your new attribute.

[image: Adding Product Attribute to Product Variation]
Adding Product Attribute to Product Variation

After you have added “Color” and the various colors your t-shirts are
available in, the next step is to add that “color” attribute to our
product. Store administrators can do this on the product variation type
form, the checkbox in the last step automatically created entity
referenced fields as needed:

[image: Example Product variation form]
Example Product variation form

Adding fields to Attributes

Product attributes are so much more than a word. Often times they
represent a differentiation between products that is useful to call out
visually for customers. The fieldable attribute value lets the
information architect decide what best describes this attribute. Like
any other fieldable entity, you can locate the list of attribute bundles
and click edit fields:

/admin/commerce/product-attributes

[image: Locating list of attributes]
Locating list of attributes

Add a field as you would expect. Most fields are supported and will
automatically show up when you go to add attribute values:

[image: Example of attribute with more than one attribute]
Example of attribute with more than one attribute

Editing Attributes

[image: How do you edit the attribute values?]
How do you edit the attribute values?

Editing the attribute values is pretty easy. Simply locate the attribute
type that has the values you want to edit:
/admin/commerce/product-attributes And click “edit” and you will be
taken to a screen to edit all the attributes of that type.

Optional Attributes

After creating attributes, the product variation type needs to know that
it uses the attribute. The product variations are at
/admin/commerce/config/product-variation-types and once you’ve
clicked on the attribute you want...

[image: Adding Product Attribute to Product Variation]
Adding Product Attribute to Product Variation

Fields are added to the variation type that can then be modified. By
default, all attribute fields are required. If your attribute is
optional (perhaps some of the drupalcon t-shirts only come in blue),
then you can locate the manage fields of your particular product
variation type and make the color attribute optional by following
these steps:

	Go to /admin/commerce/config/product-variation-types

	Click the drop down next to the variation type you want and click
“manage fields” [image: Click manage fields]

	Un-select the “required” checkbox to make the attribute optional.

[image: Un-select the required checkbox]
Un-select the required checkbox

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Products

Make a product

Every product has one or more variations. In the event that a product
has more than one variation, each variation is differentiated by some
aspect of the product, whether it’s the product’s color, size, fabric,
etc.

[image: Product Entity Relationships]
Product Entity Relationships

For example, you sell t-shirts (Product Type) and you have a new
shipment of a particular Drupalcon t-shirt (Product). This Drupalcon
t-shirt comes in different sizes and colors. Each combination of size
and color (Small Red, Large Blue) represents a physical version of the
t-shirt (Product Variation).

NOTE: In order to create your first product, you will need to
have a store and a currency already set up. If you don’t have this,
there’s a Getting Started section that
will walk you through the steps.

Managing Products and their Variations

By default, variations are only manageable from the parent product,
using Inline Entity Form. Variations do not have labels or titles.
Labels, by default, are dynamically constructed from the attribute
labels. To create or update a product variation, you must go to the
product screen and either choose an existing product or create a new
one.

You can simply go to admin/commerce/products and click “Add
Product.”

[image: Product select]
Product select

Once you have selected an existing product or added a new one, you will
be presented with a form that looks similar to the following. It will
have “product details” like title, description, and path. And a widget
for creating an unlimited number of variations that have prices, skus,
and any available attributes.

[image: Product edit screen]
Product edit screen

Deleting a product deletes its variations. Adding a variation to a
product automatically creates a backreference on the variation, accessed
via $variation->getProduct().

Product Fields

Products can have all kinds of fields. Often Commerce products will have
a very media-rich set of content that is used to describe and present
the product. These fields will remain the same and be available no
matter which product variation is selected on the product page. Perhaps
all of our t-shirt products have videos that show off Drupalers
sprinting while wearing each of the t-shirts. We will need a field that
accepts video urls and can render them for the page.

Adding a Product Field

Product types, for example, our tshirt product type, can be found at
admin/commerce/config/product-types (under the configuration menu
option) and clicking on the arrow next to the Edit button will reveal
all the management tasks for product variation types. Click on the
Manage Fields option.

Once on the manage fields screen for our product type, you can add as
many types of fields as you like by clicking the + Add Field button.

Variation Fields

Products variations can have attributes and other kinds of fields. Going
back to our t-shirt analogy from above, if our t-shirts come in sizes
and colors, perhaps the product variation should have an image field so
you can upload a picture of a small red shirt. These kinds of
non-attribute fields are loaded dynamically when variations are chosen.

Adding a Product Variation Field

Product variation types can be found at
admin/commerce/config/product-variation-types and clicking on the
arrow next to the Edit button (1) will reveal all the management tasks
for product variation types. Click on the Manage Fields option (2).

[image: Manage Fields]
Manage Fields

Once there, you can add as many types of fields as you like. Note that
attributes that you have added in the past will show up here as entity
reference fields. For our example, we will be adding an image field.

[image: Add a field]
Add a field

Choose the kind of field you would like to add and setup any of the
settings as you need.

[image: Add an image field]
Add an image field

Finally, you should have your new field showing up in your product add
form located at product/add

[image: New Field Available]
New Field Available

Managing the display of the product

Once the tshirt has important content fields and the t-shirt variation
fields have differentiating fields figured out, the product page may not
look as clean the designer envisioned. It’s likely that there are a
number of labels for fields (like price, product image, SKU, etc) that
you would rather not display. There are two different Manage Display
locations you will need to manage in order to get the desired output on
your product page.

NOTE: It’s recommended that if you are using display modes to
effect the product pages, that you use the “show weights” check box.
The reason for this is that when a product is rendered, all fields,
from the variation to the actual product get sorted based on weight.
So if you just use the drag and drop methods, you will not get the
granular control you might expect.

To fully control the display of all the fields it’s helpful to think of
the fields as being a part of one big group.

[image: Manage Display field weight graphic]
Manage Display field weight graphic

Above, our T-shirt Product fields (body, variations) are rendered with
our T-shirt Product Variation fields (Price, Image). In order to achieve
this order, the field weights must be manually set to go in order, as if
they were in a large group.

Product field weight can be managed here:
admin/commerce/config/product-types

Product Variation field weight can be managed here:
admin/commerce/config/product-variation-types

FANCY FEATURE ALERT: You may have noticed that product variation
fields can be displayed INDEPENDENTLY of the variations field. Lots
of work has gone in to making sure these fields get replaced easily
and consistently when a new product is selected on the add-to-cart
form. This was developed specifically to allow fine-tuned control of
how a store would want to present different pieces of information.
Perhaps you really need the picture of the selected t-shirt to
appear before the body field of the product. Just change the weight
:)

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Products

Create a product type

@todo

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Products

Purchasable Entities

When it comes to product architectures, there is no one true answer.
Furthermore, different clients might have different needs. That’s why
it’s important for Commerce 2.x to support any number of product
architectures.

The ProductVariation entity class implements the
PurchasableEntityInterface:

... needs screenshot of interface code ...

Any content entity type that implements this interface can be purchased.
The order module doesn’t depend on the product module, the product
module just provides the default (and most common) product architecture.
A product bundle module will probably want to define its own product
architecture, etc.

Line items have a purchased_entity reference field. The target_type of
that reference field is different for each line item type.

... needs screenshot of line item type edit page ...

Here the line item type points to the product variation entity type,
indicating that the “Product variation” line item type is used to
purchase product variations.

Early in the Commerce 2.x cycle we explored the idea of hierarchical
products, but after initial exploration found out that the idea required
several months of extra effort (having to rewrite the Tree module,
reinvent an IEF like widget, UX and performance considerations). We
removed it from the roadmap with a heavy heart, but now that Commerce
2.x supports custom product architectures, we can easily explore the
idea in contrib at a later date.

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

Catalog and product pages

@todo * Setup a catalog using Search API + Views * Customize add to
cart form using order item form display * Templating a product page

	Create a product catalog

	Customize the add to cart form

	Theme a product page

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Catalog and product pages

Create a product catalog

@todo install search_api @todo create a server/index @todo create view

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Catalog and product pages

Customize the add to cart form

@todo

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Catalog and product pages

Theme a product page

@todo

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

Product merchandising

@todo discuss features

Create a promotion

	Create a promotion

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Product merchandising

Create a promotion

@todo

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

Orders

Orders contain a list of order items and customer information. Orders
have states that are controlled through State Machine.

Orders and order items - Orders contain order
items, which represent purchased items.

Understanding order types - You can have different
order types. Order types have their own settings when it comes to cart,
checkout, and its processing.

Order Processing - Allows you to process an
order, when the system recalculates order item prices and availability.

	Order Types

	Order Items

Advanced topics

	Order Processing

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Orders

Order Types

Order types allow you to control how an order interacts with the other
components of Drupal Commerce, and the how the order moves through the
system.

[image: Order workflow settings]
Order workflow settings

Orders have a specific workflow that defines what states and transitions
the order can move in. Each order type can have its own workflow.

This means your default order type, which has shippable products, can
use the Fulfillment workflow. Meanwhile, your digital goods order type
can have the more simplistic Default workflow.

[image: Order refresh settings]
Order refresh settings

Each order type can control its refresh settings to control how often
order draft’s are processed. This controls the order refresh
process.

[image: Order type cart settings]
Order type cart settings

The cart module allows each order type to control the default view used
when rendering carts in the cart block or cart form.

[image: Order type checkout settings]
Order type checkout settings

You can use a different checkout flow for each order type. In this case
you would have a physical order use a multiple step checkout flow that
requires shipping information. A digital order could have a more
simplified checkout flow that has one step (i.e.: payment.)

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Orders

Order Items

An order item represents a purchasable entity inside of an order. It
contains a reference to the purchasable entity, a quantity, a unit price
and a total price.

Note: In Drupal Commerce 1.x, these were called line items.

The order total is based off the unit price of order items multiplied by
their quantity and the sum of all order item totals.

Order items have their unit price calculated during the order refresh
process. This synchronizes the price with the
current purchasable entity’s price while the order is still in a draft
state.

The add to cart form is actually the create form for an order item
entity. It is a specific form display. Selecting attributes on the add
to cart form identifies the proper reference purchased entity to
reference.

[image: Order item add to cart form]
Order item add to cart form

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Orders

Order Processing

Order processing is part of the order refresh process. This is run when
on draft orders to ensure that it has up to date adjustments and that
its order items are up to date.

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

Configuring your checkout

	Allowing guest checkout, or account login

	Customizing your checkout

	Creating a checkout pane plugin

	Creating a checkout flow plugin

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Configuring your checkout

Allowing guest checkout, or account login

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Configuring your checkout

Customizing your checkout

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Configuring your checkout

Creating a checkout pane plugin

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Configuring your checkout

Creating a checkout flow plugin

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

Setting up payments

@todo discuss onsite, offsite ability @todo call out major payment
gateways

	Install a payment gateway

	Managing order payments

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Setting up payments

Install a payment gateway

@todo how to create a payment gateway @todo maybe two examples: like US
and CA

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Setting up payments

Managing order payments

@todo void, capture, refund

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

Code Recipes

A list of code samples/examples outlining how to create and load
commerce entities entirely in code.

These recipes are all designed to work off of each other, so try it out
- you can run all the code in a single shot from top to bottom.

Stores - Stores and types.

Variations - Product variations and types.

Attributes - Product attributes and values.

Products - Products and types.

Orders - Orders, order items, and their types.

	Store recipes
	Creating a store type

	Loading a store type

	Creating a store

	Loading a store

	Product Variations and types
	Creating variation types

	Loading a variation type

	Creating variations

	Loading a variation

	Product Attributes and Values
	Creating attributes

	Loading an attribute

	Creating values for an attribute

	Loading an attribute value

	Assigning attributes to a variation

	Products and types
	Creating product types

	Loading a product type

	Creating products

	Loading a product

	Orders and order items
	Creating order types

	Loading an order type

	Creating order item types

	Loading an order item type

	Creating order items

	Loading an order item

	Creating orders

	Loading an order

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Code Recipes

Store recipes

Everything starts with a store. Products can belong to many stores, and
orders belong to a single store.

Creating a store type

/**
 * id [String]
 * The primary key for this store type.
 *
 * label [String]
 * The label for this store type.
 *
 * description [String]
 * The description for this store type.
 */
$store_type = \Drupal\commerce_store\Entity\StoreType::create([
 'id' => 'custom_store_type',
 'label' => 'My custom store type',
 'description' => 'This is my first custom store type!',
]);
$store_type->save();

Loading a store type

// Loading is based off of the primary key [String] that was defined when creating it.
$store_type = \Drupal\commerce_store\Entity\StoreType::load('custom_store_type');

Creating a store

/**
 * type [String] - [DEFAULT = 'online']
 * Foreign key for the store type to yse.
 *
 * uid [Integer]
 * The user id that created the store.
 *
 * name [String]
 * The store's name.
 *
 * mail [String]
 * The store's email address.
 *
 * address [\Drupal\address\AddressInterface]
 * The store's address.
 *
 * default_currency [String]
 * The currency the store uses.
 *
 * billing_countries [Array(String)]
 * Array of country codes selected for the store.
 */

// The store's address.
$address = [
 'country_code' => 'US',
 'address_line1' => '123 Street Drive',
 'locality' => 'Beverly Hills',
 'administrative_area' => 'CA',
 'postal_code' => '90210',
];

// The currency code.
$currency = 'USD';

// If needed, this will import the currency.
$currency_importer = \Drupal::service('commerce_price.currency_importer');
$currency_importer->import($currency);

$store = \Drupal\commerce_store\Entity\Store::create([
 'type' => 'custom_store_type',
 'uid' => 1,
 'name' => 'My Store',
 'mail' => 'admin@example.com',
 'address' => $address,
 'default_currency' => $currency,
 'billing_countries' => ['US'],
]);
$store->save();

// If needed, this sets the store as the default store.
$store_storage = \Drupal::service('entity_type.manager')->getStorage('commerce_store');
$store_storage->markAsDefault($store);

Loading a store

// Loading is based off of the primary key [Integer]
// 1 would be the first one saved, 2 the next, etc.
$store = \Drupal\commerce_store\Entity\Store::load(1);

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Code Recipes

Product Variations and types

Product variations are the purchasable parts of products, thus products
need at least one variation.

Creating variation types

/**
 * id [String]
 * The primary key for this variation type.
 *
 * label [String]
 * The label for this variation type.
 *
 * status [Bool] - [OPTIONAL, DEFAULTS TO TRUE]
 * [AVAILABLE = FALSE, TRUE]
 * Whether or not it's enabled or disabled. 1 for enabled.
 *
 * orderItemType [String] - [DEFAULT = default]
 * Foreign key for the order item type to use.
 *
 * generateTitle [Bool] - [DEFAULT = TRUE]
 * Whether or not it should generate the title based off of product label and attributes.
 */
$variation_type = \Drupal\commerce_product\Entity\ProductVariationType::create([
 'id' => 'my_custom_variation_type',
 'label' => 'Variation Type With Color',
 'status' => TRUE,
 'orderItemType' => 'default',
 'generateTitle' => TRUE,
]);
$variation_type->save();

Loading a variation type

// Loading is based off of the primary key [String] that was defined when creating it.
$variation_type = \Drupal\commerce_product\Entity\ProductVariationType::load('my_custom_variation_type');

Creating variations

/**
 * type [String] - [DEFAULT = default]
 * Foreign key of the variation type to use.
 *
 * sku [String]
 * The sku for this variation.
 *
 * status [Bool] - [OPTIONAL, DEFAULTS TO TRUE]
 * [AVAILABLE = FALSE, TRUE]
 * Whether or not it's enabled or disabled. 1 for enabled.
 *
 * price [\Drupal\commerce_price\Price] - [OPTIONAL]
 * The price for this variation.
 *
 * title [String] - [POTENTIALLY NOT REQUIRED]
 * The title for the product variation.
 * If the variation type is set to generate a title, this is not used.
 * Otherwise, a title must be given.
 */
$variation = \Drupal\commerce_product\Entity\ProductVariation::create([
 'type' => 'my_custom_variation_type',
 'sku' => 'test-product-01',
 'status' => TRUE,
 'price' => new \Drupal\commerce_price\Price('24.99', 'USD'),
]);
$variation->save();

Loading a variation

// Loading is based off of the primary key [Integer]
// 1 would be the first one saved, 2 the next, etc.
$variation = \Drupal\commerce_product\Entity\ProductVariation::load(1);

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Code Recipes

Product Attributes and Values

Product variation types can have certain attributes (ex. color) and
those attributes have values (ex red, blue). In this example, we will
create two attributes (color and size) and add them to the variation
type we made previously.

Creating attributes

/**
 * id [String]
 * The primary key for this attribute.
 *
 * label [String]
 * The label for this attribute.
 */
$color_attribute = \Drupal\commerce_product\Entity\ProductAttribute::create([
 'id' => 'color',
 'label' => 'Color',
]);
$color_attribute->save();

$size_attribute = \Drupal\commerce_product\Entity\ProductAttribute::create([
 'id' => 'size',
 'label' => 'Size',
]);
$size_attribute->save();

// We load a service that adds the attributes to the variation type we made previously.
$attribute_field_manager = \Drupal::service('commerce_product.attribute_field_manager');

$attribute_field_manager->createField($color_attribute, 'my_custom_variation_type');
$attribute_field_manager->createField($size_attribute, 'my_custom_variation_type');

Loading an attribute

// Loading is based off of the primary key [String] that was defined when creating it.
$size_attribute = \Drupal\commerce_product\Entity\ProductAttribute::load('size');

Creating values for an attribute

/**
 * attribute [String]
 * Foreign key of the attribute we want.
 *
 * name [String]
 * The name of this value.
 */
$red = \Drupal\commerce_product\Entity\ProductAttributeValue::create([
 'attribute' => 'color',
 'name' => 'Red',
]);
$red->save();

$blue = \Drupal\commerce_product\Entity\ProductAttributeValue::create([
 'attribute' => 'color',
 'name' => 'Blue',
]);
$blue->save();

$medium = \Drupal\commerce_product\Entity\ProductAttributeValue::create([
 'attribute' => 'size',
 'name' => 'Medium',
]);
$medium->save();

$large = \Drupal\commerce_product\Entity\ProductAttributeValue::create([
 'attribute' => 'size',
 'name' => 'Large',
]);
$large->save();

Loading an attribute value

// Loading is based off of the primary key [Integer]
// 1 would be the first one saved, 2 the next, etc.
$red = \Drupal\commerce_product\Entity\ProductAttributeValue::load(1);

Assigning attributes to a variation

Let’s say we want our hypothetical product to have two variations. One
will be the color red and size medium, and the other will be the color
blue and size large. // [IMPORTANT] - If a Product Variation Type has
fields for attributes (as we added above), then variations of that type
MUST have those attributes.

/**
 * attribute_<ATTRIBUTE_ID> [\Drupal\commerce_product\Entity\ProductAttributeValueInterface]
 * The attribute value entity to use for the attribute type.
 */
$variation_red_medium = \Drupal\commerce_product\Entity\ProductVariation::create([
 'type' => 'my_custom_variation_type',
 'sku' => 'product-red-medium',
 'price' => new \Drupal\commerce_price\Price('10.00', 'USD'),
 'attribute_color' => $red,
 'attribute_size' => $medium,
]);
$variation_red_medium->save();

$variation_blue_large = \Drupal\commerce_product\Entity\ProductVariation::create([
 'type' => 'my_custom_variation_type',
 'sku' => 'product-blue-large',
 'price' => new \Drupal\commerce_price\Price('10.00', 'USD'),
 'attribute_color' => $blue,
 'attribute_size' => $large,
]);
$variation_blue_large->save();

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Code Recipes

Products and types

Creating product types

/**
 * id [String]
 * Primary key for this product type.
 *
 * label [String]
 * Label for this product type
 *
 * status [Bool] - [OPTIONAL, DEFAULTS TO TRUE]
 * [AVAILABLE = FALSE, TRUE]
 * Whether or not it's enabled or disabled. 1 for enabled.
 *
 * description [String]
 * Description for this product.
 *
 * variationType [String] - [DEFAULT = default]
 * Foreign key for the variation type used.
 *
 * injectVariationFields [Bool] - [OPTIONAL, DEFAULTS TO TRUE]
 * Whether or not to inject the variation fields.
 */

// Create the product type.
$product_type = \Drupal\commerce_product\Entity\ProductType::create([
 'id' => 'my_custom_product_type',
 'label' => "My custom product type",
 'description' => '',
 'variationType' => 'my_custom_variation_type',
 'injectVariationFields' => TRUE,
]);
$product_type->save();

// These three functions must be called to add the appropriate fields to the type
commerce_product_add_variations_field($product_type);
commerce_product_add_stores_field($product_type);
commerce_product_add_body_field($product_type);

Loading a product type

// Loading is based off of the primary key [String] that was defined when creating it.
$product_type = \Drupal\commerce_product\Entity\ProductType::load('my_custom_product_type');

Creating products

/**
 * uid [Integer]
 * Foreign key of the user that created the product.
 *
 * type [String] - [DEFAULT = default]
 * Foreign key of the product type being used.
 *
 * title [String]
 * The product title.
 *
 * stores [Array(\Drupal\commerce_store\Entity\StoreInterface)]
 * Array of stores this product belongs to.
 *
 * variations [Array(\Drupal\commerce_product\Entity\ProductVariationInterface)]
 * Array of variations that belong to this product.
 */

// The variations that belong to this product.
$variations = [
 $variation_blue_large,
];

$product = \Drupal\commerce_product\Entity\Product::create([
 'uid' => 1,
 'type' => 'my_custom_product_type',
 'title' => 'My Custom Product',
 'stores' => [$store],
 'variations' => $variations,
]);
$product->save();

// You can also add a variation to a product using the addVariation() method.
$product->addVariation($variation_red_medium);
$product->save();

Loading a product

// Loading is based off of the primary key [Integer]
// 1 would be the first one saved, 2 the next, etc.
$product = \Drupal\commerce_product\Entity\Product::load(1);

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Drupal Commerce 0.0.1 documentation

 	Commerce 2.x

 	Code Recipes

Orders and order items

Creating order types

/**
 * id [String]
 * The primary key for this order type.
 *
 * label [String]
 * The label for this order type.
 *
 * status [Bool] - [OPTIONAL, DEFAULTS TO TRUE]
 * [AVAILABLE = FALSE, TRUE]
 * Whether or not it's enabled or disabled. 1 for enabled.
 *
 * workflow [String] - [DEFAULT = order_default]
 * [AVAILABLE = order_default, order_default_validation, order_fulfillment, order_fulfillment_validation]
 * The workflow id to use as the workflow.
 *
 * refresh_mode [String] - [DEFAULT = always]
 * [AVAILABLE = always, customer]
 * The refresh mode to use as the refresh mode.
 *
 * refresh_frequency [Integer] - [DEFAULT = 30]
 * The refresh freuency in seconds.
 */
$order_type = \Drupal\commerce_order\Entity\OrderType::create([
 'status' => TRUE,
 'id' => 'custom_order_type',
 'label' => 'My custom order type',
 'workflow' => 'order_default',
 'refresh_mode' => 'always',
 'refresh_frequency' => 30,
]);
$order_type->save();

// This must be called after saving.
commerce_order_add_order_items_field($order_type);

Loading an order type

// Loading is based off of the primary key [String] that was defined when creating it.
$order_type = \Drupal\commerce_order\Entity\OrderType::load('custom_order_type');

Creating order item types

/**
 * id [String]
 * The primary key for this order item type.
 *
 * label [String]
 * The label for this order item type.
 *
 * status [Bool] - [OPTIONAL, DEFAULTS TO TRUE]
 * [AVAILABLE = FALSE, TRUE]
 * Whether or not it's enabled or disabled. 1 for enabled.
 *
 * purchasableEntityType [String] - [DEFAULT = commerce_product_variation]
 * Foreign key to use for the purchasable entity type.
 *
 * orderType [String] - [DEFAULT = default]
 * Foreign key to use for the order type.
 */
$order_item_type = \Drupal\commerce_order\Entity\OrderItemType::create([
 'id' => 'custom_order_item_type',
 'label' => 'My custom order item type',
 'status' => TRUE,
 'purchasableEntityType' => 'commerce_product_variation',
 'orderType' => 'custom_order_type',
]);
$order_item_type->save();

Loading an order item type

// Loading is based off of the primary key [String] that was defined when creating it.
$order_item_type = \Drupal\commerce_order\Entity\OrderItemType::load('custom_order_item_type');

Creating order items

/**
 * type [String] - [DEFAULT = product_variation]
 * Foreign key to use for the order item type.
 *
 * purchased_entity [Integer | \Drupal\commerce\PurchasableEntityInterface]
 * Foreign key to use for the purchased entity. Either the id, or object implementing the interface.
 *
 * quantity [Integer]
 * How many of the purchased items.
 *
 * unit_price [\Drupal\commerce_price\Price]
 * The price per each item, not the total.
 *
 * adjustments [OPTIONAL] - [Array(Drupal\commerce_order\Adjustment)]
 * Array of any price adjustments.
 */
$order_item = \Drupal\commerce_order\Entity\OrderItem::create([
 'type' => 'custom_order_item_type',
 'purchased_entity' => $variation_red_medium,
 'quantity' => 2,
 'unit_price' => $variation_red_medium->getPrice(),
]);
$order_item->save();

// You can set the quantity with setQuantity.
$order_item->setQuantity('1');
$order_item->save();

// You can also set the price with setUnitPrice.
$unit_price = new \Drupal\commerce_price\Price('9.99', 'USD');
$order_item->setUnitPrice($unit_price);
$order_item->save();

Loading an order item

// Loading is based off of the primary key [Integer]
// 1 would be the first one saved, 2 the next, etc.
$order_item = \Drupal\commerce_order\Entity\OrderItem::load(1);

Creating orders

/**
 * type [String] - [DEFAULT = default]
 * Foreign key to use for the order type.
 *
 * state [String] - [DEFAULT = draft]
 * [AVAILABLE = draft, completed, canceled]
 * The state the order is in.
 *
 * mail [String]
 * The email address the order belongs to.
 *
 * uid [Integer]
 * The user id the order belongs to.
 *
 * ip_address [String]
 * The ip address the order was created from.
 *
 * order_number [Integer | String] - [OPTIONAL, DEFAULTS TO id]
 * The order number for the order. If left out, defaults to the order's id.
 *
 * billing_profile [\Drupal\profile\Entity\ProfileInterface]
 * The billing profile for the order.
 *
 * store_id [Integer]
 * The foreign key for the store that this order belongs to.
 *
 * order_items [Array(\Drupal\commerce_order\Entity\OrderItemInterface]
 * Array of all the order items that belong to this order.
 *
 * adjustments [OPTIONAL] - [Array(Drupal\commerce_order\Adjustment)]
 * Array of any price adjustments.
 *
 * placed [Timestamp]
 * The time the order was placed.
 *
 * completed [OPTIONAL] - [Timestamp]
 * The time the order was completed.
 */

// Create the billing profile.
$profile = \Drupal\profile\Entity\Profile::create([
 'type' => 'customer',
 'uid' => 1,
]);
$profile->save();

// Next, we create the order.
$order = \Drupal\commerce_order\Entity\Order::create([
 'type' => 'custom_order_type',
 'state' => 'draft',
 'mail' => 'user@example.com',
 'uid' => 1,
 'ip_address' => '127.0.0.1',
 'order_number' => '6',
 'billing_profile' => $profile,
 'store_id' => $store->id(),
 'order_items' => [$order_item],
 'placed' => time(),
]);
$order->save();

Loading an order

// Loading is based off of the primary key [Integer]
// 1 would be the first one saved, 2 the next, etc.
$order = \Drupal\commerce_order\Entity\Order::load(1);

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Drupal Commerce 0.0.1 documentation

Index

 Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_images/address-configure.png
I T — 2 admin

I Content]
B Commerce ° Maintenance mode
= Take the site offline for REGIONAL AND LANGUAGE
maintenance or bring it back
Structure ;
& ° online. Regional settings
4 Appearance 2 Settings for the sit’s default
Configuration time zone and country.
Pye Extend / synchronization
Import and export your Date and time formats
9 Configuration (] configuration, Configure display format
strings for date and time
People v
System v SEARCH AND METADATA ‘Address formats

Administer the address formats.

Content authoring v eenpaces for each country.

_images/address-brazil.png
v ADDRESS

Country *

[Brazil

Street address *

Neighborhood

_images/store-landing-page2.png
B content
B commeree
Orders.

Product attributes

Products

NAME (OPERATIONS

No stores available.

_images/product-add-fullpage.png
Home » Add product Product

Last saved: Not saved yet

Author: admin

¥ URL PATH SETTINGS

URL alias

‘The alternative URL for this product. Use a relative
path. For example, */my-product”.

¥ AUTHORING INFORMATION

Author
admin (1)

Created
06/10/2016 03:28:45 PM
Text format | Basic HTML About text formats

sKu*

‘The unique, machine-readable identifier for a variation.

Price

Color *

- Select a value -

Active

Create variation

Save and publish

_images/product-add.png
B content
B Commerce
Orders.
Product attributes.
Products
Stores
Configuration
h stcure

& hopearance

© 0

Products 7

Home » Administration » Commerce

TITLE STATUS UPDATED

ble.

OPERATIONS

_images/product_variation_field.png
Product variation types 7¢

Home » Administration » Commerce » Configuration

+Add product variation type

PRODUCT VARIATION TYPE MACHINE NAME OPERATIONS

Default default

Manage fields

Manage form display
Manage display

Delete

_images/store-landing-page.png
Content

2 Commerce Stores 77

Orders

Products

Stores TYPE EMAIL CURRENCY OPERATIONS

Configuration Cool NewStore default 2@b.c US Dollar Edic

¢h Stucure

_images/attribute_create_03.png
Manage fields Manage form display Manage display

Home » Administration » Commerce » Product attributes

Name *

[color @ | Machine name: coor

Element type

Controls how the attribute is displayed on the add to cart form.

(7 Enable attribute value translation

[Red

+

Name *
[Black
Hex Value

\
Add value Reset to alphabetical

+

_images/attribute_create_02.png
Add product attribute 77

Home » Administration » Commerce » Product attributes

Name *

Color

Element type

Select list v

Controls how the attribute is displayed on the add to cart form.

() Enable attribute value translation

San

Machine name: color [Edit]

_images/attribute_create_04.png
Edit Default 7'

‘ Edit ‘ Manage fields Manage form display Manage display

Home » Administration » Commerce » Configuration » Product variation types

Label *

Default Machine name: default

Generate variation titles based on attribute values.

Line item type *

You need to select the appropriate
attribute(s) on the product
variation type edit screen.

_images/currency-landingpage.png
O Backtosite | = Manag
B Content
Commerce
Orders
Products
tores
Configuration
Cartsetings
Currencies
Line item types
Order types

Product types

o

K shortcuts

Currencies 77

uist Import

2 admin

Home » Administration » Commerce » Configuration

NAME

Bermudan Dollar

British Pound

Euro

US Dollar

CURRENCY CODE

8MD

=3

EUR

usp

STATUS

Enabled

Enabled

Enabled

Enabled

OPERATIONS

Edic | -

Edic | -

Edic | -

Edic | -

_images/product_entity_relationships.png
Red Drupalcon T-shirt Drupalcon T-shirt T-shirt Products T-shirt Product Variations

Product Variation Product Product Type Product
Variation Type
Price Title ID D
Sku Body Label Label

Status Store(s) Description Line item type

Variation Type Variation(s) Variation Type

Attribute(s) Path
Custom Fields Product Type

Custom Fields

_images/order-types-checkout.png
¥ CHECKOUT SETTINGS

Checkout flow *
Default v

_images/tshirt_drupalcon.png

_images/store-add.png
Add store ¢

Home » Add store

Name *
[o]

Email ¥

Store email notifications are sent from this address.

Default currency *

¥ ADDRESS

Country *
[United States

Street address *

city* state * Zip code *

[| [=Select -) |

Supported billing countries
- All countries ~ 0
Afghanistan
Aland Islands
Albania
Algeria

Owner
admin (1) ()

7 Default
¥ TAX SETTINGS

) Prices are entered with taxes included.

Tax registrations
- None - 0
Afghanistan
Aland Islands
Albania

_images/order-item-add-to-cart-form.png
Edit Manage fields Manage form display Manage display

Default Add to cart

Home » Administration » Commerce » Configuration » Order item types » Edit Product variation » Manage form display

Show row weights

FIELD WIDGET
% Purchased entity | Product variation attributes ¥ |
Disabled
4 Created ~ Hi = v
> Unit price H)
Number field
4 Quantity v - Hidden -

Save

_images/order-types-cart.png
¥ SHOPPING CART SETTINGS

Shopping cart form view
Cart form v

Shopping cart block view
Cart block ¥

_images/address-landingpage.png
Home » Ads i n » Regional and language

+Add a n

COUNTRY.

Afghanistan

Albania

Aigeria

_images/currency-import.png
Import a currency 77

| st [impon

Home » Administration » Commerce » Configuration » Currencies

Currency code *

o - Select -
‘Afghan Afghani
Albanian Lek
Algerian Dinar
Angolan Kwanza

Argentine Peso
Armenian Dram
Aruban Florin
Australian Dollar
Azerbaljani Manat
Bahamian Dollar

_images/address-configureformat.png
Home » Adminsraion » Coniguraion » Rgiona and lnguage » Addres ormats

< Address e 1
 Address e 2

©Organizaton

Recient

Uppercase ields

At res

Loty

- Dependent ocay.

Croscode.

©Sorting code.

 Address e 1

© Address e 2

Orgunizaton

ohecpent

Uspercased on envelopes to aciate auromtic post handing
Posta code patern

A

Reguiar expressionused 1o val daie postal codes.
Postalcode praix

Added o posal codes when formatingan adressfo nermational mlng.
Posalcode type

_images/currency-landing-page.png
B Content
B Commerce
Orders.
Product attributes
Products
Stores
Configuration
Checkout flows

Currencies

© 0

Currencies 77

‘ List ‘ Import

Home » Administration » Commerce » Configuration

+Add a new currency
NAME CURRENCY CODE

There is no Currency yet.

OPERATIONS

_images/product_variation_manage_fields.gif
OPERATIONS

Edit |

_images/product_display_visual.png
Drupalcon T-shirt

Viow || 6t

“Thisis some body text for the Product. Imagine ll the
ool dtails you ean share about thread-count, -shirt:
<ponsorship opportunitie, and interesting iscounts, ke
the fact thatif you buy 200 drupaleon shirs,we will end
yousfree box of endy straws. That'sright, fre.

1000

‘Manage Display"

Field Weights
Product Fields Product Variation
Fields
Body
Price
Image

Variations

_images/profile2-landing-page.png
Profile types ¢

Pre Profile types

Home » Administration » Configuration » People » Profiles

PROFILE TYPE REGISTRATION ALLOW MULTIPLE PROFILES OPERATIONS

(_ Manage fields

_images/zones-navigate.png
2 admin
Coment W) Commerce ch Stucuwre | 4% Appearance Fe Exend N\, Confiouration Jp People ol Repors @ Help

= manage k Shonc

Take the S ofine fo malnienance o g W Back onin.
REGIONAL AND LANGUAGE
Configuration synchronization
Importand export your configuration. 1 .
Setings fo th se’s defaul time zone and courtry.

SEARCH AND METADATA Date and time formats
Confiqure display format strings fordate and tme.
Search pages.

Contiguresearch pages andserch ndeiog apins.) p—
Administe the address formats for each country.

URL aliases

Add custom URLS to existng pths. Jones

Administe zones

_images/attribute_edit_01.png
test product

View || Edit

test product - Red
shirt-red

How do you edit
the attribute
values?

Add to cart

_images/currency-edit.png
Home » Administration » Commerce » Configuration » Currencies

Name *
British Pound

Currency code *

GBP.
Numeric code *
826

Symbol *
£

Fraction digits *
2
‘The number of digits after the decimal sign.

_images/attribute_create_05.png
SKu*

[ved-tshirt

The unique, machine-readable identifier for a variation.

Color

Active

Save and publish ~ ~

_images/store-entity-diagram.png
Order

M1

Store

M:M

Product

Store_id

Store | Entity Atribute

Entity Reference Field

_images/order-types-refresh.png
v ORDER REFRESH

These settings let you control how draft orders are refreshed, the process during which
order item prices are recalculated.

Order refresh mode
© Refresh a draft order when it is loaded regardless of who it belongs to.
) Only refresh a draft order when it is loaded if it belongs to the current user.

Order refresh frequency *
30 seconds

Draft orders will only be refreshed if more than the specified number of seconds have passed
since they were last refreshed.

_images/drupal-commerce-create-store.gif
$n

_images/product_variation_manage_field.png
Manage fields 7+

Edit Manage fields ‘ Manage form display Manage display

Home » Administration » Commerce » Configuration » Product variation types » Edit Default

+Add field

LABEL MACHINE NAME FIELD TYPE OPERATIONS

Color attribute_color Entity reference Ed)

‘

_images/order-types-workflow.png
Label *

Default

Label for the order type.

Workflow

Default

Used by all orders of this type.

Machine name: default

_images/attribute_optional.png
Color settings for Default 7'

| e |

‘ Field settings

Home » Administration » Commerce » Configuration » Product variation types » Edit Default » Manage fields

Label *

Color

Help text

Remove the required check to
make the attribute optional

Instructions to present to the user below this Sef7on the editing form.
Allowed HTML tags: <a> <bigagg@®le> <i> <ins> <pre> <g> <small> <sub> <s
This field supports token:

_images/product_variation_add_product_image.png
inistration » Commerce » Configuration » Product variation types » Edit Default » Manage fields

Label *

Product Image | Machine name: field_product image [ec]

Save and continue

_images/attribute_create_01.png
Product attributes 7¢
B Commerce ®
Home » Administration » Commerce
Orders
Product attributes +Add product attribute
Products ATTRIBUTE NAME OPERATIONS
Stores Color Edit -
M: field.
Configuration v lanage fields
Manage form display
¢h Structure [V} Manage display
Delete
43 Appearance

_images/attribute_entity_relationships.png
Color Red

Product
Attribute Value

id id
Label _|_1-|— Attribute

Label
Weight
Custom Fields

Product Attribute

Red Drupalcon T-shirt

Product Variation

Price
Sku
Status
Attribute(s)
Custom Fields

Drupalcon T-shirt

Product

Title
Body
Store(s)
Variation(s)
Path
Custom Fields

_images/product_variation_new_field_available.png
SKu*

‘The unique, machine-readable identifier for a variation.

usD

Color *
- Select a value - v

Active

Product Image
Ghooso File | No file chosen

S
2
El
<

8 M8 limit.
Allowed types: png gif jpg jpeg.

Create variation

Save and publish ~

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

search.html

 Navigation

 		
 index

 		Drupal Commerce 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2017, Commerce Guys.
 Created using Sphinx 1.3.5.

_static/up.png

