

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	driver2200087 0.6 documentation

Welcome to driver2200087’s documentation!

driver2200087

This is a Python Package to interface with Radio Shack’s 2200087 Multimeter.

The 2200087 is an inexpensive DMM which supports logging and graphing data on
a computer, but the supplied code only supports Windows. This is a python package
to allow for connecting to the multimeter over USB on Linux or Mac OSX. Due to
radioshack not supplying any serial specifications, the protocol was reverse
engineered by David Dworken from simply observing the output of the DMM.

The serialDecoder module and the serial protocol documentation is essentially a
slightly tweaked version of the script written and maintained by David Dworken,
available at https://github.com/ddworken/2200087-Serial-Protocol.git

This package includes a version of the serialDecoder module, slightly refactored
to allow it to be imported into other python scripts. It also includes a runner
module which contains a Twisted protocol, wrapped by Crochet. This module should
be relatively easier to include into other python scripts and applications.

Installation

This package has been tested only with python 2.7.

This package can be installed from pypi using pip:

$ pip install driver2200087

Or using easy_install (python 2.7 only):

$ easy_install driver2200087

Usage

Standalone usage is listed in the documentation [http://driver2200087.readthedocs.org/en/latest/basic.html#installation-and-usage],
and should be fairly straightforward to follow.

The serialDecoder module can also be imported and used from within a python script,
and the documentation [http://driver2200087.readthedocs.org/en/latest/driver2200087.html#module-driver2200087.serialDecoder]
can help you use it in that manner.

The recommended way for using the package, though, is through the runner module which
it provides. The simpler form of use is to get the latest available value whenever
necessary. A short example of how this can be done using this package in a typical python
application would be

from driver2200087 import runner

dmm = runner.InstInterface2200087()
dmm.connect()

Other Application code
...
#
And when the measurement is required :

if dmm.data_available() > 0:
 print dmm.latest_point()
else:
 raise Exception # Or pass, or retry, as per application requirements

other application code
...

If the application calls for continuous recording of the data, the following is likely a
better approach

from driver2200087 import runner

dmm = runner.InstInterface2200087()
dmm.connect()
while True:
 if dmm.data_available() > 0:
 print dmm.next_point()

Note that in this code snippet, the python interpreter is blocked by the
infinite while loop. This is not required by the module. As long as
dmm.next_point() is called often enough (10 Hz), you can use whatever mechanism
you like to actually make the call. Note that dmm.data_available() must be
checked by your application before making the call, or you should trap the
exception that results.

Making the call at less than this frequency will cause data points to be lost
when the point buffer fills up - if your application only calls for the
occasional measurement, you’re probably better off with dmm.latest_point()
instead.

For an example of using the runner module from within a larger framework
by subclassing the provided twisted protocol, see the corresponding Tendril module [https://github.com/chintal/tendril/blob/public/tendril/testing/instruments/RS2200087.py].
The Tendril module, while WIP, also includes examples of parsing the obtained
datapoint strings into usable values.

Downloads and Documentation

The simplest way to obtain the source for this package is to clone the git repository:

git clone https://github.com/chintal/driver2200087.git driver2200087

You can install it as usual, with:

python setup.py install

The latest version of the documentation can be found at ReadTheDocs [http://driver2200087.readthedocs.org/en/latest/index.html].

License

driver2200087 is distributed under the GPLv2 license.

Contents:

	Standalone Usage

	2200087 Serial Protocol Description

	driver2200087 package
	driver2200087.serialDecoder module

	driver2200087.runner module

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Chintalagiri Shashank.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	driver2200087 0.6 documentation

Standalone Usage

Start by cloning this repository:

git clone https://github.com/chintal/driver2200087.git driver2200087

or the original by David Dworken:

git clone https://github.com/ddworken/2200087-Serial-Protocol.git

Then install dependencies:

pip install numpy pyserial

Then you’re ready to go. Just run the program to display a text output of the data:

sudo python serialDecoder.py -p /dev/ttyUSB0

If you want a graph as your output, first install GNUPlot:

sudo apt-get install gnuplot

then run:

sudo python serialDecoder.py -p /dev/ttyUSB0 --graph

You also can read from multiple multimeters at the same time and get a
CSV output like so:

sudo python serialDecoder.py -p /dev/ttyUSB0 /dev/ttyUSB1

If you only want the actual values and not information about what mode
the multimeter is on, use the -q flag:

sudo python serialDecoder.py -p /dev/ttyUSB0 -q

2200087 Serial Protocol Description

	
	Bit 7
	Bit 6
	Bit 5
	Bit 4
	Bit 3
	Bit 2
	Bit 1
	Bit 0

	Byte 1
	0
	0
	0
	1
	Minus
	AC
	SEND
	AUTO

	Byte 2
	0
	0
	1
	0
	Continuity
	Diode
	Low Batt
	Hold

	Byte 3
	0
	0
	1
	1
	MAX
	E4
	F4
	A4

	Byte 4
	0
	1
	0
	0
	D4
	C4
	G4
	B4

	Byte 5
	0
	1
	0
	1
	DP3
	E3
	F3
	A3

	Byte 6
	0
	1
	1
	0
	D3
	C3
	G3
	B3

	Byte 7
	0
	1
	1
	1
	DP2
	E2
	F2
	A2

	Byte 8
	1
	0
	0
	0
	D2
	C2
	G2
	B2

	Byte 9
	1
	0
	0
	1
	DP1
	E1
	F1
	A1

	Byte 10
	1
	0
	1
	0
	D1
	C1
	G1
	B1

	Byte 11
	1
	0
	1
	1
	Percent
	HFE
	Rel Delta
	MIN

	Byte 12
	1
	1
	0
	0
	u (1e-6)
	n (1e-9)
	dBm
	Seconds

	Byte 13
	1
	1
	0
	1
	Farads
	Amps
	Volts
	m (1e-3)

	Byte 14
	1
	1
	1
	0
	Hz
	Ohms
	K (1e3)
	M (1e6)

All bytes are sent over in hexadecimal numbered one through fourteen. Bytes 3-4
contain digit 4, bytes 5-6 contain digit 3 and so on. All other parts of the
display are turned on as shown in the above table. The multimeter sends the data
at a rate of 10 Hz.

[image: https://cloud.githubusercontent.com/assets/5304541/6250379/6ab9de40-b75b-11e4-9444-c7d69e58e5ff.png]
[image: https://cloud.githubusercontent.com/assets/5304541/6250469/03216f4a-b75c-11e4-92eb-9b6d7568b3a8.png]

 Copyright 2015, Chintalagiri Shashank.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	driver2200087 0.6 documentation

driver2200087 package

driver2200087.serialDecoder module

Serial Decoder for RadioShack 2200087 Multimeter

This module provides functions for decoding the serial protocol of the
RadioShack 2200087 Mulitimeter. See the included basic.rst for the
protocol specifications and standalone usage instructions for the script.

The documentation in this file focuses on the usage of this file as a
module.

	
driver2200087.serialDecoder.detect_device_port()[source]

	Locate the RS2200087 multimeter using whatever information is
available. Specifically, look for :

	Prolific 2303 serial ports

	Which produce data that can be parsed by this module

As long as no other connected USB devices have a Prolific 2303
serial port, it should be fine. This is an insufficient test,
and should be avoided in favor of manually specifying the port.
This is especially true when other USB devices containing Prolific
2303 serial ports are also expected to be connected.

	
class driver2200087.serialDecoder.Grapher(y)[source]

	Bases: object

Grapher used to plot a graph of the data when used in standalone mode. When used as a
module, you can probably just ignore it and use your own graphing mechanism, if any.

	
np = <module 'numpy' from '/usr/lib/python2.7/dist-packages/numpy/__init__.pyc'>

	

	
subprocess = <module 'subprocess' from '/usr/lib/python2.7/subprocess.pyc'>

	

	
x = []

	

	
graphSize = 100

	

	
y = []

	

	
graphOutput = []

	

	
update(x, y, label='DMM')[source]

	

	
get_graph()[source]

	

	
get_values()[source]

	

	
append(y_val)[source]

	

	
append_with_label(y_val, label)[source]

	

	
driver2200087.serialDecoder.get_arr_from_str(serial_data)[source]

	Converts serial data to an array of strings each of which is a
binary representation of a single byte

	Parameters:	serial_data (str) – Series of bytes received over the serial line, separated by spaces

	Returns:	list of ascii representations for each character in the serial data

	Return type:	list

	
driver2200087.serialDecoder.process_digit(digit_number, bin_array)[source]

	Extracts a single digit from the binary array, at the location specified by
digit_number, and returns it’s numeric value as well as whether a decimal
point is to be included.

	Parameters:	
	digit_number (int) – Location from which digit should be extracted (4, 3, 2, 1)

	bin_array (list) – Array of binary representations of serial data

	Return type:	tuple

	Returns decimal_point_bool:

		Boolean if decimal point is to be included at the specified location

	Returns digit_value:

		Number value of the digit at the specified location

	
driver2200087.serialDecoder.get_char_from_digit_dict(digit_dict)[source]

	Converts a digit_dict into the character it represents.

	Parameters:	digit_dict (dict) – dictionary containing the digit’s information

	Returns:	The character represented by digit_dict

	Return type:	int or char

	
driver2200087.serialDecoder.is_e(digit_dict)[source]

	

	
driver2200087.serialDecoder.is_n(digit_dict)[source]

	

	
driver2200087.serialDecoder.is_l(digit_dict)[source]

	

	
driver2200087.serialDecoder.is_p(digit_dict)[source]

	

	
driver2200087.serialDecoder.is_f(digit_dict)[source]

	

	
driver2200087.serialDecoder.is_c(digit_dict)[source]

	

	
driver2200087.serialDecoder.is_9(digit_dict)[source]

	

	
driver2200087.serialDecoder.is_8(digit_dict)[source]

	

	
driver2200087.serialDecoder.is_7(digit_dict)[source]

	

	
driver2200087.serialDecoder.is_6(digit_dict)[source]

	

	
driver2200087.serialDecoder.is_5(digit_dict)[source]

	

	
driver2200087.serialDecoder.is_4(digit_dict)[source]

	

	
driver2200087.serialDecoder.is_3(digit_dict)[source]

	

	
driver2200087.serialDecoder.is_2(digit_dict)[source]

	

	
driver2200087.serialDecoder.is_1(digit_dict)[source]

	

	
driver2200087.serialDecoder.is_0(digit_dict)[source]

	

	
driver2200087.serialDecoder.str_to_flags(str_of_bytes)[source]

	Checks all possible flags that might be needed and returns a list containing all currently active flags

	Parameters:	str_of_bytes (str) – a string of bytes

	Returns:	list of flags, each of which is a string

	Return type:	list

	
driver2200087.serialDecoder.str_to_digits(str_of_bytes)[source]

	Converts a string of space separated hexadecimal bytes into numbers following the protocol in readme.md

	Parameters:	str_of_bytes (str) – a string of bytes

	Return type:	str

	Returns:	string of digits represented by str_of_bytes with decimal point as applicable

	
driver2200087.serialDecoder.get_serial_chunk(ser)[source]

	Gets a serial chunk from the device.

	Parameters:	ser – serial.Serial object

	Return type:	str

	Returns:	string of 14 received characters separated by spaces

	
driver2200087.serialDecoder.process_chunk(chunk)[source]

	

	
driver2200087.serialDecoder.get_next_point(ser)[source]

	Get the next point from the device. This function raises an Exception if anything at all
goes wrong during the process of obtaining the value. The returned value is a string which
should then be parsed by downstream code to determine what it actually is.

Due to the nature of the serial interface, the downstream code must also ensure that this
function is called often enough to keep the data in the various serial buffers from going
stale. This particular DMM sends back a point every 0.1s, so this function should effectively
be called at that frequency.

Alternatively, a crochet / twisted based protocol implementation can be used to provide an
interface friendlier to more complex synchronous code without needing to create a plethora
of threads that spend their time in time.sleep().

Warning

This function will block.

	
driver2200087.serialDecoder.confirm_device(ser)[source]

	Test the serial object for the device. This is a naive test, assuming that if a value can
be successfully parsed, the device is what is expected. This is a very weak test, and should
not be overly relied upon.

	
driver2200087.serialDecoder.get_serial_object(port=None)[source]

	Get a serial object given the port.

	
driver2200087.serialDecoder.main_loop(vargs)[source]

	Main loop for standalone use

driver2200087.runner module

This module provides an asynchronous backend to the RadioShack 2200087
multimeter’s PC interface. It uses crochet to provide a synchronous API
to an underlying Twisted based implementation.

While the intent of this module is to allow the use of the device from
within a larger framework, the use of crochet should allow the use of
this API and therefore the instrument in a naive python script as well.

See the ‘main’ section of this file for a minimal example of it’s usage.

	
driver2200087.runner.unwrap_failures(err)[source]

	Takes nested failures and flattens the nodes into a list.
The branches are discarded.

	
class driver2200087.runner.InstProtocol2200087(port, buffer_size=100)[source]

	Bases: twisted.internet.protocol.Protocol

This is a twisted protocol which handles serial communications with
2200087 multimeters. This protocol exists and operates within the context
of a twisted reactor. Applications themselves built on twisted should be
able to simply import this protocol (or its factory).

If you would like the protocol to produce datapoints in a different format,
this protocol should be sub-classed in order to do so. The changes necessary
would likely begin in this class’s frame_recieved() function.

Synchronous / non-twisted applications should use the InstInterface2200087
class instead. The InstInterface2200087 class accepts a parameter to specify
which protocol factory to use, in case you intend to subclass this protocol.

	Parameters:	
	port (str) – Port on which the device is connected. Default ‘/dev/ttyUSB0’.

	buffer_size (int) – Length of the point buffer in the protocol. Default 100.

	
reset_buffer()[source]

	Resets the point buffer. Any data presently within it will be lost.

	
make_serial_connection()[source]

	Creates the serial connection to the port specified by the instance’s
_serial_port variable and sets the instance’s _serial_transport variable
to the twisted.internet.serialport.SerialPort instance.

	
break_serial_connection()[source]

	Calls loseConnection() on the instance’s _serial_transport object.

	
connectionMade()[source]

	This function is called by twisted when a connection to the serial
transport is successfully opened.

	
connectionLost(reason=<twisted.python.failure.Failure <class 'twisted.internet.error.ConnectionDone'>>)[source]

	This function is called by twisted when the connection to the
serial transport is lost.

	
dataReceived(data)[source]

	This function is called by twisted when new bytes are received by the
serial transport.

This data is appended to the protocol’s framing buffer, _buffer, and
when the length of the buffer is longer than the frame size, that many
bytes are pulled out of the start of the buffer and frame_recieved is
called with the frame.

This function also performs the initial frame synchronization by
dumping any bytes in the beginning of the buffer which aren’t the
first byte of the frame. In its steady state, the protocol framing
buffer will always have the beginning of a frame as the first element.

	Parameters:	data (str) – The data bytes received

	
frame_received(frame)[source]

	This function is called by data_received when a full frame is received
by the serial transport and the protocol.

This function recasts the frame into the format used by the serialDecoder
and then uses that module to process the frame into the final string. This
string is then appended to the protocol’s point buffer.

This string is treated as a fully processed datapoint for the purposes
of this module.

	Parameters:	frame (str) – The full frame representing a single data point

	
latest_point(flush=True)[source]

	This function can be called to obtain the latest data point from the
protocol’s point buffer. The intended use of this function is to allow
random reads from the DMM. Such a typical application will want to
discard all the older data points (including the one returned), which
it can do with flush=True.

This function should only be called when there is data already in the
protocol buffer, which can be determined using data_available().

This is a twisted protocol function, and should not be called directly
by synchronous / non-twisted code. Instead, its counterpart in the
InstInterface object should be used.

	Parameters:	flush (bool) – Whether to flush all the older data points.

	Returns:	Latest Data Point as processed by the serialDecoder

	Return type:	str

	
next_point()[source]

	This function can be called to obtain the next data point from the
protocol’s point buffer. The intended use of this function is to allow
continuous streaming reads from the DMM. Such a typical application will
want to pop the element from the left of the point buffer, which is what
this function does.

This function should only be called when there is data already in the
protocol buffer, which can be determined using data_available().

This is a twisted protocol function, and should not be called directly
by synchronous / non-twisted code. Instead, its counterpart in the
InstInterface object should be used.

	Returns:	Next Data Point in the point buffer as processed by the serialDecoder

	Return type:	str

	
next_chunk()[source]

	This function can be called to obtain a copy of the protocol’s point
buffer with all but the latest point in protocol’s point buffer. The
intended use of this function is to allow continuous streaming reads
from the DMM. Such a typical application will want to pop the elements
from the left of the point buffer, which is what this function does.

This function should only be called when there is data already in the
protocol buffer, which can be determined using data_available().

This is a twisted protocol function, and should not be called directly
by synchronous / non-twisted code. Instead, its counterpart in the
InstInterface object should be used.

	Returns:	Copy of point_buffer with all but the latest_point

	Return type:	deque

	
data_available()[source]

	This function can be called to read the number of data points waiting in
the protocol’s point buffer.

This is a twisted protocol function, and should not be called directly
by synchronous / non-twisted code. Instead, its counterpart in the
InstInterface object should be used.

	Returns:	Number of points waiting in the protocol’s point buffer

	Return type:	int

	
class driver2200087.runner.InstFactory2200087[source]

	Bases: twisted.internet.protocol.Factory

This is a twisted protocol factory which produces twisted protocol objects
which handle serial communications with 2200087 multimeters. This class
is typically not to be instantiated by application code. This module includes
a single instance of this class (factory), which can be used to create as
many such objects as are necessary.

This protocol factory exists and operates within the context of a twisted
reactor. Applications themselves built on twisted should be able to
simply import this protocol factory. Synchronous / non-twisted applications
should use the InstInterface2200087 class instead.

	
buildProtocol(port, buffer_size=100)[source]

	This function returns a InstProtocol2200087 instance, bound to the
port specified by the param port.

This is a twisted protocol factory function, and should not be called
directly by synchronous / non-twisted code. The InstInterface2200087
class should be instantiated instead.

	Parameters:	
	port (str) – Serial port identifier to which the device is connected

	buffer_size (int) – Length of the point buffer in the protocol. Default 100.

	
class driver2200087.runner.InstInterface2200087(port=None, buffer_size=100, pfactory=<driver2200087.runner.InstFactory2200087 instance>)[source]

	Bases: object

This class provides an synchronous / non-twisted interface to 2200087
multimeters. It uses the underlying _protocol object which does most
of the heavy lifting using twisted / crochet.

For each DMM you want to connect to, instantiate this class once with the
correct serial port string.

If you would like to use a custom protocol to interface with the device,
you can do so by passing in the custom protocol factory as the named
parameter pfactory. See the documentation of the default protocol object
for information on creating a custom Protocol class.

	Parameters:	
	port (str) – Port on which the device is connected. Default ‘/dev/ttyUSB0’.

	buffer_size (int) – Length of the point buffer in the protocol. Default 100.

	pfactory (InstFactory2200087) – Custom protocol factory to use, if not the one implemented here.

Your application code is expected to setup crochet before creating the
instance. A short example :

>>> from crochet import setup
>>> setup()
>>> from driver2200087.runner import InstInterface2200087
>>> dmm = InstInterface2200087('/dev/ttyUSB0')
>>> dmm.connect()
>>> print dmm.latest_point()

	
connect(*args, **kwargs)[source]

	This function connects to the serial port specified during the
instantiation of the class.

This function should be called before anything else can be done
with the object.

	
disconnect(*args, **kwargs)[source]

	This function disconnects from the serial port specified during the
instantiation of the class.

	
latest_point(*args, **kwargs)[source]

	This function can be called to obtain the latest data point from the
protocol’s point buffer. The intended use of this function is to allow
random reads from the DMM. Such a typical application will want to
discard all the older data points (including the one returned), which
it can do with flush=True.

This function should only be called when there is data already in the
protocol buffer, which can be determined using data_available().

	Parameters:	flush (bool) – Whether to flush all the older data points.

	Returns:	Latest Data Point as processed by the protocol

	Return type:	str or type of each datapoint

	
next_point(*args, **kwargs)[source]

	This function can be called to obtain the next data point from the
protocol’s point buffer. The intended use of this function is to allow
continuous streaming reads from the DMM. Such a typical application will
want to pop the element from the left of the point buffer, which is what
this function does.

This function should only be called when there is data already in the
protocol buffer, which can be determined using data_available().

	Returns:	Next Data Point in the point buffer as processed by the protocol

	Return type:	str or type of each datapoint

	
next_chunk(*args, **kwargs)[source]

	This function can be called to obtain the next chunk of data from the
protocol’s point buffer. The intended use of this function is to allow
continuous streaming reads from the DMM. Such a typical application will
want to pop the elements from the left of the point buffer, which is what
this function effectively does.

This function should only be called when there is data already in the
protocol buffer, which can be determined using data_available().

	Returns:	Point buffer with all but the latest point in the protocol’s point buffer

	Return type:	deque or type of the point_buffer

	
data_available(*args, **kwargs)[source]

	This function can be called to read the number of data points waiting in
the protocol’s point buffer.

	Returns:	Number of points waiting in the protocol’s point buffer

	Return type:	int

	
reset_buffer(*args, **kwargs)[source]

	This function can be called to reset the point buffer. This should be
used for starting wave acquisition.

 Copyright 2015, Chintalagiri Shashank.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	driver2200087 0.6 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 driver2200087	

 	
 	
 driver2200087.runner	

 	
 	
 driver2200087.serialDecoder	

 Copyright 2015, Chintalagiri Shashank.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	driver2200087 0.6 documentation

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | U
 | X
 | Y

A

 	

 	append() (driver2200087.serialDecoder.Grapher method)

 	

 	append_with_label() (driver2200087.serialDecoder.Grapher method)

B

 	

 	break_serial_connection() (driver2200087.runner.InstProtocol2200087 method)

 	

 	buildProtocol() (driver2200087.runner.InstFactory2200087 method)

C

 	

 	confirm_device() (in module driver2200087.serialDecoder)

 	connect() (driver2200087.runner.InstInterface2200087 method)

 	

 	connectionLost() (driver2200087.runner.InstProtocol2200087 method)

 	connectionMade() (driver2200087.runner.InstProtocol2200087 method)

D

 	

 	data_available() (driver2200087.runner.InstInterface2200087 method)

 	

 	(driver2200087.runner.InstProtocol2200087 method)

 	dataReceived() (driver2200087.runner.InstProtocol2200087 method)

 	detect_device_port() (in module driver2200087.serialDecoder)

 	

 	disconnect() (driver2200087.runner.InstInterface2200087 method)

 	driver2200087.runner (module)

 	driver2200087.serialDecoder (module)

F

 	

 	frame_received() (driver2200087.runner.InstProtocol2200087 method)

G

 	

 	get_arr_from_str() (in module driver2200087.serialDecoder)

 	get_char_from_digit_dict() (in module driver2200087.serialDecoder)

 	get_graph() (driver2200087.serialDecoder.Grapher method)

 	get_next_point() (in module driver2200087.serialDecoder)

 	get_serial_chunk() (in module driver2200087.serialDecoder)

 	

 	get_serial_object() (in module driver2200087.serialDecoder)

 	get_values() (driver2200087.serialDecoder.Grapher method)

 	Grapher (class in driver2200087.serialDecoder)

 	graphOutput (driver2200087.serialDecoder.Grapher attribute)

 	graphSize (driver2200087.serialDecoder.Grapher attribute)

I

 	

 	InstFactory2200087 (class in driver2200087.runner)

 	InstInterface2200087 (class in driver2200087.runner)

 	InstProtocol2200087 (class in driver2200087.runner)

 	is_0() (in module driver2200087.serialDecoder)

 	is_1() (in module driver2200087.serialDecoder)

 	is_2() (in module driver2200087.serialDecoder)

 	is_3() (in module driver2200087.serialDecoder)

 	is_4() (in module driver2200087.serialDecoder)

 	is_5() (in module driver2200087.serialDecoder)

 	is_6() (in module driver2200087.serialDecoder)

 	

 	is_7() (in module driver2200087.serialDecoder)

 	is_8() (in module driver2200087.serialDecoder)

 	is_9() (in module driver2200087.serialDecoder)

 	is_c() (in module driver2200087.serialDecoder)

 	is_e() (in module driver2200087.serialDecoder)

 	is_f() (in module driver2200087.serialDecoder)

 	is_l() (in module driver2200087.serialDecoder)

 	is_n() (in module driver2200087.serialDecoder)

 	is_p() (in module driver2200087.serialDecoder)

L

 	

 	latest_point() (driver2200087.runner.InstInterface2200087 method)

 	

 	(driver2200087.runner.InstProtocol2200087 method)

M

 	

 	main_loop() (in module driver2200087.serialDecoder)

 	

 	make_serial_connection() (driver2200087.runner.InstProtocol2200087 method)

N

 	

 	next_chunk() (driver2200087.runner.InstInterface2200087 method)

 	

 	(driver2200087.runner.InstProtocol2200087 method)

 	next_point() (driver2200087.runner.InstInterface2200087 method)

 	

 	(driver2200087.runner.InstProtocol2200087 method)

 	

 	np (driver2200087.serialDecoder.Grapher attribute)

P

 	

 	process_chunk() (in module driver2200087.serialDecoder)

 	

 	process_digit() (in module driver2200087.serialDecoder)

R

 	

 	reset_buffer() (driver2200087.runner.InstInterface2200087 method)

 	

 	(driver2200087.runner.InstProtocol2200087 method)

S

 	

 	str_to_digits() (in module driver2200087.serialDecoder)

 	str_to_flags() (in module driver2200087.serialDecoder)

 	

 	subprocess (driver2200087.serialDecoder.Grapher attribute)

U

 	

 	unwrap_failures() (in module driver2200087.runner)

 	

 	update() (driver2200087.serialDecoder.Grapher method)

X

 	

 	x (driver2200087.serialDecoder.Grapher attribute)

Y

 	

 	y (driver2200087.serialDecoder.Grapher attribute)

 Copyright 2015, Chintalagiri Shashank.
 Created using Sphinx 1.3.1.

 _static/down-pressed.png

_static/comment.png

_static/down.png

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/up-pressed.png

_modules/driver2200087/runner.html

 Navigation

 		
 index

 		
 modules |

 		driver2200087 0.6 documentation »

 		Module code »

 Source code for driver2200087.runner

#!/usr/bin/env python
encoding: utf-8

Copyright (C) 2015 Chintalagiri Shashank
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
This module provides an asynchronous backend to the RadioShack 2200087
multimeter's PC interface. It uses crochet to provide a synchronous API
to an underlying Twisted based implementation.

While the intent of this module is to allow the use of the device from
within a larger framework, the use of crochet should allow the use of
this API and therefore the instrument in a naive python script as well.

See the 'main' section of this file for a minimal example of it's usage.
"""

from collections import deque

from twisted.internet.protocol import Protocol
from twisted.internet.protocol import Factory
from twisted.internet.protocol import connectionDone
from twisted.internet.serialport import SerialPort

from serialDecoder import process_chunk
from serialDecoder import detect_device_port

from crochet import setup
from crochet import run_in_reactor
from crochet import wait_for

from twisted.internet import reactor

[docs]def unwrap_failures(err):
 """
 Takes nested failures and flattens the nodes into a list.
 The branches are discarded.
 """
 errs = []
 check_unwrap = [err]
 while len(check_unwrap) > 0:
 err = check_unwrap.pop()
 if hasattr(err.value, 'reasons'):
 errs.extend(err.value.reasons)
 check_unwrap.extend(err.value.reasons)
 else:
 errs.append(err)
 return errs

[docs]class InstProtocol2200087(Protocol):
 """
 This is a twisted protocol which handles serial communications with
 2200087 multimeters. This protocol exists and operates within the context
 of a twisted reactor. Applications themselves built on twisted should be
 able to simply import this protocol (or its factory).

 If you would like the protocol to produce datapoints in a different format,
 this protocol should be sub-classed in order to do so. The changes necessary
 would likely begin in this class's frame_recieved() function.

 Synchronous / non-twisted applications should use the InstInterface2200087
 class instead. The InstInterface2200087 class accepts a parameter to specify
 which protocol factory to use, in case you intend to subclass this protocol.

 :param port: Port on which the device is connected. Default '/dev/ttyUSB0'.
 :type port: str
 :param buffer_size: Length of the point buffer in the protocol. Default 100.
 :type buffer_size: int

 """
 def __init__(self, port, buffer_size=100):
 self._buffer = ""
 self._frame_size = 14
 self._point_buffer_size = buffer_size
 self.point_buffer = None
 self.reset_buffer()
 self._serial_port = port
 self._serial_transport = None
 self._frame_processor = process_chunk

[docs] def reset_buffer(self):
 """
 Resets the point buffer. Any data presently within it will be lost.
 """
 self.point_buffer = deque(maxlen=self._point_buffer_size)

[docs] def make_serial_connection(self):
 """
 Creates the serial connection to the port specified by the instance's
 _serial_port variable and sets the instance's _serial_transport variable
 to the twisted.internet.serialport.SerialPort instance.
 """
 self._serial_transport = SerialPort(self, self._serial_port, reactor,
 baudrate=2400, bytesize=8,
 parity='N', stopbits=1, timeout=5,
 xonxoff=0, rtscts=0)

[docs] def break_serial_connection(self):
 """
 Calls loseConnection() on the instance's _serial_transport object.
 """
 self._serial_transport.loseConnection()

[docs] def connectionMade(self):
 """
 This function is called by twisted when a connection to the serial
 transport is successfully opened.
 """
 pass

[docs] def connectionLost(self, reason=connectionDone):
 """
 This function is called by twisted when the connection to the
 serial transport is lost.
 """
 print "Lost Connection to Device"
 print reason

[docs] def dataReceived(self, data):
 """
 This function is called by twisted when new bytes are received by the
 serial transport.

 This data is appended to the protocol's framing buffer, _buffer, and
 when the length of the buffer is longer than the frame size, that many
 bytes are pulled out of the start of the buffer and frame_recieved is
 called with the frame.

 This function also performs the initial frame synchronization by
 dumping any bytes in the beginning of the buffer which aren't the
 first byte of the frame. In its steady state, the protocol framing
 buffer will always have the beginning of a frame as the first element.

 :param data: The data bytes received
 :type data: str

 """
 self._buffer += data
 while len(self._buffer) and self._buffer[0].encode('hex')[0] != '1':
 self._buffer = self._buffer[1:]
 while len(self._buffer) >= self._frame_size:
 self.frame_received(self._buffer[0:self._frame_size])
 self._buffer = self._buffer[self._frame_size:]

[docs] def frame_received(self, frame):
 """
 This function is called by data_received when a full frame is received
 by the serial transport and the protocol.

 This function recasts the frame into the format used by the serialDecoder
 and then uses that module to process the frame into the final string. This
 string is then appended to the protocol's point buffer.

 This string is treated as a fully processed datapoint for the purposes
 of this module.

 :param frame: The full frame representing a single data point
 :type frame: str

 """
 frame = [byte.encode('hex') for byte in frame]
 chunk = ' '.join(frame)
 point = self._frame_processor(chunk)
 self.point_buffer.append(point)

[docs] def latest_point(self, flush=True):
 """
 This function can be called to obtain the latest data point from the
 protocol's point buffer. The intended use of this function is to allow
 random reads from the DMM. Such a typical application will want to
 discard all the older data points (including the one returned), which
 it can do with flush=True.

 This function should only be called when there is data already in the
 protocol buffer, which can be determined using data_available().

 This is a twisted protocol function, and should not be called directly
 by synchronous / non-twisted code. Instead, its counterpart in the
 InstInterface object should be used.

 :param flush: Whether to flush all the older data points.
 :type flush: bool
 :return: Latest Data Point as processed by the serialDecoder
 :rtype: str

 """
 rval = self.point_buffer[-1]
 if flush is True:
 self.point_buffer.clear()
 return rval

[docs] def next_point(self):
 """
 This function can be called to obtain the next data point from the
 protocol's point buffer. The intended use of this function is to allow
 continuous streaming reads from the DMM. Such a typical application will
 want to pop the element from the left of the point buffer, which is what
 this function does.

 This function should only be called when there is data already in the
 protocol buffer, which can be determined using data_available().

 This is a twisted protocol function, and should not be called directly
 by synchronous / non-twisted code. Instead, its counterpart in the
 InstInterface object should be used.

 :return: Next Data Point in the point buffer as processed by the serialDecoder
 :rtype: str

 """
 return self.point_buffer.popleft()

[docs] def next_chunk(self):
 """
 This function can be called to obtain a copy of the protocol's point
 buffer with all but the latest point in protocol's point buffer. The
 intended use of this function is to allow continuous streaming reads
 from the DMM. Such a typical application will want to pop the elements
 from the left of the point buffer, which is what this function does.

 This function should only be called when there is data already in the
 protocol buffer, which can be determined using data_available().

 This is a twisted protocol function, and should not be called directly
 by synchronous / non-twisted code. Instead, its counterpart in the
 InstInterface object should be used.

 :return: Copy of point_buffer with all but the latest_point
 :rtype: deque
 """
 rval = self.point_buffer
 self.point_buffer = deque([rval.pop()], maxlen=self._point_buffer_size)
 return rval

[docs] def data_available(self):
 """
 This function can be called to read the number of data points waiting in
 the protocol's point buffer.

 This is a twisted protocol function, and should not be called directly
 by synchronous / non-twisted code. Instead, its counterpart in the
 InstInterface object should be used.

 :return: Number of points waiting in the protocol's point buffer
 :rtype: int

 """
 return len(self.point_buffer)

[docs]class InstFactory2200087(Factory):
 """
 This is a twisted protocol factory which produces twisted protocol objects
 which handle serial communications with 2200087 multimeters. This class
 is typically not to be instantiated by application code. This module includes
 a single instance of this class (factory), which can be used to create as
 many such objects as are necessary.

 This protocol factory exists and operates within the context of a twisted
 reactor. Applications themselves built on twisted should be able to
 simply import this protocol factory. Synchronous / non-twisted applications
 should use the InstInterface2200087 class instead.
 """
 def __init__(self):
 self.instances = []

[docs] def buildProtocol(self, port, buffer_size=100):
 """
 This function returns a InstProtocol2200087 instance, bound to the
 port specified by the param port.

 This is a twisted protocol factory function, and should not be called
 directly by synchronous / non-twisted code. The InstInterface2200087
 class should be instantiated instead.

 :param port: Serial port identifier to which the device is connected
 :type port: str
 :param buffer_size: Length of the point buffer in the protocol. Default 100.
 :type buffer_size: int

 """
 instance = InstProtocol2200087(port, buffer_size=buffer_size)
 return instance

factory = InstFactory2200087()

[docs]class InstInterface2200087(object):
 """
 This class provides an synchronous / non-twisted interface to 2200087
 multimeters. It uses the underlying _protocol object which does most
 of the heavy lifting using twisted / crochet.

 For each DMM you want to connect to, instantiate this class once with the
 correct serial port string.

 If you would like to use a custom protocol to interface with the device,
 you can do so by passing in the custom protocol factory as the named
 parameter pfactory. See the documentation of the default protocol object
 for information on creating a custom Protocol class.

 :param port: Port on which the device is connected. Default '/dev/ttyUSB0'.
 :type port: str
 :param buffer_size: Length of the point buffer in the protocol. Default 100.
 :type buffer_size: int
 :param pfactory: Custom protocol factory to use, if not the one implemented here.
 :type pfactory: InstFactory2200087

 Your application code is expected to setup crochet before creating the
 instance. A short example :

 >>> from crochet import setup
 >>> setup()
 >>> from driver2200087.runner import InstInterface2200087
 >>> dmm = InstInterface2200087('/dev/ttyUSB0')
 >>> dmm.connect()
 >>> print dmm.latest_point()

 """
 def __init__(self, port=None, buffer_size=100, pfactory=factory):
 if port is None:
 port = detect_device_port()
 self._port = port
 self._protocol = pfactory.buildProtocol(port, buffer_size)

 @run_in_reactor
[docs] def connect(self):
 """
 This function connects to the serial port specified during the
 instantiation of the class.

 This function should be called before anything else can be done
 with the object.
 """
 self._protocol.make_serial_connection()

 @run_in_reactor
[docs] def disconnect(self):
 """
 This function disconnects from the serial port specified during the
 instantiation of the class.
 """
 self._protocol.break_serial_connection()

 @wait_for(timeout=1)
[docs] def latest_point(self, flush=True):
 """
 This function can be called to obtain the latest data point from the
 protocol's point buffer. The intended use of this function is to allow
 random reads from the DMM. Such a typical application will want to
 discard all the older data points (including the one returned), which
 it can do with flush=True.

 This function should only be called when there is data already in the
 protocol buffer, which can be determined using data_available().

 :param flush: Whether to flush all the older data points.
 :type flush: bool
 :return: Latest Data Point as processed by the protocol
 :rtype: str or type of each datapoint

 """
 return self._protocol.latest_point(flush)

 @wait_for(timeout=1)
[docs] def next_point(self):
 """
 This function can be called to obtain the next data point from the
 protocol's point buffer. The intended use of this function is to allow
 continuous streaming reads from the DMM. Such a typical application will
 want to pop the element from the left of the point buffer, which is what
 this function does.

 This function should only be called when there is data already in the
 protocol buffer, which can be determined using data_available().

 :return: Next Data Point in the point buffer as processed by the protocol
 :rtype: str or type of each datapoint

 """
 return self._protocol.next_point()

 @wait_for(timeout=1)
[docs] def next_chunk(self):
 """
 This function can be called to obtain the next chunk of data from the
 protocol's point buffer. The intended use of this function is to allow
 continuous streaming reads from the DMM. Such a typical application will
 want to pop the elements from the left of the point buffer, which is what
 this function effectively does.

 This function should only be called when there is data already in the
 protocol buffer, which can be determined using data_available().

 :return: Point buffer with all but the latest point in the protocol's point buffer
 :rtype: deque or type of the point_buffer

 """
 return self._protocol.next_chunk()

 @wait_for(timeout=1)
[docs] def data_available(self):
 """
 This function can be called to read the number of data points waiting in
 the protocol's point buffer.

 :return: Number of points waiting in the protocol's point buffer
 :rtype: int

 """
 return self._protocol.data_available()

 @wait_for(timeout=1)
[docs] def reset_buffer(self):
 """
 This function can be called to reset the point buffer. This should be
 used for starting wave acquisition.
 """
 return self._protocol.reset_buffer()

if __name__ == '__main__':
 setup()
 dmm = InstInterface2200087()
 dmm.connect()
 while True:
 if dmm.data_available() > 0:
 print dmm.next_point()

 © Copyright 2015, Chintalagiri Shashank.
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		driver2200087 0.6 documentation »

 All modules for which code is available

		driver2200087.runner

		driver2200087.serialDecoder

 © Copyright 2015, Chintalagiri Shashank.
 Created using Sphinx 1.3.1.

_modules/driver2200087/serialDecoder.html

 Navigation

 		
 index

 		
 modules |

 		driver2200087 0.6 documentation »

 		Module code »

 Source code for driver2200087.serialDecoder

#!/usr/bin/env python
encoding: utf-8

Copyright (C) 2015 Chintalagiri Shashank
Copyright (C) 2014, 2015 David Dworken
#
This file is based on David Dworken's implementation at
https://github.com/ddworken/2200087-Serial-Protocol
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

"""Serial Decoder for RadioShack 2200087 Multimeter

This module provides functions for decoding the serial protocol of the
RadioShack 2200087 Mulitimeter. See the included `basic.rst` for the
protocol specifications and standalone usage instructions for the script.

The documentation in this file focuses on the usage of this file as a
module.
"""

import numpy as np
import subprocess
import serial
import argparse
import sys

from serial.tools import list_ports

[docs]def detect_device_port():
 """
 Locate the RS2200087 multimeter using whatever information is
 available. Specifically, look for :

 - Prolific 2303 serial ports
 - Which produce data that can be parsed by this module

 As long as no other connected USB devices have a Prolific 2303
 serial port, it should be fine. This is an insufficient test,
 and should be avoided in favor of manually specifying the port.
 This is especially true when other USB devices containing Prolific
 2303 serial ports are also expected to be connected.

 """
 description = 'USB VID:PID=067b:2303'
 manufacturer = 'Prolific Technology, Inc. PL2303 Serial Port '
 for port in list_ports.comports():
 if port[2] == description and port[1] == manufacturer:
 ser = serial.Serial(port=port, baudrate=2400, bytesize=8,
 parity='N', stopbits=1, timeout=5,
 xonxoff=False, rtscts=False, dsrdtr=False)
 if confirm_device(ser):
 ser.close()
 return port[0]
 else:
 ser.close()

[docs]class Grapher(object):
 """
 Grapher used to plot a graph of the data when used in standalone mode. When used as a
 module, you can probably just ignore it and use your own graphing mechanism, if any.
 """
 np = __import__('numpy')
 subprocess = __import__('subprocess')
 graphOutput = [] # a list of strings to store the graph in
 x = []						 # a list to store 100 most recent X values in
 y = [] 						# a list to sore 100 most recent Y values in
 graphSize = 100					# an integer defining the maximum number of data points to track
 # set graphSize to the number of seconds of data you want displayed * 10
 # (b/c serial sends values at 10 hz)

 def __init__(self, y):
 for i in range(self.graphSize):
 self.x.append(i)
 self.y = y
 self.update(self.x, self.y)
 self.graphOutput = self.get_graph()
 self.gnuplot = None

[docs] def update(self, x, y, label='DMM'): # reimplementation of update method to allow setting label
 self.x = x
 self.y = y
 self.gnuplot = subprocess.Popen(["/usr/bin/gnuplot"], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
 self.gnuplot.stdin.write("set term dumb 150 25\n")
 self.gnuplot.stdin.write("plot '-' using 1:2 title '" + label + "' with linespoints \n")
 for i, j in zip(x, y):
 self.gnuplot.stdin.write("%f %f\n" % (i, j))
 self.gnuplot.stdin.write("e\n")
 self.gnuplot.stdin.flush()
 i = 0
 output = []
 while self.gnuplot.poll() is None:
 output.append(self.gnuplot.stdout.readline())
 i += 1
 if i == 24:
 break
 self.graphOutput = output

[docs] def get_graph(self):			 # return a list of lines that when printed out show a graph
 return self.graphOutput

[docs] def get_values(self):				 # return a list of x,y value pairs (that are currently on the graph)
 return zip(self.x, self.y)

[docs] def append(self, y_val):				 # append a yValue to the graph
 # if we already graphSize variables, then delete the oldest value and add the newest
 if len(self.x) == len(self.y):
 self.y = np.delete(self.y, 0)
 self.y = np.append(self.y, y_val)
 else:
 if len(self.x) > len(self.y):
 self.y = np.append(self.y, y_val)
 self.update(self.x, self.y)

[docs] def append_with_label(self, y_val, label):
 if len(self.x) == len(self.y):
 self.y = np.delete(self.y, 0)
 self.y = np.append(self.y, y_val)
 else:
 if len(self.x) > len(self.y):
 self.y = np.append(self.y, y_val)
 self.update(self.x, self.y, label)

[docs]def get_arr_from_str(serial_data):
 """
 Converts serial data to an array of strings each of which is a
 binary representation of a single byte

 :param serial_data: Series of bytes received over the serial line, separated by spaces
 :type serial_data: str
 :returns: list of ascii representations for each character in the serial data
 :rtype: list

 """
 output = []
 input_list = serial_data.split(" ")
 for value in input_list:
 # The [2:] removes the first 2 characters so as to trim off the 0b
 bin_str = bin(int(value, base=16))[2:]
 # we add enough 0s to the front in order to make it 8 bytes (since bin() trims off zeros in the start)
 for i in range(8-len(bin_str)):
 bin_str = '0' + bin_str
 output.append(bin_str)
 return output

[docs]def process_digit(digit_number, bin_array):
 """
 Extracts a single digit from the binary array, at the location specified by
 `digit_number`, and returns it's numeric value as well as whether a decimal
 point is to be included.

 :param digit_number: Location from which digit should be extracted (4, 3, 2, 1)
 :type digit_number: int
 :param bin_array: Array of binary representations of serial data
 :type bin_array: list
 :rtype: tuple
 :returns decimal_point_bool: Boolean if decimal point is to be included at the specified location
 :returns digit_value: Number value of the digit at the specified location

 """
 binn = []
 if digit_number == 4:
 binn.append(bin_array[2][::-1]) # reverse it because we want to start with bit 0, not bit 7
 binn.append(bin_array[3][::-1]) # reverse it because we want to start with bit 0, not bit 7
 if digit_number == 3:
 binn.append(bin_array[4][::-1]) # reverse it because we want to start with bit 0, not bit 7
 binn.append(bin_array[5][::-1]) # reverse it because we want to start with bit 0, not bit 7
 if digit_number == 2:
 binn.append(bin_array[6][::-1]) # reverse it because we want to start with bit 0, not bit 7
 binn.append(bin_array[7][::-1]) # reverse it because we want to start with bit 0, not bit 7
 if digit_number == 1:
 binn.append(bin_array[8][::-1]) # reverse it because we want to start with bit 0, not bit 7
 binn.append(bin_array[9][::-1]) # reverse it because we want to start with bit 0, not bit 7

 # Creates a dictionary where the keys follow the protocol description in readme.md
 digit_dict = {'A': int(binn[0][0]), 'F': int(binn[0][1]), 'E': int(binn[0][2]), 'B': int(binn[1][0]),
 'G': int(binn[1][1]), 'C': int(binn[1][2]), 'D': int(binn[1][3])}

 # passes the digit dict to getCharFromDigitDict to decode what the value is
 digit_value = get_char_from_digit_dict(digit_dict)
 # checks if there should be a decimal point
 decimal_point_bool = bool(int(binn[0][3]))

 # if it is digit 4, a decimal point actually means MAX not decimal point
 # (see readme.md for full description of protocol)
 if digit_number == 4:
 decimal_point_bool = False

 # Returns a tuple containing both whether or not to include a decimal point and the digit on the display
 return decimal_point_bool, digit_value

[docs]def get_char_from_digit_dict(digit_dict):
 """
 Converts a digit_dict into the character it represents.

 :param digit_dict: dictionary containing the digit's information
 :type digit_dict: dict
 :returns: The character represented by digit_dict
 :rtype: int or char

 """
 if is_9(digit_dict):
 return 9
 if is_8(digit_dict):
 return 8
 if is_7(digit_dict):
 return 7
 if is_6(digit_dict):
 return 6
 if is_5(digit_dict):
 return 5
 if is_4(digit_dict):
 return 4
 if is_3(digit_dict):
 return 3
 if is_2(digit_dict):
 return 2
 if is_1(digit_dict):
 return 1
 if is_0(digit_dict):
 return 0
 if is_c(digit_dict):
 return 'C'
 if is_f(digit_dict):
 return 'F'
 if is_e(digit_dict):
 return 'E'
 if is_p(digit_dict):
 return 'P'
 if is_n(digit_dict):
 return 'N'
 if is_l(digit_dict):
 return 'L'

All of these is_*(digitDict) methods are essentially implementing a
bitmask to convert a series of bits into characters or numbers
While this is a horrible format, it works and is unlikely to be
changed as switching to a more traditional bitmask is not that advantageous

[docs]def is_e(digit_dict):
 if digit_dict['A'] == 1 and digit_dict['F'] == 1 and digit_dict['G'] == 1 and digit_dict['B'] == 0 \
 and digit_dict['C'] == 0 and digit_dict['D'] == 1 and digit_dict['E'] == 1:
 return True
 return False

[docs]def is_n(digit_dict):
 if digit_dict['A'] == 0 and digit_dict['F'] == 0 and digit_dict['G'] == 1 and digit_dict['B'] == 0 \
 and digit_dict['C'] == 1 and digit_dict['D'] == 0 and digit_dict['E'] == 1:
 return True
 return False

[docs]def is_l(digit_dict):
 if digit_dict['A'] == 0 and digit_dict['F'] == 1 and digit_dict['G'] == 0 and digit_dict['B'] == 0 \
 and digit_dict['C'] == 0 and digit_dict['D'] == 1 and digit_dict['E'] == 1:
 return True
 return False

[docs]def is_p(digit_dict):
 if digit_dict['A'] == 1 and digit_dict['F'] == 1 and digit_dict['G'] == 1 and digit_dict['B'] == 1 \
 and digit_dict['C'] == 0 and digit_dict['D'] == 0 and digit_dict['E'] == 1:
 return True
 return False

[docs]def is_f(digit_dict):
 if digit_dict['A'] == 1 and digit_dict['F'] == 1 and digit_dict['G'] == 1 and digit_dict['B'] == 0 \
 and digit_dict['C'] == 0 and digit_dict['D'] == 0 and digit_dict['E'] == 1:
 return True
 return False

[docs]def is_c(digit_dict):
 if digit_dict['A'] == 1 and digit_dict['F'] == 1 and digit_dict['G'] == 0 and digit_dict['B'] == 0 \
 and digit_dict['C'] == 0 and digit_dict['D'] == 1 and digit_dict['E'] == 1:
 return True
 return False

[docs]def is_9(digit_dict):
 if digit_dict['A'] == 1 and digit_dict['F'] == 1 and digit_dict['G'] == 1 and digit_dict['B'] == 1 \
 and digit_dict['C'] == 1 and digit_dict['D'] == 1 and digit_dict['E'] == 0:
 return True
 return False

[docs]def is_8(digit_dict):
 if digit_dict['A'] == 1 and digit_dict['F'] == 1 and digit_dict['G'] == 1 and digit_dict['B'] == 1 \
 and digit_dict['C'] == 1 and digit_dict['D'] == 1 and digit_dict['E'] == 1:
 return True
 return False

[docs]def is_7(digit_dict):
 if digit_dict['A'] == 1 and digit_dict['F'] == 0 and digit_dict['G'] == 0 and digit_dict['B'] == 1 \
 and digit_dict['C'] == 1 and digit_dict['D'] == 0 and digit_dict['E'] == 0:
 return True
 return False

[docs]def is_6(digit_dict):
 if digit_dict['A'] == 1 and digit_dict['F'] == 1 and digit_dict['G'] == 1 and digit_dict['B'] == 0 \
 and digit_dict['C'] == 1 and digit_dict['D'] == 1 and digit_dict['E'] == 1:
 return True
 return False

[docs]def is_5(digit_dict):
 if digit_dict['A'] == 1 and digit_dict['F'] == 1 and digit_dict['G'] == 1 and digit_dict['B'] == 0 \
 and digit_dict['C'] == 1 and digit_dict['D'] == 1 and digit_dict['E'] == 0:
 return True
 return False

[docs]def is_4(digit_dict):
 if digit_dict['A'] == 0 and digit_dict['F'] == 1 and digit_dict['G'] == 1 and digit_dict['B'] == 1 \
 and digit_dict['C'] == 1 and digit_dict['D'] == 0 and digit_dict['E'] == 0:
 return True
 return False

[docs]def is_3(digit_dict):
 if digit_dict['A'] == 1 and digit_dict['F'] == 0 and digit_dict['G'] == 1 and digit_dict['B'] == 1 \
 and digit_dict['C'] == 1 and digit_dict['D'] == 1 and digit_dict['E'] == 0:
 return True
 return False

[docs]def is_2(digit_dict):
 if digit_dict['A'] == 1 and digit_dict['F'] == 0 and digit_dict['G'] == 1 and digit_dict['B'] == 1 \
 and digit_dict['C'] == 0 and digit_dict['D'] == 1 and digit_dict['E'] == 1:
 return True
 return False

[docs]def is_1(digit_dict):
 if digit_dict['A'] == 0 and digit_dict['F'] == 0 and digit_dict['G'] == 0 and digit_dict['B'] == 1 \
 and digit_dict['C'] == 1 and digit_dict['D'] == 0 and digit_dict['E'] == 0:
 return True
 return False

[docs]def is_0(digit_dict):
 if digit_dict['A'] == 1 and digit_dict['F'] == 1 and digit_dict['G'] == 0 and digit_dict['B'] == 1 \
 and digit_dict['C'] == 1 and digit_dict['D'] == 1 and digit_dict['E'] == 1:
 return True
 return False

[docs]def str_to_flags(str_of_bytes):
 """
 Checks all possible flags that might be needed and returns a list containing all currently active flags

 :param str_of_bytes: a string of bytes
 :type str_of_bytes: str
 :returns: list of flags, each of which is a string
 :rtype: list

 """
 flags = []
 bin_array = get_arr_from_str(str_of_bytes)
 for index, binStr in enumerate(bin_array):
 bin_array[index] = binStr[::-1]
 if bin_array[0][2] == '1':
 flags.append('AC')
 # Don't display this because it will always be on since whenever we are getting input, it will be on.
 # if bin_array[0][1] == '1':
 # flags.append('SEND')
 if bin_array[0][0] == '1':
 flags.append('AUTO')
 if bin_array[1][3] == '1':
 flags.append('CONTINUITY')
 if bin_array[1][2] == '1':
 flags.append('DIODE')
 if bin_array[1][1] == '1':
 flags.append('LOW BATTERY')
 if bin_array[1][0] == '1':
 flags.append('HOLD')
 if bin_array[10][0] == '1':
 flags.append('MIN')
 if bin_array[10][1] == '1':
 flags.append('REL DELTA')
 if bin_array[10][2] == '1':
 flags.append('HFE')
 if bin_array[10][3] == '1':
 flags.append('Percent')
 if bin_array[11][0] == '1':
 flags.append('SECONDS')
 if bin_array[11][1] == '1':
 flags.append('dBm')
 if bin_array[11][2] == '1':
 flags.append('n (1e-9)')
 if bin_array[11][3] == '1':
 flags.append('u (1e-6)')
 if bin_array[12][0] == '1':
 flags.append('m (1e-3)')
 if bin_array[12][1] == '1':
 flags.append('VOLTS')
 if bin_array[12][2] == '1':
 flags.append('AMPS')
 if bin_array[12][3] == '1':
 flags.append('FARADS')
 if bin_array[13][0] == '1':
 flags.append('M (1e6)')
 if bin_array[13][1] == '1':
 flags.append('K (1e3)')
 if bin_array[13][2] == '1':
 flags.append('OHMS')
 if bin_array[13][3] == '1':
 flags.append('Hz')
 return flags

[docs]def str_to_digits(str_of_bytes):
 """
 Converts a string of space separated hexadecimal bytes into numbers following the protocol in readme.md

 :param str_of_bytes: a string of bytes
 :type str_of_bytes: str
 :rtype: str
 :return: string of digits represented by str_of_bytes with decimal point as applicable

 """
 bin_array = get_arr_from_str(str_of_bytes) # Create an array of the binary values from those hexadecimal bytes
 digits = ""
 # reversed range so that we iterate through values 4,3,2,1 in that order
 # due to how serial protocol works (see readme.md)
 for number in reversed(range(1, 5)):
 out = process_digit(number, bin_array)
 if out[1] == -1:
 print("Protocol Error: Please start an issue here: https://github.com/ddworken/2200087-Serial-Protocol/issues and include the following data: '" + str_of_bytes + "'")
 exit(1)
 if out[0] is True: # append the decimal point if the decimalPointBool in the tuple is true
 digits += "."
 digits += str(out[1])
 # following the serial protocol, calculate whether or not a negative sign is needed
 minus_bool = bool(int(bin_array[0][::-1][3]))
 if minus_bool:
 digits = '-' + digits
 return digits

[docs]def get_serial_chunk(ser):
 """
 Gets a serial chunk from the device.

 :param ser: serial.Serial object
 :rtype: str
 :returns: string of 14 received characters separated by spaces

 """
 while True:
 chunk = []
 for i in range(14):
 chunk.append(ser.read(1).encode('hex'))
 if chunk[0][0] != '1':
 for index, byte in enumerate(chunk):
 if byte[0] == '1':
 start_chunk = chunk[index:]
 end_chunk = chunk[:index]
 chunk = start_chunk + end_chunk
 return " ".join(chunk)

[docs]def process_chunk(chunk):
 digits = str_to_digits(chunk)
 flags = ' '.join(str_to_flags(chunk))
 if "None" not in digits:
 return digits + ' ' + flags
 else:
 return None

[docs]def get_next_point(ser):
 """
 Get the next point from the device. This function raises an Exception if anything at all
 goes wrong during the process of obtaining the value. The returned value is a string which
 should then be parsed by downstream code to determine what it actually is.

 Due to the nature of the serial interface, the downstream code must also ensure that this
 function is called often enough to keep the data in the various serial buffers from going
 stale. This particular DMM sends back a point every 0.1s, so this function should effectively
 be called at that frequency.

 Alternatively, a crochet / twisted based protocol implementation can be used to provide an
 interface friendlier to more complex synchronous code without needing to create a plethora
 of threads that spend their time in time.sleep().

 .. warning:: This function will block.

 """
 chunk = get_serial_chunk(ser)
 return process_chunk(chunk)

[docs]def confirm_device(ser):
 """
 Test the serial object for the device. This is a naive test, assuming that if a value can
 be successfully parsed, the device is what is expected. This is a very weak test, and should
 not be overly relied upon.
 """
 # noinspection PyBroadException
 try:
 get_next_point(ser)
 return True
 except:
 return True

[docs]def get_serial_object(port=None):
 """
 Get a serial object given the port.
 """
 if port is None:
 port = detect_device_port()

 ser = serial.Serial(port=port, baudrate=2400, bytesize=8, parity='N', stopbits=1, timeout=5,
 xonxoff=False, rtscts=False, dsrdtr=False)
 return ser

[docs]def main_loop(vargs):
 """
 Main loop for standalone use
 """
 if len(vargs.port) == 1:
 ser = get_serial_object(port=vargs.port[0])
 grapher = Grapher([0])
 if vargs.csv:
 print vargs.port[0] + ','
 if not vargs.csv:
 print "| " + vargs.port[0] + " |"
 while True:
 chunk = get_serial_chunk(ser)
 if vargs.graph:
 try:
 float_val = float(str_to_digits(chunk))
 grapher.append_with_label(float_val, ' '.join(str_to_flags(chunk)))
 graph = grapher.get_graph()
 for line in graph:
 print line
 except:
 print str_to_digits(chunk)[-1]
 try:
 if str_to_digits(chunk)[-1] == 'C' or str_to_digits(chunk)[-1] == 'F':
 float_val = float(str_to_digits(chunk)[0:-1])
 grapher.append_with_label(float_val, ' '.join(str_to_flags(chunk)))
 graph = grapher.get_graph()
 for line in graph:
 print line
 except:
 pass
 else:
 digits = str_to_digits(chunk)
 flags = ' '.join(str_to_flags(chunk))
 if "None" not in digits:
 if vargs.csv:
 if not vargs.quiet:
 print digits + ' ' + flags + ","
 if vargs.quiet:
 print digits + ","
 if not vargs.csv:
 if not vargs.quiet:
 print "| " + digits + ' ' + flags + " |"
 if vargs.quiet:
 print "| " + digits + " |"
 if len(vargs.port) > 1:
 serial_ports = []
 if vargs.graph:
 print "This program does not support graphing two multimeters at the same time. "
 else:
 for portNum in range(len(vargs.port)):
 serial_ports.append(serial.Serial(port=vargs.port[portNum], baudrate=2400, bytesize=8,
 parity='N', stopbits=1, timeout=5, xonxoff=False,
 rtscts=False, dsrdtr=False))
 if not vargs.csv:
 sys.stdout.write("| ")
 for index, port in enumerate(vargs.port):
 # We have to use sys.stdout.write() so that it doesn't print a new line after each time we write data
 sys.stdout.write(port),
 if vargs.csv:
 if index != len(vargs.port)-1: 	# So that it doesn't print a , after the last element
 sys.stdout.write(","),
 if not vargs.csv:
 sys.stdout.write(" | ")
 sys.stdout.write("\n")		# So of course that means we have to print a new line so it still is a csv
 while True:
 data = []
 for ser in serial_ports:
 chunk = get_serial_chunk(ser)
 if not vargs.quiet:
 data.append(str_to_digits(chunk) + ' ' + ' '.join(str_to_flags(chunk)))
 if vargs.quiet:
 data.append(str_to_digits(chunk))
 if not any("None" in s for s in data):
 if not vargs.csv:
 sys.stdout.write("| ")
 for index, datum in enumerate(data):
 sys.stdout.write(datum)
 if vargs.csv:
 if index != len(data)-1: 	# So that it doesn't print a , after the last element
 sys.stdout.write(",")
 if not vargs.csv:
 sys.stdout.write(" | ")
 sys.stdout.write("\n")

if __name__ == '__main__': # Allows for usage of above methods in a library
 parser = argparse.ArgumentParser()
 parser.add_argument("--graph",
 help="Use this argument if you want to display a graph. ",
 action="store_true")
 parser.add_argument("-p", "--port", nargs='*',
 help="The serial port to use",
 default=None)
 parser.add_argument("-q", "--quiet",
 help="Use this argument if you only want the numbers, not the description. ",
 action="store_true")
 parser.add_argument("-c", "--csv",
 help="Use this argument to enable csv output",
 action="store_true")
 args = parser.parse_args()
 main_loop(args) # Call the mainLoop method with a list containing serial data

 © Copyright 2015, Chintalagiri Shashank.
 Created using Sphinx 1.3.1.

