

Welcome to DriveLink’s documentation!

Contents:

Indices and tables

	Index

	Module Index

	Search Page

[image: Build Status]
 [https://travis-ci.org/cdusold/DriveLink][image: Coverage Status]
 [https://coveralls.io/github/cdusold/DriveLink?branch=master][image: Documentation Status]
 [http://drivelink.readthedocs.io/en/latest/?badge=latest]

About

A collection of memory conserving data structures designed to give peak performance
for on demand data usage while maintaining a constant use of RAM.

Available from PyPI [https://pypi.python.org/pypi/DriveLink], and easily installed through pip install DriveLink. Documentation available at Read The Docs [http://drivelink.rtfd.org/] and source available on Github [https://github.com/cdusold/DriveLink].

Introduction

A library containing storage classes that maintain small RAM usage and original structure access order.

The motivation for this module was to provide constant size RAM usage
while maintaining normal use of Python Dictionaries and possibly other
structures for semi-big data, where it isn’t large enough to warrant more
big data centric solutions.

More importantly, this library intends to preserve the usability of Python for rapid
prototyping, while enabling larger data access.

Interface Base Class

	
class drivelink.Link(file_basename, size_limit=1024, max_pages=16, file_location='/home/docs/.DriveLink', compression_ratio=0)

	This abstract base class provides shared functionality for any hard disk linked
class required. The other classes in this library use this class, and can be
referred to if you need to implement your own version. (Please consider a pull
request at https://github.com/cdusold/DriveLink if you make a good general
implementation.)

Attention

All classes in DriveLink use this class, so the following applies
to each of them.

To be able to implement your own, in addition to implementing the abstract functions,
you have to implement self.pages as a dictionary that will work for your class.

This base class provides wrapping that automatically saves to disk, if everything
is implemented correctly in inheriting classes. It provides the ability to access
implementing classes directly (direct use of Class.close() reccommended) or
through a context manager.

Note

This abstract class is not thread safe, nor is it process safe. Any multithreaded
or multiprocessed uses of implemented classes hold no guarantees of accuracy.

You can configure how this class stores things in a few ways.

The file_basename parameter allows you to keep multiple different stored objects
in the same file_location, which defaults to .DriveLink in the user’s home folder.
Using a file_basename of the empty string may cause a small slowdown if more
than just this object’s files are in the folder. Using substrings of other basenames
or basenames that end in numbers may cause irregular behavior. Using a file_location
of the empty string will result in files being placed in the environment’s current
location (i.e. what os.getcwd() would return).

The size_limit parameter determines how many items are kept in each page, and the
max_pages parameter determines how many pages can be kept in memory at the same
time. If you use smaller items in the class, increasing either is probably a
good idea to get better performance. This setting will only use about 128 MB if
standard floats or int32 values. Likely less than 200 MB will ever be in memory,
which prevents the RAM from filling up and needing to use swap space. Tuning
these values will be project, hardware and usage specific to get the best results.
Even with the somewhat low defaults, this will beat out relying on python to
use swap space.

In order to speed up disk access, you can specify a compression_ratio. compression
is performed using Python’s built in ZLib library [https://docs.python.org/library/zlib.html].

Disk Based Dictionary

	
class drivelink.Dict(file_basename, size_limit=1024, max_pages=16, file_location='/home/docs/.DriveLink', compression_ratio=0)

	A dictionary class that maintains O(1) look up and write while keeping RAM usage O(1) as well.

This is accomplished through a rudimentary (for now) hashing scheme to page the
dictionary into parts.

The object created can be used any way a normal dict would be used, and will
clean itself up on python closing. This means saving all the remaining pages
to disk. If the file_basename and file_location was used before, it will load
the old values back into itself so that the results can be reused.

There are two ways to initialize this object, as a standard object:

>>> diskDict = Dict("sampledict")
>>> for i in range(10):
... diskDict[i] = chr(97+i)
...
>>> diskDict[3]
'd'
>>> 5 in diskDict
True
>>> del diskDict[5]
>>> ", ".join(str(x) for x in diskDict.keys())
'0, 1, 2, 3, 4, 6, 7, 8, 9'
>>> 5 in diskDict
False

Or through context:

>>> with Dict("testdict") as d:
... for i in range(10):
... d[i] = chr(97+i)
... print(d[3])
d

If there is a way to break dict like behavior and you can reproduce it, please
report it to the GitHub issues [https://github.com/cdusold/DriveLink/issues/].

Ordered Access Disk Based Dictionary

	
class drivelink.OrderedDict(file_basename, size_limit=1024, max_pages=16, file_location='/home/docs/.DriveLink', compression_ratio=0)

	A dictionary class that maintains O(1) look up and write while keeping RAM usage O(1) as well.

This is accomplished through a rudimentary (for now) hashing scheme to page the
dictionary into parts.

Disk Based List

	
class drivelink.List(file_basename, size_limit=1024, max_pages=16, file_location='/home/docs/.DriveLink', compression_ratio=0)

	A list class that maintains O(k) look up and O(1) append while keeping RAM usage O(1) as well.
Unfortunately, insert is O(n/k).

This is accomplished through paging every size_limit consecutive values together
behind the scenes.

The object created can be used any way a normal list would be used, and will
clean itself up on python closing. This means saving all the remaining pages
to disk. If the file_basename and file_location was used before, it will load
the old values back into itself so that the results can be reused.

There are two ways to initialize this object, as a standard object:

>>> diskList = List("samplelist")
>>> for i in range(10):
... diskList.append(i)
...
>>> diskList[3]
3
>>> ", ".join(str(x) for x in diskList)
'0, 1, 2, 3, 4, 5, 6, 7, 8, 9'
>>> del diskList[5]
>>> ", ".join(str(x) for x in diskList)
'0, 1, 2, 3, 4, 6, 7, 8, 9'

Or through context:

>>> with List("testlist") as d:
... for i in range(10):
... d.append(i)
... print(d[3])
3

If there is a way to break list like behavior and you can reproduce it, please
report it to the GitHub issues [https://github.com/cdusold/DriveLink/issues/].

 Python Module Index

 d

 		 	

 		
 d	

 	
 	
 drivelink	

Index

 D
 | L
 | O

D

 	
 	Dict (class in drivelink)

 	
 	drivelink (module)

L

 	
 	Link (class in drivelink)

 	
 	List (class in drivelink)

O

 	
 	OrderedDict (class in drivelink)

 nav.xhtml

 Table of Contents

 		Welcome to DriveLink's documentation!

_static/ajax-loader.gif

_static/comment-close.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

