

Welcome to DRF OpenAPI’s documentation!

Contents:

	DRF OpenAPI
	1. Background

	2. Requirements:

	3. Design

	4. Constraints

	5. Examples

	6. License

	Installation
	Stable release

	From sources

	Usage
	1. Quickstart

	2. Add schema to a view method

	3. Add version to schema

	4. Add response status code to schema

	5. Customization of the API View

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2017-07-01)

	0.7.0 (2017-07-28)

	0.8.0 (2017-07-28)

	0.8.1 (2017-07-28)

	0.9.0 (2017-07-28)

	0.9.1 (2017-07-28)

	0.9.3 (2017-08-05)

	0.9.5 (2017-08-12)

	0.9.6 (2017-08-12)

	0.9.7 (2017-09-12)

	0.9.8 (2017-10-01)

	0.9.9 (2017-10-01)

	1.0.1 (2017-12-14)

	1.1.0 (2017-12-14)

	1.2.0 (2017-12-20)

Indices and tables

	Index

	Module Index

	Search Page

DRF OpenAPI

[image: _images/drf_openapi.svg]
 [https://pypi.python.org/pypi/drf_openapi][image: _images/drf_openapi1.svg]
 [https://travis-ci.org/limdauto/drf_openapi][image: Documentation Status]
 [https://drf-openapi.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/limdauto/drf_openapi/][image: Join the chat at https://gitter.im/drf_openapi/Lobby]
 [https://gitter.im/drf_openapi/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]Generates OpenAPI-compatible schema from API made with Django Rest Framework. Use ReDoc [https://github.com/Rebilly/ReDoc] as default interface instead of Swagger.
First-class support for API versioning changelog & method-specific schema definition.

[image: _images/screenshot.png]

Contents

	DRF OpenAPI

	1. Background

	2. Requirements:

	3. Design

	4. Constraints

	5. Examples

	6. License

1. Background

Django Rest Framework has an API schema generation/declaration mechanism [http://www.django-rest-framework.org/api-guide/schemas/] provided by
coreapi [http://www.coreapi.org/] standard. There are a couple of problems with the current ecosystem:

	CoreAPI is not compatible out of the box with OpenAPI [https://www.openapis.org/] which is a much more popular API standard with superior tooling support, i.e. Swagger et. al.

	The OpenAPI codec (compatibility layer) that CoreAPI team provides drops / doesn’t support a number of useful OpenAPI features.

	There is no support for versioning or method-specific schema.

2. Requirements:

This project was born to bridge the gap between DRF and OpenAPI. The high-level requirements are as followed:

	Can be dropped into any existing DRF project without any code change necessary.

	Provide clear disctinction between request schema and response schema.

	Provide a versioning mechanism for each schema. Support defining schema by version range syntax, e.g. >1.0, <=2.0

	Support multiple response codes, not just 200

	All this information should be bound to view methods, not view classes.

It’s important to stress the non-intrusiveness requirement, not least because I want to minimize what I will have to change when
DRF itself decides to support OpenAPI officially, if at all.

3. Design

	
	Schema are automatically generated from serializers [http://www.django-rest-framework.org/api-guide/serializers/]

	
	From here onwards, schema and serializer are used interchangably

	Versioned schema is supported by extending VersionedSerializers.

	Metadata, i.e. versioning, response and request schema, are bound to a view method through the view_config decorator.

	Extra schema information such as response status codes and their descriptions are bound to the serializer Meta class

	Automatic response validation is optionally provided view_config(response_serializer=FooSerializer, validate_response=True)

4. Constraints

Currently DRF OpenAPI only supports DRF project that has versioning [http://www.django-rest-framework.org/api-guide/versioning/#urlpathversioning] enabled.
I have only tested URLPathVersioning [http://www.django-rest-framework.org/api-guide/versioning/#urlpathversioning] but I intend to suppor the full range of
versioning scheme supported by DRF.

5. Examples

Please read the docs [https://drf-openapi.readthedocs.io] for a quickstart.

Also I have recreated the example in DRF tutorial [http://www.django-rest-framework.org/tutorial/quickstart/] with OpenAPI schema enabled
in examples/.

6. License

MIT

Installation

Stable release

To install DRF OpenAPI, run this command in your terminal:

$ pip install drf_openapi

This is the preferred method to install DRF OpenAPI, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for DRF OpenAPI can be downloaded from the Github repo [https://github.com/limdauto/drf_openapi].

You can either clone the public repository:

$ git clone git://github.com/limdauto/drf_openapi

Or download the tarball [https://github.com/limdauto/drf_openapi/tarball/master]:

$ curl -OL https://github.com/limdauto/drf_openapi/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

1. Quickstart

in settings.py
INSTALLED_APPS = [
 ...
 'drf_openapi'
]
REST_FRAMEWORK = {
 'DEFAULT_VERSIONING_CLASS': 'rest_framework.versioning.URLPathVersioning'
}

in urls.py
urlpatterns += [url(f'{API_PREFIX}/', include('drf_openapi.urls'))]

And voila! Your API documentation will be available at /<API_PREFIX>/schema

2. Add schema to a view method

DRF OpenAPI support the separation of response schema and request schema on a per view method basis through the use of a view_config decorator

from drf_openapi.utils import view_config

class SnippetList(APIView):
"""
List all snippets, or create a new snippet.
"""

 @view_config(response_serializer=SnippetSerializer)
 def get(self, request, version, format=None):
 snippets = Snippet.objects.all()
 res = self.response_serializer(snippets, many=True)
 res.is_valid(raise_exception=True)
 return Response(res.validated_data)

 @view_config(request_serializer=SnippetSerializer, response_serializer=SnippetSerializer)
 def post(self, request, version, format=None):
 req = self.request_serializer(data=request.data)
 req.is_valid(raise_exception=True)
 req.save()
 res = self.response_serializer(req.data)
 res.is_valid(raise_exception=True)
 return Response(res.validated_data, status=status.HTTP_201_CREATED)

3. Add version to schema

DRF OpenAPI support schema versioning through versioning the serializers that the schema are generated from.
To make a serializer version-specific, extends VersionedSerializers

from drf_openapi.entities import VersionedSerializers
from rest_framework import serializers

class SnippetSerializerV1(serializers.Serializer):
 title = serializers.CharField(required=False, allow_blank=True, max_length=100)

class SnippetSerializerV2(SnippetSerializerV1):
 title = serializers.CharField(required=True, max_length=100)

class SnippetSerializer(VersionedSerializers):
 """
 Changelog:

 * **v1.0**: `title` is optional
 * **v2.0**: `title` is required
 """

 VERSION_MAP = (
 ('>=1.0, <2.0', SnippetSerializerV1),
 ('>=2.0', SnippetSerializerV2),
)

That’s it. The view_config decorator will be able to correctly determined what serializer to use based on the request version at run time.

4. Add response status code to schema

By default, the response serializer’s fields and docstring, if specified, are associated with the 200 status code.
Support for error status codes is provided through the use of Meta class in the serializer.

from rest_framework.status import HTTP_400_BAD_REQUEST

class SnippetSerializerV1(serializers.Serializer):
 title = serializers.CharField(required=False, allow_blank=True, max_length=100)

 class Meta:
 error_status_codes = {
 HTTP_400_BAD_REQUEST: 'Bad Request'
 }

In later iteration, I will add support for sample error response.

5. Customization of the API View

You can customize the API View that renders the schema documentation by subclassing it. It’s important to note that
it is just a DRF APIView [http://www.django-rest-framework.org/api-guide/views/] so it inherits all attributes
available in an APIView. Therefore, if you want to customize the permissions to allow public access
to your API documentation for example, which by default is staff-only
IsAdminUser [http://www.django-rest-framework.org/api-guide/permissions/#isadminuser], you can do the following

in your.project.views
from rest_framework import permissions
from drf_openapi.views import SchemaView

class MySchemaView(SchemaView):
 permission_classes = (permissions.AllowAny,)

in your.project.urls
from your.project.views import MySchemaView
url('schema/$', MySchemaView.as_view(title='My Awesome API'), name='api_schema')

Take a look at the example project [https://github.com/limdauto/drf_openapi/blob/master/examples/snippets/urls.py]
to see the default URL handler in action.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/limdauto/drf_openapi/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

DRF OpenAPI could always use more documentation, whether as part of the
official DRF OpenAPI docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/limdauto/drf_openapi/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up drf_openapi for local development.

	Fork the drf_openapi repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/drf_openapi.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv drf_openapi
$ cd drf_openapi/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 drf_openapi tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/limdauto/drf_openapi/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_drf_openapi

Credits

Development Lead

	Lim H. <limdauto@gmail.com>

Contributors

None yet. Why not be the first?

History

0.1.0 (2017-07-01)

	First release on PyPI.

0.7.0 (2017-07-28)

	Implement VersionedSerializer

	Implement view_config

	Make the library an installable Django app

0.8.0 (2017-07-28)

	Some minor fixes to make sure it works on generic project

	Add examples

0.8.1 (2017-07-28)

	Fix bug when parsing empty docstring of the serializer

0.9.0 (2017-07-28)

	Rename base VersionedSerializer into VersionedSerializers

0.9.1 (2017-07-28)

	Fix import issue after renaming

0.9.3 (2017-08-05)

	Add support for different response status codes (Issue 27 [https://github.com/limdauto/drf_openapi/issues/27])

0.9.5 (2017-08-12)

	Add Python 2.7 compatibility (thanks tuffnatty [https://github.com/limdauto/drf_openapi/pull/35])

	Add support for ModelViewSet (thanks tuffnatty [https://github.com/limdauto/drf_openapi/pull/36])

0.9.6 (2017-08-12)

	Fix type display for child of ListSerializer/ListField (Issue 28 [https://github.com/limdauto/drf_openapi/issues/28])

0.9.7 (2017-09-12)

	Improve permission for schema view (Issue 31 [https://github.com/limdauto/drf_openapi/issues/31])

0.9.8 (2017-10-01)

	Turn schema view into a class-based view for easier customization

0.9.9 (2017-10-01)

	Another fix for ListSerializer/ListField (Issue 28 [https://github.com/limdauto/drf_openapi/issues/28])

1.0.1 (2017-12-14)

	Fix DRF 3.7 compatibility issue

	Added (werwty [https://github.com/werwty]) as a maintainer

1.1.0 (2017-12-14)

	Fix viewset that doesn’t have pagination_class (Issue 84 [https://github.com/limdauto/drf_openapi/issues/84]) and (Issue 92 [https://github.com/limdauto/drf_openapi/issues/92])

1.2.0 (2017-12-20)

	Make serializer_class optional (Issue 57 [https://github.com/limdauto/drf_openapi/issues/57])

Index

 _static/ajax-loader.gif

_images/screenshot.png
Q search
AUTHENTICATION
SCHEMA
SNIPPETS

/v1.0/snippets/

& /v1.0/snippets/

N1.0/snippets/
List all snippets, or create a new snippet.
Response Description:

Changelog:
* v1.0: title isoptional
e v2.0. title isrequired

Responses

RESPONSE SCHEMA
1 id

title

code Required

linenos

language

style

N1.0/snippets/

List all snippets, or create a new snippet.
Request Description:

Changelog:

* v1.0: title isoptional
e v2.0. title isrequired

Response Description:

Changelog:
* v1.0: title isoptional
e v2.0. title isrequired

IGETl /.0/snippets/

RESPONSE SAMPLES

200 Success

"id": 0,
"title":
"code":
"linenos
"language
"style":

POST | A1.0/snippets/

RESPONSE SAMPLES

200 Success

"id": 0,
"title":
"code":
"linenos
"language
"style":

Q search
AUTHENTICATION
SCHEMA
SNIPPETS

/v2.0/snippets/

& /v2.0/snippets/

N2.0/snippets/

List all snippets, or create a new snippet.

Response Descript

Changelog:
* v1.0: title isoptional
e v2.0. title isrequired

Responses

RESPONSE SCHEMA

1 id

title Required

code Required

linenos

language

style

N2.0/snippets/

List all snippets, or create a new snippet.
Request Description:

Changelog:

* v1.0: title isoptional
e v2.0. title isrequired

Response Description:

Changelog:
* v1.0: title isoptional
e v2.0. title isrequired

IGET ~v2.0/snippets/

RESPONSE SAMPLES

200 Success

"title":
"code":
"linenos
"language
"style":

POST | /v2.0/snippets/

RESPONSE SAMPLES

200 Success

"title":
"code":
"linenos
"language
"style":

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to DRF OpenAPI’s documentation!

 		
 DRF OpenAPI

 		
 1. Background

 		
 2. Requirements:

 		
 3. Design

 		
 4. Constraints

 		
 5. Examples

 		
 6. License

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 1. Quickstart

 		
 2. Add schema to a view method

 		
 3. Add version to schema

 		
 4. Add response status code to schema

 		
 5. Customization of the API View

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2017-07-01)

 		
 0.7.0 (2017-07-28)

 		
 0.8.0 (2017-07-28)

 		
 0.8.1 (2017-07-28)

 		
 0.9.0 (2017-07-28)

 		
 0.9.1 (2017-07-28)

 		
 0.9.3 (2017-08-05)

 		
 0.9.5 (2017-08-12)

 		
 0.9.6 (2017-08-12)

 		
 0.9.7 (2017-09-12)

 		
 0.9.8 (2017-10-01)

 		
 0.9.9 (2017-10-01)

 		
 1.0.1 (2017-12-14)

 		
 1.1.0 (2017-12-14)

 		
 1.2.0 (2017-12-20)

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

