

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/dregex/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/dregex/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Dregex - Deterministic Regular Expression Engine

Dregex is a Scala/JVM library that implements a regular expression engine using deterministic finite automata (DFA). It supports some Perl-style features and yet retains linear matching time. It can, additionally, do set operations (union, intersection, difference).

[image: Build Status] [https://travis-ci.org/marianobarrios/dregex]

[image: Maven Central] [https://maven-badges.herokuapp.com/maven-central/com.github.marianobarrios/dregex_2.12]
[image: Scaladoc] [http://javadoc-badge.appspot.com/com.github.marianobarrios/dregex_2.12]

Rationale

Most mainstream engines work with flavors of regular expressions based on the one that appeared Perl 5 in 1994. Those flavors include a wide range of features, which make state-machine based implementation impossible. As they rely on recursive backtracking, these engines can also have exponential matching time.

On the other hand, there is a mathematical definition of regular expressions, as they were invented by Stephen Kleene in 1956. In the most minimalistic version these expressions consist of just literal characters, alternation (“|”) and repetition (“*”). They can be matched again arbitrary text of length n in O(n), using a Definite Finite Automaton (DFA).

There are some features of Perl regular expressions that are impossible to express in a DFA, most notable backreferences (i.e., forcing to match the same text more than once). There are also some other features that, albeit not infeasible, complicate a DFA solution quite significantly, like search and capturing groups. On the other hand, on top of the performance benefits, using a DFA also allows to do set operations; i.e., union, intersection and difference.

It can seem that no solution is ideal. But it should be observed that regular expression uses can almost always be classified in either of these two cases:

	Search

	Matching

Search is about finding some pattern in a (usually large) text. Beyond the search functionality itself, capture groups are also very important. Mainstream Perl-like implementations do this well.

Matching is about fully matching (usually small) texts against a regular expression, sometimes against several expressions in a sequence. Here matching speed tends to be important, and capturing submatches less so, as the interest is whether the expressions match the whole text or not.

Using DFA-based matching can be useful in the second case. For example, non-intersecting DFA can be tested in any order (even if stopping at the first match), allowing for otherwise impossible optimizations.

Dregex is an attempt to implement a useful subset of the functionality offered by Perl-like engines, using a DFA, for the Java Virtual Machine.

Supported regex flavor

Unless specified, the regular expression flavor supported attempts to be compatible with the Java flavor [https://docs.oracle.com/javase/9/docs/api/java/util/regex/Pattern.html].

Supported features

	Literals

	Escaped characters

	Standard regular language constructs: |, ?, * and +, and parenthesis grouping.

	General quantifiers: {n}, {n,m}, {n,}

	Dot wildcards

	Simple character classes: [abc]

	Simple negated character classes: [^abc]

	Ranges in character classes: [a-z]

	Special character classes, including negated versions: \w, \s, \d, \W, \S, \D

	POSIX character classes (using the syntax and definition of java.util.regex.Pattern [https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html]), e.g., \p{Lower}, \p{Punct}, \P{Lower}

	Unicode character classes (using the syntax and definition of java.util.regex.Pattern [https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html]):
	Blocks [https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#ubc], e.g., \p{InGreek}, \p{block=Greek}, \p{blk=Greek}

	Scripts [https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#usc], e.g., \p{IsLatin}, \p{script=Latin}, \p{sc=Latin}

	General categories [https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#ucc], e.g., \p{Lu}, \p{IsLu}, \p{general_category=Lu}, \p{gc=Lu}

	Binary properties [https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#ubpc], e.g., \p{IsAlphabetic}

	Special character classes inside regular character classes: [\d\s], [\D]

	Lookahead (positive and negative) (see note below)

	Set operations (union, intersection, difference) between regular expressions.

Not (yet) supported

	Lookbehind

Not supported

	Searching (the engine matches only against the full input string)

	Capturing groups

	Backreferences

	Anchors (ˆ and $), because they are redundant, as the expressions only operate over the complete text.

	Reluctant quantifiers (+?, *?, ??, {...}?), because they are meaningless, as they, by definition, only affect capturing groups, not whether the expressions match or not.

Algorithms

DFA construction

The library parses the regular expressions and builds a NFA (Nondeterministic Finite Automaton) using a variation of the Thompson algorithm [http://en.wikipedia.org/w/index.php?title=Thompson%27s_construction_algorithm&oldid=649249684]. Then uses the “powerset construction” to build a DFA (Deterministic Finite Automaton). One the DFA is built, the matching algorithm is straightforward.

Wildcards and character classes

Character classes are expanded as disjunctions before NFA creation. However, because of the number of possible Unicode code points, internaly, non-overlapping code point intervals are used to avoid disjunctions with too many alternatives.

Example:

	[abc] → [a-c]

	[^efg] → [0-d]|[h-MAX]

	mno[^efg] → mno(0-d|h-l|m|n|o|p-MAX)

	. → [0-MAX]

Set operations

Intersections, unions and differences between regex are done using the “product construction”. The following pages include graphical explanations of this technique:

	http://stackoverflow.com/q/7780521/4505326

	http://cs.stackexchange.com/a/7108

This is a relatively straightforward algorithm that is implemented using the already generated DFA.

Lookahead

Lookaround constructions are transformed into an equivalent DFA operation, and the result of it trivially transformed into a NFA again for insertion into the outer expression:

	(?=B)C → C ∩ B.*

	(?!B)C → C - B.*

In the case of more than one lookaround, the transformation is applied recursively.

Lookaround expressions are supported anywhere in the regex, including inside repetition constructions. Nevertheless, there is a difference in the meaning of those lookarounds with respect to Perl-like engines. Consider:

((?!aa)a)+

This expression matches, in this engine, a, aa, aaa and so on, being effectively equivalent to a+, because the negative condition (aa) can never happen inside a. The fact that the expression is repeated does not change its inner logic. However, in Perl-like engines, the aforementioned regex does not match any a longer than one character, because those engines treat lookarounds specially, effectively running a sub-regex at the point of occurrence, irrespective of the context.

The different behavior of this engine is, of course, a direct consequence of the way lookarounds are implemented. Nevertheless, it can be argued that this definition is conceptually simpler and, more importantly, easier to reason about in the context of complex expression. Regarding practical uses, looped lookarounds like the one in the example are quite rare anyway.

Internals

Requirements

Dregex requires Java 8.

Logging

The library uses SLF4J [https://www.slf4j.org/] for logging, which is the most widely used pluggable logging framework for the JVM. As a policy, all logging event emitted are at TRACE level, which is below the default threshold in most logging implementations and thus completely silent by default.

Dependencies

Dregex is written in Scala (but fully usable from Java), so it depends on the Scala runtime library (5 MB). There are two more small dependencies: SLF4J [https://www.slf4j.org/] and scala-parser-combinators [https://github.com/scala/scala-parser-combinators]. The main jar file is about 200 KB.

Similar efforts

	RE2 [https://github.com/google/re2] is an efficient (linear) C++ library that implements a subset of Perl features, writen by Russ Cox. The author has written a set of articles [http://swtch.com/~rsc/regexp/regexp1.html] explaining the problem.

	TRE [https://github.com/laurikari/tre/] is an efficient C library and command-line tool that implements POSIX-compliant and approximate (fuzzy) regex matching, using “tagged DFA”. It is written by Ville Laurikari.

	Plan 9 grep [http://swtch.com/usr/local/plan9/src/cmd/grep/] is an efficient DFA implementation that supports egrep syntax. It was written by Ken Thompson.

	regex-tdfa [https://github.com/ChrisKuklewicz/regex-tdfa] is a “tagged DFA” implementation written in Haskell by Chris Kuklewicz.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/up.png

_static/file.png

_static/down-pressed.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

