drain Documentation
Release 0.0.5

Eric Potash

Mar 13, 2018

Contents

Installation
1.1 Stablerelease
1.2 From sources

Usage

2.1 Arithmetic Example . .
2.2 How does drain work?
23 Steps

Contributing
3.1 Types of Contributions .
32 GetStarted!

3.3 Pull Request Guidelines
34 Tips...........

Indices and tables

(O8]

(O8]

SN SN L

drain Documentation, Release 0.0.5

Drain is a lightweight framework for writing reproducible data science workflows in Python. The core features are:
e Turn a Python workflow (DAG) into steps that can be run by a tool like make.

 Transparently pass the results of one step as the input to another, handling any caching that the user requests
using efficient tools like HDF and joblib.

* Enable easy parallel execution of workflows.

» Execute only those steps that are determined to be necessary based on timestamps (both source code and data)
and dependencies, virtually guaranteeing reproducibility of results and efficient development.

Drain is designed around these principles:

 Simplicity: drain is very lightweight and easy to use. The core is just a few hundred lines of code. The steps you
write in drain get executed with minimal overhead, making drain workflows easy to debug and manage.

* Reusability: Drain leverages mature tools drake to execute workflows. Drain provides a library of steps for data
science workflows including feature generation and selection, model fitting and comparison.

* Generality: Virtually any workflow can be realized in drain. The core was written with extensibility in mind so
new storage backends and job schedulers, for example, will be easy to incorporate.

Contents:

Contents 1

https://pypi.python.org/pypi/drain
https://travis-ci.org/potash/drain
https://opensource.org/licenses/MIT
https://en.wikipedia.org/wiki/Directed_acyclic_graph#Data_processing_networks
http://www.pytables.org/
https://pythonhosted.org/joblib/generated/joblib.dump.html
https://github.com/Factual/drake/

drain Documentation, Release 0.0.5

2 Contents

CHAPTER 1

Installation

1.1 Stable release

To install drain, run this command in your terminal:

’$ pip install drain

This is the preferred method to install drain, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

1.2 From sources

The sources for drain can be downloaded from the Github repo.

You can either clone the public repository:

’$ git clone git://github.com/potash/drain

Or download the tarball:

’$ curl -OL https://github.com/potash/drain/tarball/master

Once you have a copy of the source, you can install it with:

’$ python setup.py install

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/potash/drain
https://github.com/potash/drain/tarball/master

drain Documentation, Release 0.0.5

4 Chapter 1. Installation

CHAPTER 2

Usage

2.1 Arithmetic Example

This is a toy example, in which each Step produces a number.

1.

We define a simple Step that wraps a numeric value:

class Scalar (Step):
def _ _init__ (self, wvalue, +**kwargs):

note how we do not need to say self.value=value; the parent constructor,
—does that for us
Step.__init__ (self, wvalue=value, =*xkwargs)

def run(self):
return self.value

> s = Scalar (value=b5)

Note that the result of a step’s run () method is accessible via get_result ().

Steps can use the results of others steps, called inputs. For example we can define an Add step which adds
the values of its inputs:

class Add(Step) :
def _ _init__ (self, inputs):
Step.__init__ (self, inputs=inputs)

def run(self, =xvalues)
return sum((i.get_result() for i in self.inputs))

In order to avoid calling get_result (), drain does so-called inputs mapping which is explained in the
corresponding section below. In its most basic form, inputs mapping allows us to rewrite Add . run as follows:

drain Documentation, Release 0.0.5

def run(self, =xvalues):
return sum(values)

’a = Add (inputs = [Scalar (value=v) for v in range(1l,10)])

2.2 How does drain work?

drain is a pretty lightweight wrapper around drake; its core functionality is only a few hundred lines of code.

2.3 Steps

A workflow consists of steps, each of which is inherited from the drain.step.Step class. Each step must implement the
run () method, whose return value is the result of the step. A step should be a deterministic function from its
constructor arguments to its result.

Because a step is only a function of its arguments, serialization and hashing is easy. We use YAML for serialization,
and hash the YAML for hashing. Thus all arguments to a step’s constructor should be YAML serializable.

2.3.1 Design decisions

* Step’s constructor accepts any keyword argument, but does not accept positional arguments.
* A Step can decide to only accept certain keyword arguments by defining a custom __init__ ().

* Reserved keyword arguments are name, target, inputs, inputs_mapping, and resources. These
are handled specifically by Step.__new__ ().

* When passing keyword arguments to a Step constructor, then all the arguments (except name and target)
become part of the signature (i.e., they will be part of this Step’s serialization). Any instance of a Step
automatically has an attribute _kwargs holding these arguments.

e When a Step does not override __init__ () (i.e., when it uses the default Step.__ _init__ ()), then all
the keyword arguments that are being passed become attributes of the new instance. This is a mere convenience
functionality. It can be overriden simply by overriding __init__ (), and it does not affect serialization.

Each Step has several reserved keyword arguments, namely target, name, inputs_mapping, resources,
andinputs®.

2.3.2 name and target

name defaults to None and target to False. name is a string and allows you to name your current St ep; this is
useful later, when handling the step graph. target decides if the Step’s output should be cached on disk or not.
These two arguments are not serialized.

2.3.3 inputs

The step attribute inputs should be a list of input step objects. Steps appearing in other arguments will not be run
correctly. Note that the Step.___init___ superconstructor automatically assigns all keywords to object attributes.

Inputs can also be declared within a step’s constructor by setting the inputs attribute.

6 Chapter 2. Usage

drain Documentation, Release 0.0.5

2.3.4 inputs_mapping

The inputs_mapping argument to a step allows for convenience and flexibility in passing that step’s inputs’ results
to the step’s run () method.

Default behavior

By default, results are passed as positional arguments. So a step with inputs=[a, b] will have run called as

run(a.get_result (), b.get_result())

When a step produces multiple items as the result of run() it is often useful to name them and return them as a
dictionary. Dictionary results are merged (with later inputs overriding earlier ones?) and passed to run as keyword
arguments. So if inputs a and b had dictionary results with keys a_0, a_1andb_0, b_1, respectively, then run
will be called as

run(a_0O=a.get_result()['a_0'], a_l=a.get_result()['a_1'],
b_0O=a.get_result()['b_0"'], b_l=b.get_result()['b_1"])

Custom behavior

This mapping of input results to run arguments can be customized when constructing steps. For example if the results
of a and b are objects then specifying

inputs_mapping = ['a', 'b']

will result in the call

’run(a:a.get_result(), b=b.get_result ()

If a and b return dicts then the mapping can be used to change their keywords or exclude the values:

inputs_mapping = [{'a_0':'alpha 0', 'a_1': None}, {'b_1':'beta 1"}]

will result in the call

run (alpha_O=a.get_result()['a_0'],
b_0O0=a.get_result () ['b_0'], beta_l=b.get_result()['beta_1'])

where: - a_0 and b_1 have been renamed to alpha_0 and alpha_1, respectively - a_1 has been excluded, and -
b_0 has been preserved.

To ignore the inputs mapping simply define

def run(self, xargs, =xxkwargs):
results = [i.get_result() for i in self.inputs]

2.3. Steps 7

drain Documentation, Release 0.0.5

8 Chapter 2. Usage

CHAPTER 3

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

3.1 Types of Contributions

3.1.1 Report Bugs

Report bugs at https://github.com/potash/drain/issues.
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

* Detailed steps to reproduce the bug.

3.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

3.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

https://github.com/potash/drain/issues

drain Documentation, Release 0.0.5

3.1.4 Write Documentation

drain could always use more documentation, whether as part of the official drain docs, in docstrings, or even on the
web in blog posts, articles, and such.

3.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/potash/drain/issues.

If you are proposing a feature:

» Explain in detail how it would work.
» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

3.2 Get Started!

Ready to contribute? Here’s how to set up drain for local development.

1. Fork the drain repo on GitHub.
2. Clone your fork locally:

$ git clone git@github.com:your_name_here/drain.git

. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up

your fork for local development:

$ mkvirtualenv drain
$ cd drain/
$ python setup.py develop

. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other

Python versions with tox:

$ flake8 drain tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

. Submit a pull request through the GitHub website.

10

Chapter 3. Contributing

https://github.com/potash/drain/issues

drain Documentation, Release 0.0.5

3.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:
1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check https://travis-ci.org/
potash/drain/pull_requests and make sure that the tests pass for all supported Python versions.

3.4 Tips

To run a subset of tests:

’$ py.test tests.test_drain

3.3. Pull Request Guidelines 11

https://travis-ci.org/potash/drain/pull_requests
https://travis-ci.org/potash/drain/pull_requests

drain Documentation, Release 0.0.5

12 Chapter 3. Contributing

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

13

	Installation
	Stable release
	From sources

	Usage
	Arithmetic Example
	How does drain work?
	Steps

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	Indices and tables

