

Welcome to OpenAPS’s documentation!

This documentation supports a self-driven Do-It-Yourself (DIY) implementation of an artificial pancreas based on the OpenAPS reference design. By proceeding to use these tools or any piece within, you agree to the copyright [https://github.com/openaps/docs/blob/master/license.txt] for more information; and the full README here [https://github.com/openaps/docs/blob/master/README.md] and release any contributors from liability, and assume full responsibility for all of your actions and outcomes related to usage of these tools or ideas.

Note

A Note on DIY and the “Open” Part of OpenAPS

This is a set of development tools to support a self-driven DIY implementation. Any person choosing to use these tools is solely responsible for testing and implementing these tools independently or together as a system.

The DIY part of OpenAPS is important. While formal training or experience as an engineer or a developer is not a prerequisite, a growth mindset is required to learn to work with the “building blocks” that will help you develop your OpenAPS instance. Remember as you consider this project that this is not a “set and forget” system; an OpenAPS implementation requires diligent and consistent testing and monitoring to ensure each piece of the system is monitoring, predicting, and controlling as desired. The performance and quality of your system lies solely with you.

This community of contributors believes in “paying it forward,” and individuals who are implementing these tools are asked to contribute by asking questions, helping improve documentation, and contributing in other ways. Have questions? Hop into Gitter [https://gitter.im/nightscout/intend-to-bolus] and ask anytime!

Danger

IMPORTANT SAFETY NOTICE

The foundation of OpenAPS safety features discussed in this documentation are built on the safety features of the hardware used to build your system. It is critically important that you only use a tested, fully functioning FDA or CE approved insulin pump and CGM for closing an automated insulin dosing loop. Hardware or software modifications to these components can cause unexpected insulin dosing, causing significant risk to the user. If you find or get offered broken, modified or self-made insulin pumps or CGM receivers, do not use these for creating an OpenAPS system.

Additionally, it is equally important to only use original supplies such as inserters, cannulas and insulin containers approved by the manufacturer for use with your pump or CGM. Using untested or modified supplies can cause CGM inaccuracy and insulin dosing errors. Insulin is highly dangerous when misdosed - please do not play with your life by hacking with your supplies.

Next: How A DIY Open Source Closed Loop “Artificial Pancreas” Works

​

How A DIY Open Source Closed Loop “Artificial Pancreas” Works

How do you make decisions about your diabetes? You gather data, crunch the numbers, and take action.

A DIY loop is no different. It gathers data from:

	your pump [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Gear Up/pump.html]

	your CGM [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Gear Up/CGM.html]

	any other place you log information, like Nightscout [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/While You Wait For Gear/nightscout-setup.html]

It then uses this information to do the math and decide how your basal rates might need to be adjusted (above or below your underlying basal rate) in order to keep or bring your BGs in your target range.

How does the closed loop gather data?

With OpenAPS, there is a “rig” that is a physical piece of hardware. It has “brains” on the computer chip to do the math; plus a radio stick to communicate with your pump; plus it can talk to your phone and to the cloud via wifi to gather additional information and report to the world about what it’s doing.

The rig needs to:

	communicate with the pump and read history - what insulin has been delivered

	communicate with the CGM (either directly, or via the cloud) - to see what BGs are/have been doing

The rig runs a series of commands to collect this data, runs it through the algorithm, and does the decision-making math based on the settings (ISF, carb ratio, DIA, target, etc.) in your pump.

How does it control the pump based on its decisions?

When you build an OpenAPS rig, you follow the instructions in this documentation to:

	physically put the pieces of your rig together

	install the open source software on it

	configure it to talk to YOUR devices and use your preferences and safety settings

The open source software is designed to make it easy for the computer to do the work you used to do to calculate what needs to be done. During each “loop” - about every five minutes - the rig collects data from your pump and CGM. It prepares the data and runs the calculations. Then it sends any necessary adjustments to your pump. You can see what it’s doing in the logs of the rig, or by viewing the information on your watch or on Nightscout.

You can learn more about how the system is designed for safety in the OpenAPS Reference Design [https://OpenAPS.org/reference-design/] and read more about the calculations in the ‘How it Works’ section [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/How it works/understand-determine-basal.html#understanding-the-determine-basal-logic].

Prev.: Welcome to OpenAPS’s documentation!

Next: How to get your own OpenAPS system up and running

​

How to get your own OpenAPS system up and running

The OpenAPS setup process can be broken up into several parts:

	These can be done in parallel:

A. Choose and get your hardware. [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Gear Up/hardware-overview.html] You have several options for compatible pumps, CGMs, and rig components. While you will likely already have some of the gear you’ll need (e.g., you’ll likely keep using your CGM) it may take a few weeks to choose and find a compatible pump and to collect your rig hardware. Once you have your rig pieces (a computer, a radio board, and a battery) you’ll need to put them together.

B. Prepare to use OpenAPS. [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/While You Wait For Gear/collect-data-and-prepare.html] You’ll need to set up Nightscout if you haven’t already, and make a few tweaks if you have; review your pump settings; and make sure you’re comfortable using your pump if it’s new to you. You’ll also do some reading to make sure you understand how OpenAPS works, how you’ll use your new closed loop, and what options are available to you.

	Install OpenAPS on your rig! [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Build Your Rig/install-overview.html] There are detailed instructions that walk you through this process. This may take approximately 1-3 hours, but it’s doable regardless of how much of a “tech person” you are.

	Customize your system: once you’re comfortable with basic usage of your new closed loop, you can try out advanced features, add integrations, etc. Over time, you may also choose to enable advanced features or update your rig, as more features and algorithm improvements become available.

As with all things new, there is a little bit of a learning curve to building your first OpenAPS rig. Read slowly, double-check your spelling and make sure you don’t skip steps. If you get stuck or are unsure, you can use the screenshots to compare how the resulting screens should look. You can also ask for specific help [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Understanding OpenAPS-Overview/communication-support-channels.html] if you find yourself stuck.

Prev.: How A DIY Open Source Closed Loop “Artificial Pancreas” Works

Next: Using this documentation

​

Using this documentation

We recommend bookmarking the link [http://openaps.readthedocs.org/en/latest/] to the docs, as they are frequently updated (sometimes daily!) as we add more information, troubleshooting tips, and more. Anytime we are asked a question on one of the below channels, we try to add it to the documentation. So chances are, your question may already be answered here!

Warning: We do not recommend using a PDF version of this guide. The docs are updated continuously, and with a PDF, you will not get the freshest real-time edits. If you have Internet connectivity, we recommend instead having the docs pulled up in an Internet browser so you can refresh. This is especially true if you are working on a setup over the course of multiple days.

Formatting in this guide

	Wherever you see text that is formatted like this, it is usually a code snippet. You should copy and paste instead of attempting to type this out; this will save you debugging time for finding your typos.

	Wherever there are <bracketed_components>, these are meant for you to insert your own information. Most of the time, it doesn’t matter what you choose as long as you stay consistent throughout this guide. That means if you choose myopenaps as your <myopenaps> directory, you must use myopenaps every time you see <myopenaps>. Choose carefully when naming things so it’s easy to remember. Do not include the < > brackets in your name.

The docs have their own search function!

See the top left of the docs for the search box. It’s best to search inside the documentation itself, rather than Google, because you’ll stay inside the most up to date version of the documentation. You may want to try a different word or shorter phrase if you don’t get any results for your search phrase, as we may have worded a section differently.

[image: Show documentation search]

Tips for navigating the documentation

You may notice that the left hand side of the documentation has navigation. It is organized in order of setting up OpenAPS, and has various sections on finding your gear; what you should do before you build a rig; how to setup up your rig; and additional features and tips and tricks for optimizing your looping setup. This navigation is long, you can mouse over the section and scroll down to see all the pages listed in the top-level navigation!

[image: Show documentation navigation]

[image: Show documentation navigation 2]

[image: Show troubleshooting section of docs]

You’ll also notice that there is more content than just these high-level pages! If you click on a link in the left, many of them expand to show the sub-sections include, which make it easy to jump directly to the section you’re looking for. If there is a +, that means there is more content you can expand.

[image: Show how menu expands in the navigation of the docs]

Prev.: How to get your own OpenAPS system up and running

Next: Where to go for help

​

Where to go for help

First check the Troubleshooting [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Troubleshooting/General_linux_troubleshooting.html] section for assistance, and try searching within this documentation for the problem you are having (including text of any error message you are seeing).

There are several ways to communicate with other participants and contributors in the #OpenAPS project. To help get your issue resolved more quickly, you can proactively provide information as described in this blog post for tips on how to best seek help when troubleshooting online [https://diyps.org/2017/03/19/tips-for-troubleshooting-diy-diabetes-devices-openaps-or-otherwise/].

Note: It’s best practice not to share your pump’s serial number, so make sure not to include it in pictures or pasted text output when seeking help on pump communication. Ditto for Nightscout URL and API secret and other private information that could enable someone to access your setup.

Google Group

A google group focused on #OpenAPS development work can be found here [https://groups.google.com/d/forum/openaps-dev] - everyone is encouraged and welcome to join! You can add yourself directly to the group. It’s worth setting your preferences to receive all email from the group; there’s not a huge volume, and this is one of the ways we share updates about hardware or release announcements if you’re not hanging out on Gitter or Facebook or Twitter.

Gitter

Gitter [https://gitter.im/] is a messaging/chat service similar to IRC. It provides integration with GitHub and several other services. It’s the best place to get real-time support with anything related to OpenAPS. (Here’s why we often recommend asking questions on Gitter [https://diyps.org/2016/08/17/why-you-should-post-questions-in-gitter/].)

	The nightscout/intend-to-bolus [https://gitter.im/nightscout/intend-to-bolus] channel is where you will find active #OpenAPS discussions ranging from technical issues with openaps tools to control theory to general information. It is a great place to introduce yourself and get some help from those who are a few steps further down the road.

	For Autotune conversations, use the openaps/autotune channel [https://gitter.im/openaps/autotune]

Click here to expand a list of tips for using Gitter, from using the search function to tagging someone to posting screenshots or posting logs

 Hardware overview

Hardware overview

This section describes the hardware components required for a ‘typical’ OpenAPS implementation. There are numerous variations and substitutions that can be made but the following items are recommended for getting started.

The basic setup requires:

	a compatible insulin pump

	a CGM

	a small computer (Intel Edison, or Raspberry Pi for example) and a radio board/stick (e.g. Explorer Board for Edison or Explorer HAT for Pi)

	a battery

If you come across something that doesn’t seem to work, is no longer available, or if you have a notable alternative, feel free to edit this documentation with your suggestions.

Note about deprecated hardware setup: Carelink can be used with up to oref0 0.6.2. However, it will not be used with oref0 0.7.0 moving forward. Carelink has poor range and will likely frustrate you. Please see the rig parts page for current hardware recommendations.

Prev.: Where to go for help

Next: Information about compatible insulin pumps

​

 Information about compatible insulin pumps

Information about compatible insulin pumps

[image: "Can I do OpenAPS with this pump?"]

As you can see from the flowchart above, most of the commercial pumps currently available are not compatible with OpenAPS; only a small selection of older Medtronic pumps are compatible. For those pumps which are not compatible, we suggest the advocacy option of calling the pump manufacturer and informing them of the need for availability of pumps for DIY closed looping systems. Thus far, there has not been a receptive pump company to these requests. Omnipod, Animas, T-Slim, and newer Medtronic pumps are still not compatible.

Currently, only the following Medtronic MiniMed models allow us to remotely set temporary basal rate commands, which is required to do OpenAPS:

512/712 (all firmware)
515/715 (all firmware)
522/722 (all firmware)
523/723 (with firmware 2.4A or lower)
554/754 (European Veo, with firmware 2.6A or lower; OR Canadian Veo with firmware 2.7A or lower)

NOTE: For European/WorldWide users who have access to a DANA*R/RS, Roche Accu-chek Combo or Roche Accu-chek Insight insulin pump, you may be able to use AndroidAPS, which leverages OpenAPS’s oref0 algorithm but allows you to interface using an Android phone and Bluetooth to communicate directly with the DANA*R/DANA*RS/Roche Accu-chek Combo/Insight pump. See here for instructions and details related to AndroidAPS [http://wiki.AndroidAps.org].

How to check pump firmware (check for absence of PC Connect)

The firmware version will briefly display after the initial count-up on a new battery insertion. After the pump has been on for a while, you can check the firmware version by using the Esc button on the pump and scroll all the way to the bottom of the screen messages using the down arrow on pump.

A double-check for pump compatibility is to look for the ABSENCE of PC connect in the pump menu. Press the ACT button, scroll down to the “Utilities” menu.

	If there is a “Connect Devices” menu look for a “PC Connect” option.
	This is the case for the 523/723 and 554/754 models.

	If “PC Connect” is present, then the pump will NOT work for looping.

	If “PC Connect” is absent, then the pump should be able to receive temp basal commands and be compatible.

	If there is no “Connect Devices” menu, then the pump should be able to receive temp basal commands and be compatible.
	This is the case for the 512/712, the 515/715 and 522/722 models.

	For 512/712 pumps, certain commands like Read Settings, BG Targets and certain Read Basal Profile are not available, and require creating special files for the missing info to successfully run the loop (Instructions for 512/712 users, click here [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Build Your Rig/step-3-setup-script.html#512-and-712-pump-users-only-important-extra-setup-steps]). 512/712 users are not going to be able to use an advanced feature - (e)SMB - but will be able to do basic looping.

Note that not all possible sellers of pumps will accuratly describe the model number: if they are willing to sell a pump they may not have interest in setting it up for looping, and the distinctions about model numbers and firmware version may not be important to them. It will be for you though! Therefore, it’s prudent to verify the model by seeing pctures and/or videos of the pump in action.

If you have one of the above mentioned pumps, but it has buttons that do not work, use the instructions found on this Imgur photo album [http://imgur.com/a/iOXAP] to repair your pump. This repair is quite straight-forward and easy.

Why do I need a certain pump firmware?

Due to changes in the firmware, the openaps tools are only able to function in-full on the above pump models. Security features were added after firmware v2.4 in the US that prevent making some remote adjustments via the decoded communications OpenAPS uses.

If you are not based in the US, some later model pumps and firmware may be compatible as listed above. Check for PC Connect absence to determine compatibility.

Can I downgrade my pump firmware?

One of the most frequently asked questions is “I have a 723 pump but it has version 2.5B software version. Has anyone figured out a way to make newer model Medronic pumps compatible? Like flash older version of software onto my 723 2.5B pump?” The answer is “No. The ability to downgrade software versions in the pumps does not exist. It has been investigated and nobody has made any successful progress to that end.”

Tips for finding a compatible pump

If you need to acquire a compatible pump, check CraigsList, ask around local or pay-it-forward Facebook groups, or talk to friends in your local community to see if there are any old pumps lying around in their closets gathering dust. SearchTempest [http://www.searchtempest.com] is a great tool for searching Craigslist nationally all at once. In addition to searching for listings, consider posting an offer to Craigslist or ask around local community groups.

If you’re buying a pump online, we recommend you ask the seller to confirm the firmware version of the pump. (You may also want to consider asking for a video of the pump with working functionality before purchasing.)

 Other purchasing tips (click here to expand):

 Information about compatible CGMs

Information about compatible CGMs

OpenAPS currently primarily supports three different CGM systems:

	the Dexcom G4 Platinum system (with or without the Share [http://www.dexcom.com/dexcom-g4-platinum-share] functionality),

	the Dexcom G5 system

	the Dexcom G6 system (online connectivity only, for now)

	the Medtronic system [https://www.medtronicdiabetes.com/treatment-and-products/enlite-sensor] (MiniMed Paradigm REAL-Time Revel or Enlite),

	and other CGM or CGM-like devices (Abbott’s FreeStyle Libre) if the data is uploaded to Nightscout and the OpenAPS rig has Internet connectivity.

With Dexcom G4, the Share platform is not required; but is valuable for uploading BG data to the cloud (and into Nightscout, which can then send BGs to the rig). However, without Share, a G4 receiver can instead be plugged in directly to the OpenAPS rig. For Dexcom G5 Mobile you can also use a compatible receiver (software upgraded G4 with Share receiver or a G5 Mobile Receiver), or also pull data from the Dexcom Share servers into Nightscout for use with an Internet-connected OpenAPS rig.

NOTE: You can also pull CGM data from Nightscout as an alternative (including Dexcom G5 to iOS device + Nightscout Bridge plugin), or use xDrip (see below). The Medtronic CGM system communicates directly with the associated pump, so that data can be retrieved using the CareLink USB stick. The Medtronic Minimed 530g Pump’s Enlite CGM Sensors CAN be used with the older OpenAPS compatible Medtronic Pumps (Despite that pump originally being offered with SoftSensor CGM Sensors).

Using the Dexcom receiver CGM

This refers to the Dexcom receiver hardware. Note that your Dexcom should be nearly fully charged before plugging it in to a Raspberry Pi or Edison-based OpenAPS rigs. If, when you plug in your receiver, it causes your WiFi dongle to stop blinking, that is a sign that it is drawing too much power and needs to be charged. Once the receiver is fully charged, it will stay charged when connected to the rig.

Pulling CGM data from the cloud

Your OpenAPS implementation can also pull CGM data from a Nightscout site in addition to pulling from the CGM directly. You can find more documentation about pulling CGM data from a Nightscout site here [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/While You Wait For Gear/nightscout-setup.html].

	If you have an Android phone, you can use the xDrip app to get your data from the Dexcom to Nightscout, to then be used in OpenAPS.

	If you have a Share receiver follow these directions [http://www.nightscout.info/wiki/welcome/nightscout-with-xdrip-and-dexcom-share-wireless] to set up your Android uploader and Nightscout website.

	You could also build a DIY receiver. Directions to build the receiver, set up your uploader and Nightscout can be found here [http://www.nightscout.info/wiki/nightscout-with-xdrip-wireless-bridge].

	You can also use part of the DIY receiver set up - the wixel – directly to the Raspberry Pi. Learn more about the wixel setup here [https://github.com/jamorham/python-usb-wixel-xdrip] and here [https://github.com/ochenmiller/wixelpi_uploader].

	If you are using Abbott Freestyle Libre in combination with Sony SmartWatch 3 and xdrip+ (or possibly other combinations of technology to get Libre data up into the cloud), you can also pull CGM data directly from Nightscout.

Using the Medtronic CGM

As the Medtronic pump collects data directly from the Enlite sensors, OpenAPS will retrieve CGM data in addition to your regular pump data from your pump. While you use the same OpenAPS commands to get it, the Medtronic CGM data may need a little special formatting after being retrieved. If so, it will be specified in other areas of the documentation.

Prev.: Information about compatible insulin pumps

Next: Your rig hardware options

​

 Your rig hardware options

Your rig hardware options

You have two main options for hardware:

	The most recommended rig has been an Edison + Explorer Board. Unfortunately Intel stopped making the Edison boards as of 2018. If you can find an Intel Edison (eBay, local stores, etc - this is still very possible), this is still a highly recommmended rig. It is the smallest rig (and easily portable), with better battery life because it is power efficient. Go here for the list of hardware and setup instructions for Edison setups [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Gear Up/edison-explorer-board.html].

	The other option is a Raspberry Pi-based setup, with the new Explorer HAT. This rig setup makes it easier to see information when offline because it has an onboard screen for displaying readouts. Go here for hardware required and setup instructions for Pi/HAT setups [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Gear Up/pi-based-rigs.html]. There is also an experimental alternative to an Explorer HAT, RFM69HCW, which can serve as the radio on a Pi-based rig, but will not have the screen, and requires you to solder.

What happens if you have multiple rigs?

If you have multiple OpenAPS rigs, they’re built to be polite to each other. Even if you had two or more rigs in same room, they won’t trip each other up. They “wait for silence” before issuing any commands to the pump. By having multiple rigs throughout a house, you can move from room-to-room without carrying rigs because the rigs will pass-off comms as you moves in and out of the rig’s range. Stationary rigs will not need LiPo batteries and can be plugged directly into a wall charger from the Explorer board.

Just like multiple Edison rigs play well together, an Edison and a Pi rig can also work fine side by side. As always, best practice is to make sure they’re in the same feature set - don’t have one type of rig using SMB’s if the other hardware has an old code version that isn’t aware of SMB’s.

Prev.: Information about compatible CGMs

Next: Intel Edison-based setups

​

 Intel Edison-based setups

Intel Edison-based setups

Parts you’ll need

The high level parts list (see below for more details, and links):

	Explorer Board Block

	Edison

	Nuts and Bolts to attach the Edison to the Explorer Board Block

	At least one Lithium battery

	2 USB cables

Explorer Board Block

The recommended board to use is the Explorer Board Block [https://enhanced-radio-devices.myshopify.com/products/900mhz-explorer-block-pre-order], which was co-designed by this community. It also has the benefits of a built-in radio. It’s only available from Hamshield/Enhanced Radio Devices.

Edison

There are 4 types of Edison’s. All of them work, but Versions 3 and 4 require an extra antenna, so 1 and 2 are preferred (1-EDI2.LPON, 2-EDI2.SPON, 3-EDI2.LPOF, and 4-EDI2.SPOF). If the seller does not specify the Edison model/version, you can see from the picture whether or not it has a white ceramic antenna in the corner. If it does not, then it will require an external antenna, but that version is fairly rare.

	Option 1 - Buy it from places like Ebay, Craiglist, or your nearest store - and follow the instructions to flash it.
	You may need to hunt for an Edison as supplies of them are dwindling - if you get it as part of a “kit” (e.g. breakoutboard + Edison), keep in mind you’ll still need to get the Explorer Board Block from Hamshield.

	Note: If you are doing Option 1 (an Edison from wherever you can find it) - you are getting an UNFLASHED Edison. Not a big deal - flashing it with jubilinux is just a few more steps (~15 minutes) - but remember you’ll need to start with the flashing instructions [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Build Your Rig/step-1-flashing.html].

	Option 2 - (previously buy an Edison that is already flashed with jublinux when supplies were available [https://enhanced-radio-devices.myshopify.com/products/intel-edison-w-jubilinux]. If you get a pre-flashed Edison, you can start with step 2 [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Build Your Rig/step-2-wifi-dependencies.html].

Lithium-ion polymer (LiPo) battery or other battery supply

The Explorer Boards have battery charger circuitry on board, making it easy to use a LiPo battery.

	The example setup uses a 2000mah LiPo battery [http://www.robotshop.com/en/37v-2000mah-5c-lipo-battery.html]; also Lithium Ion Battery - 3.7v 2000mAh [https://www.adafruit.com/products/2011] or Adafruit Battery Packs Lithium Ion Battery 3.7v 2000mAh [https://www.amazon.com/Battery-Packs-Lithium-3-7v-2000mAh/dp/B0137ITW46] are similar options. A 2000 mAh LiPo will get you about 12-14 hours of use, assuming you have the standard setup (which is what you get following these docs) running. Many people prefer a higher capacity battery to get a full day from the rig (such as Adafruit Lithium Ion Polymer Battery - 3.7v 2500mAh (PRODUCT ID: 328) and the Adafruit Lithium Ion Cylindrical Battery - 3.7v 2200mAh (PRODUCT ID: 1781) [https://www.adafruit.com/category/574]). This battery uses a 2mm 2 pin JST connector to match the Explorer boards’ power plugs.

	For people in the UK, you may find you have to shop around to find the correct battery, as shipping restrictions appears to have reduced the supply somewhat. Pimoroni [https://shop.pimoroni.com/products/lipo-battery-pack] appear to stock the same Adafruit 2000mAh battery as mentioned above. Another source looks to be Cool Components [https://www.coolcomponents.co.uk/en/lithium-polymer-battery-2000mah.html], but you may find shipping costs expensive. CAUTION: RS Online [https://uk.rs-online.com/mobile/p/lithium-rechargeable-battery-packs/1251266/] sell a similar battery, but unfortunately it comes with the wrong JST connector (it comes with a 2.5mm JST XHP-2, and you need a 2mm JST PH). It is possible, however, to buy the right connectors [https://www.technobotsonline.com/jst-ph-2mm-2-way-housing-excludes-female-pins.html] and fit them yourself (numerous ‘how to’ videos on YouTube).

	For people in Australia you can find 2000mAh, 2200mAh and 2500mAh batteries from Little bird electronics [https://www.littlebirdelectronics.com.au/batteries/], prices are very competitive and shipping is quick. These are the same Adafruit batteries that can be obtained from the US above.

Note: It’s best to buy from a reputable supplier, because if the internal two cells are mismatched the Explorer board cannot charge them separately and they are prone to catching fire. Make sure that it includes a protection circuit to protect over-discharge. NEVER connect the battery to an Explorer board the wrong way round. There is no manufacturing standard so never assume correct polarity. The connector JP1 on the Explorer Block has two terminals. The left side is positive, the right side is negative. The side with the JP1 label is the positive side. Typically a battery’s red wire is the positive wire. Ideally you want a battery that has a 10k ohm thermistor for temperature protection by the Edison too.

You can also use any charger with a USB plug, including a wall power charger. The Explorer boards have pass through charging, so this is also how you will charge the LiPo battery.

Battery safety and care

You should monitor the rig periodically - especially the LiPo battery, checking for swelling or damage. Immediately discontinue use of any battery that shows sign of swelling or damage.

LiPo batteries are great for a lot of things, but taking damage is not one of them. Please treat LiPo batteries with care. Keep them protected from puncture. The Explorer board has some “pointy” parts on the underside, so providing some protection from the board’s squish is a good idea. A small piece of protection (such as a business card or non-conductive thin foam sheet) will help protect the battery from the board above it.

Since there is some warmth with an OpenAPS rig, it is also not recommended to put a rig unprotected in a pocket close to the body. The LiPo battery can become warped from the heat or bent from being in the pocket and potentially compromised. A durable case or waist-belt pouch is a good idea (see here for both hard and soft case ideas).

The connections between the LiPo battery and its red and black wires are fragile and can break easily. Consider taping the wires to the battery with electrical tape as described in SparkFun’s LiPo battery care tutorial [https://www.sparkfun.com/tutorials/241]. (See the Reinforcing the Power Cables section.) This will stabilize the wires and relieve tension on the connections.

Radio stick (only if not using Explorer board)

We recommend an Explorer Board with a built-in radio (see above), because if you get an Explorer Board, you don’t need an additional radio stick or CC-Debugger.

If you don’t use an Explorer board, you can use a number of radio sticks: a TI-USB-Sticks [http://www.ti.com/tool/cc1111emk868-915], running subg_rfspy [https://github.com/ps2/subg_rfspy]; Wireless Things ERF [https://www.wirelessthings.net/erf-0-1-pin-spaced-radio-module]; Wireless Things Slice of Radio [https://www.wirelessthings.net/slice-of-radio-wireless-rf-transciever-for-the-raspberry-pi] a Slice of Radio; or a Rileylink. For details about setup with these other stick and board options, the best instructions will be found in the mmeowlink wiki [https://github.com/oskarpearson/mmeowlink/wiki] for setting up your board and stick. Note you may also need a CC debugger for these, and also note that it will be more work as the documentation is designed for the Edison/Explorer Board setup as the easiest path forward.

USB Cables

You will need two DATA micro USB cables - with a micro connector on one end and a standard (Type A) connector on the other. Most cables will work fine, but some prefer to select lengths. You may already have one for charging a Dexcom receiver, or an Android phone, lying around at home. If you don’t, here are examples of ones that will work:

	Monoprice Premium USB to Micro USB Charge, Sync Cable - 3ft [http://www.monoprice.com/Product?c_id=103&cp_id=10303&cs_id=1030307&p_id=9763&seq=1&format=2].

	3 ft long cable, USB-microB - link [https://www.adafruit.com/products/592]

	6 inch long cable, USB-microB - link [https://www.adafruit.com/products/898]

Warning: bad cables cause a lot of headaches during the Edison flashing process, so it may be worth verifying before you start if you have good cables that can transfer data.

Optional: Micro USB to Micro USB OTG Cable for offline looping

You may want to connect your Dexcom receiver (G4 or non-touchscreen G5) to your Explorer Block for offline looping. For this you will need to use a micro USB to micro USB OTG cable (or an OTG adapter). Here is an example of a cable that will work: BestGameSetups Micro USB to Micro USB OTG (On-The-Go) 12” (30cm) Data Cable [https://www.amazon.com/dp/B00TQOEST0/ref=cm_sw_r_cp_api_Niqfzb3B4RJJW].

Optional: antenna to increase pump - rig range

The easiest way to increase the range of your rig is to purchase a “wire whip” antenna to add to your rig. Here is one available at Mouser (915MHz only) [https://www.mouser.com/ProductDetail/620-66089-0930?R=66089-0930virtualkey65480000virtualkey620-66089-0930] or for 866/868 MHz also availabe at Mouser [https://www.mouser.at/ProductDetail/Anaren/66089-0830?qs=pH7abCSN9NPb5X5zwyxl2w==]. You can buy one at Enhanced Radio Devices [https://www.enhancedradio.com/collections/all] as well. You may consider ordering this along with your Explorer Board, or you can wait and see how happy you are with the range without it.

Nuts and Bolts

You will likely want to screw your Edison onto the Explorer Block to stabilize the rig. You will need two M2 screws, two M2 nuts, and two spacers or standoffs to support the 3mm
between the Edison and Explorer Board. The Explorer Board is currently being shipped with M2 screws, 3mm spacers, and M2 nuts, but you may want spares (or may have gotten it used). Here are some examples of options:

	M2 cap screws [https://www.amazon.com/iExcell-Stainless-Steel-Socket-Screws/dp/B07FLLGW19].

	M3 nuts to use as spacers [https://www.amazon.com/uxcell-Thread-Stainless-Metric-Fastener/dp/B01M0D7U5V/] - if using these, or another 3mm spacer option, your M2 screws should be just long enough to fit through the spacers and screw into the M2 nuts on the other side. You can also use a stack of washers or some 3mm nylon spacers [https://www.amazon.com/Electronics-Salon-Assortment-Screws-Plastic-Standoff/dp/B074N5HD42/].

	M2 nuts [https://www.amazon.com/gp/product/B07H3SXSN2/]

(Note: Sparkfun has discontinued its kits of hardware specifically for the Edison, but for reference here are the specs for the Sparkfun Intel Edison Hardware Pack [https://www.sparkfun.com/products/13187].)

Cases

You can use a variety of cases, either soft or hard. Make sure to check the case design to make sure it will support your preferred rig setup and battery size/type. Also, be careful with inserting your rig into some 3D-printed cases so you do not harm the board and/or the battery.

Soft Cases

	TallyGear soft case [http://www.tallygear.com/index.php?route=product/category&path=120] - these are the soft cases Dana uses (see this example [https://twitter.com/danamlewis/status/792782116140388353]). The OpenAPS-sized case can be made any any pattern/fabric she uses elsewhere on the site.

	Custom soft case from Tallygear with a neoprene divider between battery and rig compartments [https://photos.app.goo.gl/gSubQDMDUqwDsJu18]

	JD Burrows SD card case [https://www.officeworks.com.au/shop/officeworks/p/j-burrows-sd-and-usb-case-blue-jbsdcasbu] - this is a hard / soft case which fits the rig with a 2500mAh battery perfectly, can also fit a spare AAA pump battery (Australia)

Hard cases

Warning: be careful if you select a hard case. Some may be designed for a certain size/shape battery; and attempting to jam a rig in may harm the board and/or the battery.

Also: a hard case may make you less likely to look at your rig directly. You should monitor the rig periodically - especially the battery, checking for swelling or damage. Immediately discontinue use of any battery that shows sign of swelling or damage.

Generic hard cases:

	RadioShack Project Enclosure (3x2x1 inch) [https://www.radioshack.com/products/radioshack-project-enclosure-3x2x1?utm_medium=cpc&utm_source=googlepla&variant=20332262405&gclid=Cj0KEQiA-MPCBRCZ0q23tPGm6_8BEiQAgw_bAkpDZCXfIgbEw8bq76VHtV5mLwR2kHKfJrsGsF3uqqgaAtxP8P8HAQ]

	Small clear plastic case perfect for larger Sparkfun 2000 mAh battery: #8483 [http://www.ebay.com/itm/272062812611]

	Small Plastic Clear Case for 2500 mAh battery [http://www.ebay.com/itm/272062812611] - Since a Tic-Tac box is too small for the 2500 mAh battery.

Cases for Edison plus battery:

	Ken Stack’s 3D design for a case with the battery next to the board [https://github.com/Perceptus/explorer_board_case]

	Rob Kresha’s design with the battery compartment stacked on-top of the board compartment [http://www.thingiverse.com/thing:2020161]

	Gustavo’s 3D design [https://github.com/Perceptus/explorer_board_case_2]

	Sulka Haro’s 3D design [https://www.tinkercad.com/things/4a6VffpcuNt]

	tazitoo’s 3D design: CAD [https://www.tinkercad.com/things/aRYGnHXt7Ta-explorer-case/editv2] (or STL for 3D printing [http://www.thingiverse.com/thing:2106917])

	danimaniac’s Protective Cases & Accessories [https://github.com/danimaniac/OpenAPS-Explorer-Board-Edison-vented-case]

	Luis’s ventilated acrylic simple design [https://drive.google.com/drive/folders/0BxeFg9yJZ_FZdWJEcG5KMXdUMjg?usp=sharing]

	Robert Silvers and Eric Burt’s case for Explorer and 2500 mAh battery [http://www.thingiverse.com/thing:2282398]

	Robert Silvers’ case for Explorer and 2000 or 2500 mAh battery [http://www.thingiverse.com/thing:2291125]

	tynbendad’s case for 18650 battery [https://www.thingiverse.com/thing:2798858]

Cases for Edison plus G4 receiver:

	jimrandomh’s 3D printed design for Edison and a G4 receiver together [http://conceptspacecartography.com/my-openaps-g4-case/]

Other non-case protection options

	Heat Shrink Tubing [https://www.amazon.com/gp/product/B009IILEVY]

Building and understanding your Edison-based rig

Putting the Edison and Explorer Board together

The Explorer board is where all the communications are housed for the rig, as well as the battery charger. The Edison is the mini-computer where all the OpenAPS code will be sent and used. In order for this to work, first you have to screw and connect the Edison and Explorer Board together with the nuts and bolts.

The nuts and bolts are tiny, and the spaces are a little tight. I find it really helps to use a set of tweezers and a small Phillips head screwdriver.

It’s easiest to start with the Explorer board and put on 2 nuts and gold screws (nuts on the side with most of the wiring) inside the little outline where the Edison will eventually sit. Gold screws should be placed as shown, with nuts on the backside. Then, lay the Edison board on top, aligning the screw holes. Use a small Phillips head screwdriver to tighten the screws into the gold screws beneath them. The Edison board should not wobble, and should feel secure when you are done. Attach your battery into the explorer board plug. A single red light should appear and stay lit. During the course of your OpenAPS rig use, it’s good practice to periodically check that the nuts and screws stay tightened. If they come loose, the Edison can wobble off the connection to the Explorer board and you will either get looping failures (if it’s loose) or be unable to connect to the Edison (if it comes completely off).

[image: Edison/Explorer Board rig with red light on]

Optional: adding an antenna

If you are adding a wire whip antenna to improve the range of your rig, it simply clips on to the Explorer Board. The picture below shows the antenna clipped on and extended from the board; but you can experiment with wrapping the antenna around your rig to fit in your preferred case to see various impacts to the range.

[image: Image of Antenna]

Where is the power button?

The little black button on the end of the board near the JST connector is the power button. If you want to reboot your rig, the easiest way is to hold down the tiny power button for 10-15 seconds until the power light turns off. Wait a couple seconds and then press and hold the power button again until the light turns back on. Give the loop a couple minutes to get itself going again. Rebooting solves a majority of rig issues.

Where is the radio?

The radio and antenna are down on the end of the Explorer board where you see a little white stick (opposite end of the board from where your battery connects at the JST connector).

What the lights mean and where they are

	The LED between the two ports is the power. If this light is on, your rig is on.

	The LED in the corner is the charging indictator.

	The two next to the microUSBs (one green on the latest boards) are for the cc1110 radio chip. By default they just blink once each when you mmtune or otherwise reset it.

Charging the LiPo Battery

You can use the little white block that comes with an iPhone (or similar charger) and a microB-USB cable. The same cables you used to setup the rig and connect to the computer will work for charging, too. Either one of the USB ports on the Explorer board will work for charging. When charging is active, there is an extra red light on in the corner of the Explorer board. When charging is complete, that corner red light will turn off. It may come back on periodically as the battery “tops off”. You won’t do any damage leaving the rig plugged in for longer than the charge takes.

While the rig is plugged in for charging, the Nightscout battery pill will read approximately 65%. This is because it is reading the charging voltage rather than the battery voltage. Once you disconnect from the charger, the Nightscout battery pill will display the LiPo battery’s voltage and percent again.

Optional: increasing range for North American pumps by cutting radio trace

Another option to increase the range of your rig is to tune the existing on-board antenna by cutting it. The antenna on the Explorer Block is a hidden strip of copper underneath the green outer coating.

The antenna is labeled A1. It will have its maximum power at 868 MHz. The antenna has a line across it at one point with a label that says “915”. The antenna defaults to the 868 MHz range, which is what WW pumps use.

If you have a US pump, mmtune will run and tune to something near 916MHz. Even with the 868 MHz antenna, you should get half a dozen feet or more of range on average. If you want to boost the range of your antenna by a couple more feet, then you cut through the outer coating and the copper on that line. For North American (NA) or Canadian/Australian (CA) pumps (using the 916MHz band), you’re looking to cut near the white line that is between the 1 and the 5 in the “915.” Consider cutting on the 1-side rather than the exact spot where the white “cut” line is drawn because it is so close to the corner where the rest of the copper wire goes.

[image: Image of Antenna]

Before doing this, remember to disconnect any attached battery or power source. To make the cut, use a sharp x-acto blade to cut through the copper just beneath the green surface of board. It will take a few swipes and you’ll hear a small scraping noise when you get through the wire. Make sure you’ve cut all the way through the wire to the green circuit board material on the other side. A single clean cut is sufficient, but if the cut doesn’t look clean you could make two cuts and then dig out the circumscribed piece and then reseal the copper with nail polish. With that cut, the antenna will have maximum power near 915 MHz.

Watch this video [https://www.facebook.com/groups/TheLoopedGroup/permalink/1854229718127019/?hc_location=ufi] for an example.

If you’re unsure whether you need to cut your Explorer Block’s antenna, you probably don’t. And if you decide you need slightly more range after using the Edison+Explorer rig for a few weeks, you can always come back later and do so then.

Prev.: Your rig hardware options

Next: Pi-based setups with the Explorer HAT

​

 Pi-based setups with the Explorer HAT

Pi-based setups with the Explorer HAT

Parts you’ll need

Summary of what you need for a Pi/HAT rig:

	Explorer HAT

	Pi0WH (recommended) or Pi 3

	Battery

	SD Card

HAT:

As of April 2018, there is be a Pi+HAT rig as an option for closing the loop with OpenAPS. The HAT can be ordered from the same place that makes the Explorer Board (click here [https://enhanced-radio-devices.myshopify.com/products/900mhz-explorer-hat?variant=1950212653065]). We call it the “Explorer HAT”, to differentiate from the Explorer “Board” that goes with the Edison (see below).

[image: Explorer Hat]

PI

You also need a Raspberry Pi. Many users are opting for the “Raspberry Pi Zero WH” - with headers - so you don’t have to solder, and can simply add the HAT onto the Pi. See this PiZeroWH from Adafruit [https://www.adafruit.com/product/3708], or from other sellers around the world [https://www.raspberrypi.org/products/#buy-now-modal]

As an alternative, you can also use the HAT with a Raspberry Pi 3.

Battery

Lipo batteries are typically used to power the rig on the go because they charge quickly and come in a variety of compact sizes. When choosing a battery, you have a trade-off between a larger battery with longer duration or a smaller battery with shorter duration that is easier to carry around. A 2000 mah battery is roughly the size of the Raspberry Pi0, and can last around 4 hours. You’ll want a “1S” type, which uses a single cell and outputs at 3.7 VDC. It needs a JST connector to plug into the Raspberry Pi. See this battery from HobbyKing [https://hobbyking.com/en_us/turnigy-2000mah-1s-1c-lipoly-w-2-pin-jst-ph-connector.html?___store=en_us].

If you will need to run longer than that while unplugged from wall power, consider a portable charger. These are in widespread use for cell phones and commonly available in a large number of sizes. Here is an example portable charger from Amazon [https://www.amazon.com/Anker-PowerCore-Ultra-Compact-High-speed-Technology/dp/B0194WDVHI/ref=sr_1_6?ie=UTF8&qid=1532089932&sr=8-6&keywords=backup+battery&dpID=31B5rBNP%252B8L&preST=_SY300_QL70_&dpSrc=srch]. Using a USB to micro-USB adapter you can power the rig from the portable charger by plugging the charger into the Power port, which is the micro-USB port nearest the corner of the Pi0.

Note: You will probably want to underclock your Raspberry Pi to get a longer battery life. See this for details [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Build Your Rig/step-5-finishing-setup.html#optional-step-improving-the-battery-life-of-your-raspberry-pi].

SD card

An 8 GB SD card should provide plenty of space for the linux operating system, OpenAPS code and storage for log files. The ability to use larger and removable storage is one of the advantages of the Raspberry Pi. You can get a MicroSD card and adapter from Adafruit [https://www.adafruit.com/product/2692] when you order your Pi and Hat. Or you can get an equivalent 8 GB SD card from Amazon [https://www.amazon.com/Kingston-microSDHC-Class-Memory-SDC4/dp/B00200K1TS/ref=sr_1_8?s=wireless&ie=UTF8&qid=1532090813&sr=1-8&keywords=8gb+micro+sd] or other sellers.

Note about Pi+HAT cases

Because we are still optimizing the software to be as power-efficient as possible, we have not narrowed down on the best recommended battery. You may want to use a soft case for ease of access to the components, flexible arrangement and the ability to use a variety of battery sizes. If you are using the 2000 mah battery above, you can use this 3d printed hard case [https://www.thingiverse.com/thing:3010231] to protect the rig and battery in a relatively compact package. The design is built in OnShape [https://cad.onshape.com/documents/74459dfcb527ad12c33660aa/w/2be92a72bb7f1c83eb091de2/e/b4fa9c3be204ffa3dea128a1], which has a free access level subscription for public domain documents. You can make a copy and tweak the design to your liking.

Putting together and using your Pi/HAT rig

If you chose a “Pi Zero WH” (with headers), you will place the HAT on the Pi.

Buttons and Menu System

The Explorer Board Pi HAT includes a 128x64 OLED display with two general purpose buttons to navigate an included menu system.

Button Navigation

The Pi HAT has two general purpose buttons labeled “Up” and “Down”. A single press of the “Up” button will move the menu selection cursor up a single menu item and a single press of the “Down” button will move the menu selection cursor down a single menu item.

A double press of the “Down” button will enter in currently selected menu item as indicated by the “>” next to a menu item.

A double press of the “Up” button will take you back to the previous screen.

LEDs

The Pi HAT offers 4 LEDs labeled with D1-D4. D1 is the charging LED and works as described above. D2 is the battery low indicator. It turns orange when the LiPo battery voltage goes below 3.6 V or when the rig is plugged and the battery switch is on OFF. D3 and D4 are connected to the CC1110 radio processor and are controlled by the subg_rfspy radio firmware while resetting the radio. That happens repeatedly during wait-for-silence.

Menu Items

The current tree of available menu items (click to expand):

 Visualization and Monitoring using Nightscout

Visualization and Monitoring using Nightscout

Nightscout Introduction

Nightscout [http://nightscout.info] (NS) is an open source, DIY project that allows real-time access to CGM data via a personal website, smartwatch viewers, or apps and widgets available for smartphones. Setting up a Nightscout web app is the recommended way to visualize your OpenAPS closed loop. It is required in order to run autotune (highly recommended), which in turn is required if you want to use (e)SMB (an advanced feature of OpenAPS).

Nightscout allows a user to upload CGM data from a variety of sources to an
online database and cloud computing service. The information is then processed
and displayed visually as a graph. There are plugins that allow more
information to be shown about OpenAPS, too. As the data is uploaded to an online
website and then retrieved by OpenAPS, it allows OpenAPS a wider range of
compatibility with various CGM solutions.

Nightscout [http://nightscout.info] is the recommended way to visualize your
OpenAPS closed loop.

Even if you don’t choose to share your Nightscout site
with another person, it will be helpful for you to visualize what the loop is
doing; what it’s been doing; plus generate helpful reports for understanding
your data, customized watchfaces with your OpenAPS data, and integration with IFTTT. You can read more about latest Nightscout features here [http://www.nightscout.info/wiki/welcome/website-features]

If you already have a Nightscout site, still review the directions below to change your config variables to prepare for using OpenAPS! See Using your Nightscout site for important details about how to display and interpret OpenAPS-related information.

How Nightscout and OpenAPS work together

OpenAPS is designed to work closely with Nightscout.

What information is passed from rig to NS?

The rig uploads the following information to NS:

	Assuming pump communications are good, the rig will read information from the pump as follows:
	boluses and carbs; entered through either the pump bolus wizard or the easy bolus button

	current temp basal rate and duration/time set

	pump status; bolusing or suspended, reservoir volume, pump battery voltage

	pump notes; time changes, profile changes, battery changes, alarms (these show as grey dots on NS site)

	if a MDT enlite user, BGs will be read directly from the pump

	From OpenAPS looping, the additional information is also uploaded:
	determine-basal information (such as IOB, COB, temp basal enacted, etc) goes to fill out the OpenAPS pill in NS

	rig battery voltage and estimated %

	If (1) a dexcom receiver is connected to the rig and (2) the loop is setup with G4-upload as the CGM type and (3) the rig has internet, then the rig will also upload BGs and/or rawBG directly to NS. This keeps the loop functional even if the Share app fails. For example, if the phone battery dies during the night, and Share App therefore goes down...the rig can read BGs/rawBGs directly from the receiver and use your home wifi to upload to NS still.

What information is passed from NS to rig?

The careportal “treatment” entries and BG data are the two most important items transmitted from NS to the rig.

	Careportal entries transmitted and USED by the loop are:
	carb entries - these are taken into account by OpenAPS to predict your blood glucose curve

	temp BG targets - you can set a “temporary target” from Nightscout which will be used by OpenAPS

	BG values from Dexcom share servers via the NS bridge

Note that insulin logged on Nightscout but not read from the pump (e.g., an injection logged) is not directly used by the loop.

Troubleshooting Nightscout issues

Please see the Nightscout troubleshooting [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Troubleshooting/rig-ns-communications-troubleshooting.html] page if you experience problems with the setup process or with communications with Nightscout.

Nightscout Setup with Heroku

	If you plan to use Nightscout with OpenAPS, we recommend using Heroku, as OpenAPS can reach the usage limits of the free Azure plan and cause it to shut down for hours or days. If you end up needing a paid tier, the $7/mo Heroku plan is also much cheaper than the first paid tier of Azure. Currently, the only added benefit to choosing the $7/mo Heroku plan vs the free Heroku plan is a section showing site use metrics for performance (such as response time). This has limited benefit to the average OpenAPS user. In short, Heroku is the free and OpenAPS-friendly option for NS hosting.

	Create an account at Heroku [https://www.heroku.com] and choose the Primary Development Language to be Node.js when you create your account. You’re going to use a free account, but you will still need to enter credit card information for your account setup before the app will deploy. You’ll need to confirm your Heroku account by clicking a link sent via email.

[image: Heroku signup example]

	Create an account at GitHub [https://github.com]

Note: If you already have an existing GitHub account and NS site, you may just need to update your repository by doing a Compare in GitHub. Use https://github.com/yourgithubname/cgm-remote-monitor/compare/master...nightscout:master and replace “yourgithubname” with your GitHub name. Click the big green Create pull request button. Another screen will appear, fill in a title and click button to create the pull request, and then you can Merge pull request, and finally Confirm merge. That process updates your Nightscout repository in GitHub. Once updated, you can skip the “click the Fork Button” step below and start following along with the purple Deploy to Heroku button step from your updated Nightscout cgm-remote-monitor repository.

	Go to the Nightscout cgm-remote-monitor repository [https://github.com/nightscout/cgm-remote-monitor]

	Click the Fork button in the upper right corner

[image: Fork example]

	Where it says Branch: master (to the far-left of the green “Clone or download” button), click on it and choose dev. This button should then say Branch: dev.

	Scroll down until you see the purple Deploy to Heroku button. Click that button.

[image: Deploy to heroku button]

	Give your app a name, this will be the prefix of your NS site’s URL. For example, https://yourappname.herokuapp.com

	Fill out the information lines in the Config Variables Section of that page. Some of the lines can stay with the default entries already provided.

Click here to expand the list of the Config Variables you need to enter:

 Collect your data and get prepared

Collect your data and get prepared

Store data - CGM, and ideally carbs and insulin

Before getting started, we ask that you store at least 30 days of CGM data. It is always a good idea to record your data before embarking on a new set of experiments. This will be helpful to understand the effects of the system as well as gain a better understanding of your response to different control strategies.

Nightscout is an excellent tool to capture your CGM history, as well as log your carbs and boluses. Your Nightscout site will (in a typical setup) be the source of CGM data for your OpenAPS rig. For instructions on setting up your own Nightscout site (or updating your existing one for OpenAPS use), see here [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/While You Wait For Gear/nightscout-setup.html].

By logging and collecting a recent history of your basal, bolus, carb, and BG patterns, you can also take advantage of the Autotune feature which uses Nightscout databases (see below). You can log carbs and boluses using the Nightscout “careportal,” and tell it about your basal insulin using a “profile.”

If you aren’t using Nightscout, you can upload your Dexcom G4 receiver to Dexcom Studio or if you use Dexcom G5 the data is in the cloud at Dexcom Clarity. If you use a Medtronic CGM, upload your CGM data to CareLink. If you use an Animas Vibe, upload your data to Tidepool or Diasend. We suggest you get in the habit of doing this regularly so that you have ongoing data to show trends in your overall estimated average glucose (eAG, a good indicator in trends in A1c) and variations in your “time in range.”

Later in these docs is a link to donate your data to a project called OpenHumans [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Give Back-Pay It Forward/data-commons-data-donation.html]. There is no requirement to share your data or participate in OpenHumans. If you choose to, you can donate your data whether you are looping or not. Individuals within the project who share their data do so willingly and you should do the same only if you feel comfortable.

Practice good CGM habits

A good quality CGM session is a critical part of successful looping. If you’re used to stretching your sensor sessions out until failure, you may want to reconsider this approach as you will have failed looping times, too. One technique that has helped eliminate early sensor jumpiness in a session is to “presoak” a new sensor before the old one dies when you notice the old sensor is getting jumpy or loses calibration. To read more about this presoak technique, check out this blog post [https://diyps.org/2016/06/27/how-to-soak-a-new-cgm-sensor-for-better-first-day-bgs/].

In addition, be diligent about your sensor calibration habits. Only calibrate on flat arrows and when BGs are steady. Many loopers calibrate once or twice a day only; at bedtime (after dinner has finished digesting) and/or just before getting out of bed. A good guide to sensor calibration - which generally applies regardless of which sensor you have - can be found here [https://forum.fudiabetes.org/t/how-to-calibrate-a-dexcom-g4-g5-cgm/2049/].

Optimize your settings with Autotune

You’ve been logging and recording your carbs and boluses in Nightscout, right? You have your CGM data flowing into Nightscout too? Great... now autotune can give you a head start on fine-tuning your basals and ISF. There are some restrictions on autotune still (only a single daily carb ratio and single daily ISF), but there are tips on the autotune page [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/How it works/autotune.html] for how to deal with multiple values. You can run autotune before you get your loop setup - it doesn’t have to run on a rig, it just needs your Nightscout data. The easiest way is to run it on AutotuneWeb [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/running-autotune.html#autotuneweb-the-easiest-way-to-run-autotune].

How important are good basals and ISFs? You mean you weren’t convinced already by the amount of work put into autotune itself? Well, autotune is a required step in order to enable the most advanced features (SMB and UAM). OpenAPS will check to see if you have an autotune directory in your rig before the loop will be allowed to actually enact any SMBs (no matter what your preferences say).

Regardless of if you want to use advanced features later, we highly recommend running autotune as part of the rig nightly, or as a one-off and periodically checking the output to see if the settings on the pump that you are using reflect what the data says your body really needs.

Safety note: your carb ratio is unlikely to vary significantly throughout the course of day. If you have carb ratios that vary significantly (such as more than 2x) between different times of day, you may get unexpected results in looping, such as COB reappearing when the CR schedule changes. For safety, we recommend checking your settings against Autotune, which currently uses a single CR for the entire day. If you are using a schedule with widely varying carb ratios or ISFs, that may be compensating for something other than an actual diurnal variation in carb ratio: perhaps different absorption speeds of different foods, or perhaps related to different macronutrient composition (instead of entering carb equivalents for fat/protein), differing basal insulin needs around mealtime, or something else.

Use your gear

Starting a DIY loop system like OpenAPS means you are probably switching pumps, and quite possibly using Nightscout for the first time. It is worth taking some time to get familiar with your new gear and with using Nightscout ahead of adding your DIY closed loop to the mix!

Starting Medtronic pump

Many of us have come from Animas, OmniPods, Roche, or t:slim pumps in order to pump using old Medtronic pumps. The menus will be different and you need to get proficient with the pump’s normal use before complicating things with looping. Become familiar with the reservoir changes and teach your T1D kid, if that’s the person who will be using the pump. Train care-givers on the new pump, as well. Assuming that you’re already familiar with insulin pumping (and you should be before trying to loop) but new to these old Medtronic pumps, these “quick memu” guides will help:

	x12 [https://www.medtronicdiabetes.com/sites/default/files/library/download-library/user-guides/x12_user_guide.pdf]

	x15 [https://www.medtronicdiabetes.com/sites/default/files/library/download-library/user-guides/x15_user_guide.pdf]

	x22 [https://www.medtronicdiabetes.com/sites/default/files/library/download-library/workbooks/x22_menu_map.pdf] (aka “REAL-TIME”)

	x23 [https://www.medtronicdiabetes.com/sites/default/files/library/download-library/workbooks/x23_menu_map.pdf] (aka “REAL-TIME REVEL™”)

	x54 [https://www.medtronic-diabetes.co.uk/sites/uk/medtronic-diabetes.co.uk/files/veo-x54_ifu_updated_26.04.2013.pdf] (aka “Veo™”)

You should definitely test your basals, ISFs, carb ratios, and DIA all over again now that you’ve switched pumps and infusion sets. If those settings aren’t correct, looping isn’t a good idea.

Pump settings

There are a couple areas in the pump that will need to be set specifically in order to allow OpenAPS to loop. Since you are going to be looping soon, you might as well set them correctly in your pump now:

	Set the Temp Basal type to units per hour not % type.

	Set the carb ratios to grams, not exchange units.

	Set the max basal rate to a reasonable value (typically no more than 3-4 times your regular basal).

	Set basal profile, carb ratios, and ISF values.

	Set your DIA. Note: Most people have their DIA for traditional pumping to be too short (e.g. 2 or 3). For looping, OpenAPS will default to using 5. Many people find they actually need it to be 6 or 7 with properly adjusted other settings.

	ISFs over 250 mg/dl per unit will need a special step in loop setup once your setup script is finished (see [here](<../Build Your Rig/step-4-watching-log#temp-basals-6-3-isf-255-or-carb-ratio-25-with-a-x23-or-x54)), even though the pump currently will allow you to set them higher. Just remember, you will need to run a couple extra commands when you setup your loop.

	If you have periods in the day where your pump normally has basal settings of zero - your loop will not work! You can resolve this by setting the lowest possible basal setting your pump will permit. OpenAPS will then issue temp basals of zero, as needed.

Easy Bolus Button

Setting up the Easy Bolus feature for your pump now (and practicing it) may help you avoid a small, annoying pump error later. If you are going to use the (super advanced, not for beginners) SMB (super microbolus) feature, then you need to be aware of the potential for pump error due to remote bolus commands. When the pump is engaged to bolus with a remote bolus command from the rig and another bolus is initiated from the pump manually, the pump will error out with an A52 error. The pump will not deliver the bolus, the reservoir will rewind and the pump time needs to be reset. Put simply, two bolus commands coming in at once cause the pump to error and rewind.

One way to minimize this error is by checking the pump before giving a bolus. Check to see if the rig is giving a SMB by using the OpenAPS pill in Nightscout, checking the pump-loop log in Papertrail, or logging into the rig and looking at the pump loop. If the rig is actively giving a SMB, then try to time your bolus wizard use to be in the 5 minutes between SMBs (SMBs are only enacted every 5 minutes at most). These steps might be a little too complex for young kids or school nurses, depending on the situation. If this error happens frequently, you may need to consider turning off SMBs or try using the Easy Bolus button.

The Easy Bolus button allows you to quickly use the arrow buttons on your pump to give a set increment of insulin. For example, if you setup your Easy Bolus button to have 0.5 unit increments, every click of the up arrow on the pump will increment a bolus of 0.5 units. Push the button 4 times and you are setting up a 2.0 unit bolus. You still have to click the ACT button twice to confirm and start the delivery of the bolus. Since the button presses are usually pretty quick, there’s less likelihood of radio communication interference with a rig’s SMB command. You can use IFTTT buttons to enter the carbs in your Nightscout site (or use Care Portal in Nightscout directly). For example, having IFTTT buttons for 5, 10, and 20g carb entries (or whatever your common meal amounts are) can make entering in food pretty easy. The Easy Bolus method requires the ability to roughly estimate your meal bolus (e.g., total carbs divided by carb ratio). As long as you are close, the loop should be able to make up any amount of bolus that was slightly over/under done by using the Easy Bolus button.

Extended and Dual Wave substitute

Due to the way Medtronic pumps operate, temp basals can only be set when there is no bolus running, including extended (square) and dual wave boluses. If you’re used to extended or dual wave boluses for carb heavy meals (e.g., pizza), which may still be the optimal approach for you, OpenAPS will not be able to provide temp basals during the extended bolus. You won’t be looping during those types of boluses.

But, you don’t need the square/dual wave boluses anymore, as OpenAPS will help simulate the longer tail insulin needed if you’ve entered carbs into the system. Also, many loopers have found they can convert to a split bolus strategy to effectively deal with the same meals. There is a carb+insulin+BG simulator called Glucodyn [http://perceptus.org] that can be used to model a split bolus strategy for those meals. By setting different bolus times and bolus amounts, the model allows the user to slide adjustments to minimize early-meal lows as well as late meal rises. For example, you may find that a 20 minute pre-bolus of 50% of the carbs and a later bolus for the remaining 50% will work well, with looping helping to make up the difference that an extended bolus used to provide. You can practice the transition to split bolusing even before you get your loop running.

Some of the super advanced features you’ll learn about later - Unannounced Meals and Supermicrobolus (UAM/SMBs) - also help smooth the transition from extended bolusing. Some users have found that entering in carbs alone can be effective, especially in helping later BG rises from slow-absorping carbs. Once you get your loop running, and are ready for the advanced features, you may be interested in playing with the various techniques available for heavy, slow carb meals.

Prev.: Visualization and Monitoring using Nightscout

Next: Loops In Progress

​

 Loops In Progress

Loops In Progress

To get you comfortable with submitting a “PR” (stands for pull request), test it out by submitting a PR to this page, adding your name to the list of people who have loops in progress.

New to Github, and PRs? Check out how to submit your first PR [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Resources/my-first-pr.html].

List of people who are working on closed loops:

	Dana Lewis

	Ben West

	Chris Hannemann

	Sarah Howard

	Mike Stebbins

	Scott Hanselman

	Greg Scull

	Aaron Michelson

	Jayson EWER –Intel Edison w/ TI–cc1111

	Frank Best

	Brooke Armstrong & Matt Pazoles

	David Young

	Paul Martin

	Jarred Yaw

	Shane Mitchell

	Boris and Kayley Raskin

	Andy Pabari

	Rob Kresha - (Papillion, NE, USA)

	Christian Robinson (London, UK)

	Gary Kidd (Wilton, CT)

	Nathan Morse

	Paul Davis (Brighton, UK)

	Marion Barker (Sunnyvale, CA, USA)

	Frank Jungman (San Diego, CA)

	Sophie Thacher

	Luis Betancourt (Veracruz, Mexico)

	Tom Boudreau (Washington DC, USA)

	Ryan Chen

	Katherine Mason

	Garrett Webb (Dallas, TX)

	Brandon Faloona (Seattle, WA / Burbank, CA)

	Keith Burns - for Heather (Richmond, VA)

	Kim St. Dennis (Los Angeles, CA)

	Gabriel and Gideon Arom (Chicago, IL / Los Angeles, CA)

	Arlene Samowich (Nashville, TN)

	Andy Probolus & Marianne Smith (Lancaster, PA)

	Gregg Haroldson (Huntington Beach, CA)

	Gera Yeremin (Santa Rosa , CA)

	Ed Nykaza

	Jeff Waters (Madison, WI)

	Greg Hull (Wheaton, IL)

	Sara and David Goya (Anaheim, CA)

	Rafael Matuk (Chicago, IL)

	Luuc Verburgh (Eindhoven, The Netherlands)

	Iain Cartwright (Adelaide, Australia)

	Julie Raines (Poughkeepsie, NY)

	Brandon Parrish (Augusta, GA)

	Katie Ellison (Bellevue, WA)

	Sarah Easter (Georgetown, TX)

	Terri Lyman (Prescott Valley, AZ)

	Gina Lyon (Laurel, MS) Edison-Explorer Bd, DexG5

	Eric Jensen (Swarthmore, PA)

	John Dodds (Glasgow, UK)

	Lindsey Maguire (Silicon Valley)

	Dan Robinson (Chicago, IL)

	Mitch Phillips - (Pennington, NJ)

	Colin Barlow & Cassie Knox - (San Diego, CA)

	Andrew H (Sydney, Australia)

	Hichame Yessou (Milano, Italy)

	Tim Street (London, UK)

	Neal Harvey (Grants Pass, OR)

	Patrick Metcalfe

	Ken Webster (Hobart, Tas, Australia)

	David Eddy (Madbury, NH)

	Tirzah Heide for Nathanael (St. Louis, MO)

	Tracy Osheroff (Seattle, WA)

	Mike & Jennifer Crawford (Calgary, AB, Canada)

	Matthew Byatt (Cambridge, UK)

	Anna Hassan (New Orleans, LA)

	Tony Zarro (Atlanta, GA)

	Mike Wright (San Jose, CA)

	Derek Rodeback (Loma Linda, CA)

	Joanne Spotten (SLC, UT)

	Sandra Keßler (Kassel, Germany)

	Lukas Ondriga (Svaty Jur, Slovakia)

	Dominic Herrington (Bishops Stortford, UK)

	Taylor Fowler (Brooklyn, NY)

	Mikel Curry

	Aditya Dasnurkar

	Jason Wittmer for Andrew (Clive, IA)

	Kevin Ruess Marshall (Indianapolis, USA)

	Keith Kubischta (Poway, CA)

	Emily Kranz (Greensboro, NC)

	Orla Wilson (Baltimore)

	Jason Pell for Heidi and Mallory (New York, NY)

	Patrick van Gestel (Hilvarenbeek, Netherlands)

	Joe Moran (Los Altos, CA)

	John & Gregory Kelleher (Sligo, Ireland)

	Carine Bruyndoncx (Arendonk, Belgium)

	Jordan Berger (SLC, UT)

	James Henley (Friendswood, TX)

	Amy Andrews (Boston, MA)

	Ann Delano (Seattle, WA)

	Marcus Whitley (Greenbrier, AR)

	Trevor Wood (Santaquin, UT)

	Anne Svejda (Virginia Beach, VA)

	Melody Andrews-Caron (Ontario, Canada)

	Andy Sharrow (Saginaw, MI)

	John Benjamin (Clawson, MI)

	Vince P. for Tristan (Ravenna, OH)

	Anthony Cerrone (Danville, CA)

	Rachel Aumaugher (Davison, MI)

	Joe Greene (Jacksonville, NC)

	Sebastien Lussier (Montreal, Canada)

	Chris Harris (Sydney, Australia)

	Lee Skelton (London, UK)

	Jacqueline Burke (Troy, MI / Baltimore, MD)

	Kate Hainsworth (Austin, TX)

	Brian Rabinovitz (Chapel Hill, NC)

	Stephen G. (Seattle, WA)

	Emily Stunek (Lake Shore, MN)

	Lorenzo Conte (Chicago, IL)

	Alasdair McLay (Derby, UK)

	Ahanu Banerjee (Pittsburgh, PA)

	Ken Huat CHONG (Kuala Lumpur, Malaysia)

	Daniel Bjørnbakk (Norway)

	Katie DiSimone (Paso Robles, CA)

	Rebecca Jervey (Philadelphia, PA)

	Ivica Suran (Pazin, Croatia)

	David Rimmer (Melbourne, Australia)

	Kyle King (Opelika, AL)

	Sonya Neufer

	Sacha M (New Zealand)

	Joe Dunn for Lizzie

	Michele Lawford (Canada)

	parenthetic (diabetic)

	Lorenzo Sandini (Finland)

	Deidra Little (Seattle, WA)

	Tim Mathis (Fort Walton Beach, FL)

	Greg Uhlenkott (Grangeville, ID, USA)

	Song Ming Jie (China)

	Chuck Vanderwist (Western Colorado, USA)

	James Corbett (Greenbrier, TN USA)

	Meghan Rutledge (Dallas, TX)

	Rick Warren (Vancouver, BC, Canada)

	Carl-Johan Wehtje (London, UK)

	Cameron Renwick (Muskoka, Ontario, Canada)

	Cameron Chunn (Huntsville, AL)

	Patrick & Lesly Kelly for Addy (Tempe, AZ)

	Melanie Mason for Toby (Leicester, UK)

	Mohamed Ali Bedair (Cairo, Egypt)

	Hilary Koch (Waterville, ME)

	Eric Feibelman (Alachua, FL)

	Winfried Kuiper (Langballig, Germany)

	Selin Aygün (Ankara,Türkiye)

	Ken Kotch (Boulder, CO, USA)

	Brian Densmore (Clovis, CA, USA)

	Jesse Szypulski (Louisville, KY, USA) Edison / Explorer Board

	Robert Silvers (Norwell, MA)

	Eric Metzler (St. Paul, MN)

	Helene Brashear (Austin, TX)

	Jeremy B. for CM (New York, NY)

	Molly Duerr (Minneapolis, MN)

	Amber K (Ithaca, NY)

	Melanie Shapiro (Gainesville, FL)

	Brandon (Philly)

	Justin W (Charlottesville, VA)

	Chris Creek (Martinsburg, PA)

	Tom Petrillo (San Diego, CA)

	Christian Driver for Lucy (Wilmslow, UK)

	Katie Aldridge

	Darlene Morissette (Winnipeg, MB, Canada)

	Jake Punshon (Saskatoon, SK, Canada)

	Elisa Kelley (Austin, TX)

	Stuart Raphael (Sydney, Australia)

	Dan Durham (Edmonton, AB, Canada)

	Niels Hartvig (Odense, Denmark)

	Dirk Gastaldo (Newbury Park, CA, USA)

	Clayton McCook (Edmond, OK, USA)

	Kris Schmitz (Washington, DC/New Brunswick, NJ)

	Steven Miller (Vancouver, BC, Canada)

	Kyle Larsen (Provo, UT)

	Ben Fowler (Huntsville, AL)

	Giuseppe Acito (Roma, Italy)

	Mark M (Chicago, IL)

	Chris Reilly (Detroit, MI)

	Rod Snyder (Morgantown, WV, USA)

	John Murray (Pinellas Park, FL, USA)

	Shirley Steinmacher (son, Salt Lake City, UT, USA)

	Michael Spradling (Raleigh, NC)

	Tore Bjørndalen (Norway, Oppegård)

	John Young (King of Prussia, PA)

	Kathleen Gagnier (Orlando, FL)

	Kim Goldmacher (Philadelphia, PA)

	Craig Brenner (Seattle, WA)

	Darryl Schick (PA)

	Nadine Pedersen (Vancouver, Canada)

	Beno Schechter (Coral Gables, FL)

	Rami Laakso (Nummela, Finland)

	Steve Lund (PEI, Canada)

	Paul Andrel (Phoenixville, PA)

	Allan Evans (Ottawa, Canada)

	Simon Lewinson (NE Victoria, Australia)

	Angie Kabat (Fairbanks, AK)

	Jacob H (Waterford, MI)

	Jim Van Hook (St. Louis, MO)

	Pedro C (Porto, Portugal)

	Roger Sanftner (San Antonio, TX)

	Gabriela Ezquerro (Mexico City, MEX)

	Jessica Carey (CA)

	Lynne Beard (Kincardineshire, Scotland)

	Carlin Pressnall (Seattle, WA)

	James Brown (Derby, UK)

	Allison Marx (Atlanta, GA)

	David Ashby (Rexburg, ID)

	Andrew Warrington (Alsace, France)

	Kelsey Yearick (Crook, Colorado)

	Marcel Zandvliet (The Hague, The Netherlands)

	Gerard Dwan (Boston, MA)

	Jon Groelz (Captain Cook, HI)

	Christos Alonistiotis (Athens, Greece)

	Chris Lodermeier (MN)

	Tom Beesley (Brighton, UK)

	Robert Sandvik (Stavanger, Norway)

	Eugene Girard (Kitchener, Canada)

	Luke Jenkins for Kyler (Vancouver, WA)

	Brandon Hunnicutt (Denver, Colorado)

	Kate Groves (Oxford, UK)

	Tom Wells (Guildford, UK)

	Kyle Masterman (Perth, Western Australia)

	Virginia Saunders (Ontario, Canada)

	Enda Farrell (Berlin, Germany)

	Carl Robertson (Rochester, NY, USA)

	Ben Ortega (Minneapolis, MN)

	Reza Bolouri (Melbourne, Australia)

	Todd Radel (Doylestown, PA)

	Steve Mann (Bronx, NY)

	Jason Nerothin (Madison, WI)

	Eben Demong (San Ramon, CA)

	Peetu Hongisto (Hollola, Finland)

	Jonathan Cole (St. Louis, MO, USA)

	Laura Ferrara (Hood River, OR, USA)

	Caleb Seekell (Charlestown, RI, USA)

	Dave Rich (Cambridge, ON, CANADA)

	Tracey Berg-Fulton (Pittsburgh, PA)

	Juan Mejías (Seville, Spain)

	Mladen Cvijanovic (Buffalo, NY, USA)

	Kendra Hunter (Rochester, NY)

	Roxana Soetebeer (New Brunswick, Canada)

	Bulbul Ahmed (Charlottesvill, VA, USA)

	Minna Hannula (Finland)

	Mark Orders (UK)

	Alan Ryder (UK)

	Robert Riemann (DE)

	Grant Carlson (Sunnyvale, CA, USA)

	Zachary Christman (Philadelphia, PA, USA)

	Per Winterdijk (the Netherlands)

	Paul Featonby (UK)

	Lisa Morales (California, USA)

	Rob Neu (wife, Utah, USA; sister-in-law, Virginia, USA)

	Nancy Simons (SW France)

	Jill Gordon (UK)

	Elwin Versluis (Abcoude, The Netherlands)

	Carling Lellock (Pittsburgh, PA, USA)

	Walter Feddern (Ontario, Canada)

	Abigail Cember (Ardmore, PA, USA)

	Megann Fuka (Tulsa, OK, USA)

	Ariane Fleming (Seattle, WA)

	Sarah Withee (Pittsburgh, PA, USA)

	Daniel Noor (TN)

	Raymond Richmond (Edmonton, AB, Canada)

	Hosam El Din Mohamed El Nagar (Cairo, Egypt)

	Mary Anne Patton (Brisbane, Australia)

	Jared Bechard (Overland Park, KS, USA)

	Tyler Duncan (Lethbridge, Alberta, Canada)

	Eran I (Israel)

	Mikko Kesti (Vantaa, Finland) Intel Edison

	Jan Schenk (Munich, Germany)

	Jess Phoenix (London, UK)

	Kelly Polster (Fort Worth, TX)

	Corey Stoerner (Phoenix, AZ)

	Chris Wallis (Brisbane, QLD, Australia)

	Dave Gourley (Kaysville, UT)

	Chris Heywood (Manchester, UK)

	Grahame Cottam (Newcastle upon Tyne, UK)

	Norman Seward (Cardiff, Wales. UK)

	Luminary Xion (Tokyo, Japan)

	Nika Beros (Zagreb, Croatia)

	Katja Jacob (Seattle, WA)

	Paul Benedict (Evergreen, CO)

	Luis Toussaint (Tarragona, ES)

	Dana Sturdivant (Washington, D.C.)

	Jakub Tomaszczyk (Gold Coast, Australia)

	Andrew Hopkins (Newcastle, Australia)

	Robert Clark (Canberra, Australia)

	David Vanier (Saratoga Springs, NY, USA)

	Kirsten Otis (Guelph, Ontario, Canada)

	Natalia Stanichevsky (Ontario, Canada)

	Patrick Gauthier (Toronto, Ontario, Canada)

	Anne Evered (Philadelphia, PA)

	Or Loantz (Israel)

	Marsha Vasserman (Calgary, Alberta, Canada)

	Melanie Ellis (Auckland, New Zealand)

	Kelsey Mosley (Saint Joseph, MN, USA)

	David Klapan (Osijek, Croatia)

	Grant M. Beahlen (Macomb Co., MI,)

	Nobu Aoki(Hyogo,Japan)

Prev.: Collect your data and get prepared

Next: Reading list

​

 Reading list

Reading list

Before you actually install OpenAPS on your rig - perhaps while you’re waiting for gear to arrive, or while you’re learning to use your new pump or logging data on Nightscout - you should familiarize yourself with the system.

Here are the most important sections to read:

	Make sure you know how you will enter carbs and boluses so OpenAPS knows about them [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/entering-carbs-bolus.html].

	Read and understand how OpenAPS decides on adjustments to your basal insulin [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/How it works/understand-determine-basal.html].

	Skim the section on monitoring OpenAPS [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/monitoring-OpenAPS.html] so you’re aware of the various options for monitoring your rig once it’s looping. It’s not necessary to understand all the options in detail, just be aware of them; you’ll probably want to return to that section to set up additional options in the future.

	Skim the section on preferences and safety settings [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/preferences-and-safety-settings.html] you can set so you’re aware of the things you can easily adjust. You’ll be returning to set these in Step 5 of the installation process.

	Skim the section on your wifi options [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/Wifi/understanding-wifi-options.html] to understand the various ways you can get your rig online. Again, you don’t need to memorize all the information here, just be aware of the options and ready to return in the future as needed.

Prev.: Loops In Progress

Next: Installing OpenAPS on your rig

​

 Installing OpenAPS on your rig

Installing OpenAPS on your rig

Getting OpenAPS running on your rig generally takes five steps:

	Jubilinux installation (called “flashing” the Edison - Pi users can skip to step 2). This may already be done for you if you purchased a pre-flashed Edison board.

	Getting first wifi network connection and installing “dependencies” (helper code that make all the OpenAPS code function). This is done using what is called the “bootstrap” script.

	Installing your OpenAPS loop. This is done using what is called the “setup” script.

	Watching the Pump-loop Log. This is an important, required step. You need to be familiar with how to read and access your logs.

	Finish your setup: all the polishing steps to your OpenAPS setup. Things like optimizing your settings, preferences, BT-tethering, IFTTT, etc.

Going through steps 1-2 may take about 1-3 hours depending on your internet connection, whether the edison was pre-flashed, and comfort level with the instructions. At the end of the bootstrap script (step 2), you will be asked if you want to continue on with the set-up script (step 3). If you need to take a break and come back to step 3 later, you can answer “no” to continuing on and come back later.

Before you start, it’s a good idea to have some basic familiarity with using the command line on your computer, via a program like Terminal (on Mac) or Command Line (on Windows). This will be helpful not just for initial installation, but for monitoring and adjusting your setup later. Here’s a good introduction to using Terminal on Mac. [https://blog.teamtreehouse.com/introduction-to-the-mac-os-x-command-line] You can also reference the generally-useful Linux commands [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Troubleshooting/General_linux_troubleshooting.html] from the troubleshooting guide.

Some conventions used in these docs:

	Wherever you see text that is formatted like this, it is a code snippet. You should copy and paste those code snippets instead of attempting to type these out; this will save you debugging time for finding your typos.

	Double check that your copy-paste has copied correctly. Sometimes a paste may drop a character or two and that will cause an error in the command that you are trying to execute. Sometimes, depending on what step you are doing, you may not see the issue. So, do make a point of double checking the paste before pressing return.

	You will see a $ at the beginning of many of the lines of code. This
indicates that it is to be entered and executed at the terminal prompt. Do not type in the dollar sign $.

	Wherever there are <bracketed_components> in the code, these are meant for you to insert your own information. Most of the time, it doesn’t matter what you choose as long as you stay consistent throughout this guide. That means if you choose myedison as your <edisonhostname>, you must use myedison every time you see <edisonhostname>. Do not include the < > brackets in your commands when you enter them. So for the example above, if the code snipped says ssh root@<edisonhostname>.local, you would enter ssh root@myedison.local

Prev.: Reading list

Next: Step 1: Jubilinux (for Edison rigs only)

​

 Step 1: Jubilinux (for Edison rigs only)

Step 1: Jubilinux (for Edison rigs only)

This is only necessary for Edison rigs. Pi users can skip to
step 2 [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Build Your Rig/step-2-wifi-dependencies.html]. If you purchased a pre-flashed Edison, you can also skip on down to step 2 [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Build Your Rig/step-2-wifi-dependencies.html].

The steps outlined below include instructions for the various build-platforms (Windows PC, Mac, and Raspberry Pi). Linux users in general should be able to follow the steps for the Raspberry Pi.

What is flashing?

The Edison comes with a very limited operating system, called Yocto, that doesn’t work easily with OpenAPS. The first step is to replace the operating system with a new one. This is called “flashing” the Edison.

It’s best to replace this with a custom version of Debian, as this fits best with OpenAPS, and it also means you have the latest security and stability patches. (These setup instructions were pulled from the mmeowlink wiki; if you’re an advanced user and want/need to use Ubilinux instead of the recommended Jubilinux, go here [https://github.com/oskarpearson/mmeowlink/wiki/Prepare-the-Edison-for-OpenAPS].) The setup instructions also are going to assume you’re using the Explorer Board that has a built in radio stick. If you’re using any other base board and/or any other radio sticks (TI, ERF, Rileylink, etc.), check out the mmeowlink wiki [https://github.com/oskarpearson/mmeowlink/wiki] for support of those hardware options.

1. Prerequisites

If you’re using a Raspberry Pi:

To flash the Edison using a Raspberry Pi, you’ll need a large (preferably 16GB+) SD card for your Pi. The Edison image is almost 2GB, so you’ll not only need space for the compressed and uncompressed image, but you’ll also need to enable a large swapfile on your Pi to fit the image into virtual memory while it is being flashed. Using an SD card as memory is very slow, so allow extra time to flash the Edison image using a Pi.

	Run sudo bash -c 'echo CONF_SWAPSIZE=2000 > /etc/dphys-swapfile' to configure a 2GB swap file.
Note: if you don’t have enough space on the SD card for a 2G swap a 1G swap will probably work

	Run sudo /etc/init.d/dphys-swapfile stop and then sudo /etc/init.d/dphys-swapfile start to enable the new swap file.

	If you installed watchdog on the pi, it’s a good idea to stop it since loading the image into memory to flash is intensive

Windows PCs with under 6 GB of RAM

Windows PCs with less than 6 GB of RAM may need to have the size of the page file increased to flash the Edison. Close all unnecessary programs and attempt to flash the device. If the flash operation fails follow these steps to ensure enough swap space is allocated when the computer boots, then restart and try again. Only do this if flashing the device doesn’t work without changing these settings.

Important: Write down the settings in the Virtual Memory window before you make any changes to your system. When you finish the flash process you must return these settings to their original values or Windows may become unstable.

	Go to the Control Panel, click All Control Panel Items, then click System. At top left click the Remote Settings link.

	Select the Advanced tab in the System Properties window, then under Performance click Settings.

	On the Advanced tab click the Change... button to change the page size.

	In the Virtual Memory window uncheck “Automatically manage paging file size for all drives,” click “Custom size,” and set the initial size to at least 4096 MB. If you have already attempted this process at least once continue to increase this number by 1024 MB. Set the maximum size to 2048 MB higher than the initial size you used.

	Click the Set button, then click OK until all windows are closed.

	Reboot and attempt the flash process.

If you’re using a Mac:

	Install Homebrew, a tool which allows you to easily install other software packages and keep them up to date. Enter the following command in the Terminal app to install Homebrew:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)

You will be prompted to enter “RETURN” to continue and then enter your passcode for the user account (your computer password). When you type the password, you will not see any letters appear in the Terminal screen–that is normal. Terminal does not show keystrokes for passwords.

[image: Enter return example]

It will take about 1-2 minutes for Homebrew to install. You’ll see a bunch of commands scrolling by in Terminal window. Just wait it out until you see the screen showing Installation successful and you’ll be returned to the Terminal prompt.

If you get a message that Homebrew is already installed, that’s also fine!

	Install several other utilities by entering the command:

brew install dfu-util coreutils gnu-getopt

[image: After installing other stuff]

	If you are reflashing an Edison, you might see a recommendation to upgrade coreutils, in which case, run brew upgrade coreutils gnu-getopt

	Install lsusb:

brew update && brew tap jlhonora/lsusb && brew install lsusb

[image: After installing lsusb]

The above instructions are based on these instructions [https://software.intel.com/en-us/node/637974#manual-flash-process] which may be useful as a reference.

2. Downloading Jubilinux image

Jubilinux [http://www.jubilinux.org/] “is an update to the stock ubilinux edison distribution to make it more useful as a server, most significantly by upgrading from wheezy to jessie.” That means we can skip many of the time-consuming upgrade steps that are required when starting from ubilinux.

	Download Jubilinux [http://www.jubilinux.org/dist/] - the jubilinux-v0.3.0.zip is known to work; jubilinux 0.2.0 runs Debian jessie, which is NOT supported by Debian any longer.

	In the download folder, right-click on file and extract (or use unzip jubilinux.zip from the command line). You will access this directory from a command prompt in the next step. It is a good idea to create the Jubilinux in your root directory to make this easier to access.

Note On Windows, you should see an extract all option when you right-click. However, in some instances, it may not be active for zipped files. If you do not see the extract all option in the right-click menu, right-click the zipped file, choose Properties at the bottom of the context menu. On the General tab, click on the button next to the “opens with” and change it to use Windows Explorer. Apply the change and select OK to save the change. You should now be able to right-click the jubilinux.zip file to extract all.

	Open a Terminal (Mac) or Command Prompt (Windows) window and navigate to the extracted folder: cd jubilinux. This is your “flash window.” Keep it open for later!

	If using Windows, you will need two additional utilities. Download DFU-Util [https://cdn.sparkfun.com/assets/learn_tutorials/3/3/4/dfu-util-0.8-binaries.tar.xz]. Extract the two files, libusb-1.0.dll and dfu-util.exe, to the directory where you extracted jublinux.zip. (Alternately, you can download the two files libusb-1.0.dll [http://dfu-util.sourceforge.net/releases/dfu-util-0.8-binaries/win32-mingw32/libusb-1.0.dll] and dfu-util.exe [http://dfu-util.sourceforge.net/releases/dfu-util-0.8-binaries/win32-mingw32/dfu-util.exe] directly.) When you have successfully moved those two folders into the jubilinux folder, you should see files/folders inside the jubilinux folder like so:

[image: Ready to Flashall]

3. Connecting cables to the Explorer Board and starting console

Now we move to the rig. You’ll need to connect two cables from the rig to your computer.
Follow the console login directions [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Build Your Rig/logging-into-rig-serial.html] to get set up.

Once you get to the login prompt, log in using the username “root” (all lowercase) and no password. This will have us ready to reboot from the command line when we are ready. This is your “console window” - keep it open.

If you do not have your Edison password at this point, don’t panic. We are only logging in to reboot the Edison and that can be accomplished via the black button on the explorer board as well. Without the root password you may continue.

4. Flashing image onto the Edison

If you’re using a Raspberry Pi - starting flash:

	In the “flash window” from the Download Image instructions above, run sudo ./flashall.sh. If you receive an dfu-util: command not found error, you can install dfu-util by running sudo apt-get install dfu-util

If you’re using a Mac - starting flash:

	In the “flash window” from the Download Image instructions above, run ./flashall.sh.
	If you receive an dfu-util: command not found error, you can install dfu-util by following the Mac instructions here [https://software.intel.com/en-us/node/637974#manual-flash-process].

	If you receive an Error: Running Homebrew as root is extremely dangerous and no longer supported. As Homebrew does not drop privileges on installation you would be giving all build scripts full access to your system. see the troubleshooting section below.

If you’re using a Windows PC - starting flash:

	In the “flash window” from the Download Image instructions above, run flashall.bat

All platforms:

	The flashall script will ask you to “plug and reboot” the Edison.
	If you have your edison root password: Go back to your console window and type reboot.

	If you do not have your edison root password: Press the black button on the explorer board until the LED between the usb connectors shuts off. Then press it again until the light comes back on.

	Switch back to the other window and you will see the flash process begin. You can monitor both the flash and console windows throughout the rest of the flash process. If nothing else works and you are feeling brave, you can try pulling the Edison out and reconnecting it to the board to start the flash process.

	In the console window where you typed reboot, you should see:

Hit any key to stop autoboot: 0
Target:blank
Partitioning using GPT
Writing GPT: success!
Saving Environment to MMC...
Writing to redundant MMC(0)... done
Flashing already done...
GADGET DRIVER: usb_dnl_dfu
#
DFU complete CRC32: 0x77ccc805
DOWNLOAD ... OK
Ctrl+C to exit ...
##

And in the flash window, you should see

Using U-Boot target: edison-blankcdc
Now waiting for dfu device 8087:0a99
Please plug and reboot the board
Flashing IFWI
Download [=========================] 100% 4194304 bytes
Download [=========================] 100% 4194304 bytes
Flashing U-Boot
Download [=========================] 100% 245760 bytes
Flashing U-Boot Environment
Download [=========================] 100% 65536 bytes
Flashing U-Boot Environment Backup
Download [=========================] 100% 65536 bytes
Rebooting to apply partition changes
Now waiting for dfu device 8087:0a99
Flashing boot partition (kernel)
Download [=========================] 100% 5980160 bytes
Flashing rootfs, (it can take up to 10 minutes... Please be patient)

	Like it says, it will take about 10 minutes to flash from Mac or Windows. If the step that flashall says should take up to 10 minutes completes in seconds, then the flash did not complete successfully, perhaps because you didn’t set up the virtual memory / swap settings correctly; check the troubleshooting section. If you’re using a Raspberry Pi, it may take up to 45 minutes, and for the first 10-15 minutes it may appear like nothing is happening, but eventually you will start to see a progress bar in the console.

	After flashing is complete and the Edison begins rebooting, watch the console: you may get asked to type control-D to continue after one or more reboots. If so, press Ctrl-d to allow it to continue.

	The Edison will reboot several times. You may see

[**] A start job is running for /etc/rc.local Compatibili...14s / no limit)

for a few minutes: that’s fine. You can also expect to see an ugly red:

[FAILED] Failed to start Hostname Service.

That is also fine, and you can ignore it too. Just about when you’ll start to get concerned that it is stuck in a loop, you should get a login prompt. If so, congratulations! Your Edison is flashed. Use login root and password edison to login to your newly flashed Edison.

After logging in, you will notice that the Terminal prompt says root@ubilinux:~#. This is the correct prompt for the jubilinux system. You will not see jubilinux in the prompt. If you bought a pre-flashed Edison, this is how your initial Terminal prompt will look.

[image: Terminal Prompt for Jubilinux]

If you have any difficulty with flashing, skip down to Troubleshooting

After you’ve flashed your Edison, head on to step 2 - setting up wifi and installing dependencies [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Build Your Rig/step-2-wifi-dependencies.html]

Troubleshooting

Troubleshooting the flash process

a) If you get:

dfu-util: Device has DFU interface, but has no DFU functional descriptor
dfu-util: Cannot open DFU device 8087:0a99

that likely means you ran ./flashall.sh without sudo.

b) If you get:

Flashing rootfs, (it can take up to 10 minutes... Please be patient)
dfu-util -v -d 8087:0a99 --alt rootfs -D /home/pi/toFlash/edison-image-edison.ext4 -R 2>&1 | tee -a flash.log | (sed -n '19 q'; head -n 1; cat >/dev/null)
Rebooting
U-boot & Kernel System Flash Success...

in something closer to 10 seconds than 10 minutes, then you likely didn’t set up swap properly. To verify, cat flash.log and look for dfu-util: Cannot allocate memory of size 1610612736 bytes near the end.
Alternatively, this newer version of DFU Util [https://sourceforge.net/projects/dfu-util/files/latest/download] (DFU Util v0.9) seems to work better on computers with lots of RAM.

c) If you recieve an Error: Running Homebrew as root is extremely dangerous and no longer supported. As Homebrew does not drop privileges on installation you would be giving all build scripts full access to your system. it means that you have a recent copy of homebrew (that’s good) which doesn’t allow sudo to even do a brew list.

	The easiest - but perhaps not so forward compatible - thing is to figure out what the brew command was trying to do and edit the flashall.sh script accordingly.
** The v0.2.0 version of flashapp.sh has $(brew list gnu-getopt | grep bin/getopt).
** Running brew list gnu-getopt | grep bin/getopt for me (Dec 2017) gave me /usr/local/Cellar/gnu-getopt/1.1.6/bin/getopt

	Edit the flashall.sh from

:bash
 GETOPTS="$(which getopt)"
 if [["$OSTYPE" == "darwin"*]] ; then READLINK=greadlink; GETOPTS="$(brew l ist gnu-getopt | grep bin/getopt)"; else READLINK=readlink;fi;

to

 GETOPTS="$(which getopt)"
 if [["$OSTYPE" == "darwin"*]]
 then
 READLINK=greadlink
 GETOPTS=/usr/local/Cellar/gnu-getopt/1.1.6/bin/getopt
 else
 READLINK=readline
 fi

d) If you have a failed flash or have problems with the reboot, try starting the console and hitting enter a bunch of times while connecting to stop autoboot. You’ll then be at a boot> prompt. Run sudo ./flashall.sh and when it asks you to reboot type and enter run do_flash at the boot> prompt.

e) If you get stuck on an error that says “Ready to receive application” on the Edison the problem is you don’t have enough power to properly boot up the Edison. This can happen if you are powering from your Pi. You should either connect a battery to the Edison board to give it a little boost, or use a powered USB hub between the Pi and the Edison.

f) If Edison reboots correctly but never gets picked up by the flashall.sh script and the flashing process does not start, check that you have DATA micro USB to USB cables - both of them. A large proportion of USB cables are not “data” - just power - and even cables previously used for data can degrade to no longer reliably carry data. How do you know if each cable is for data? One good way is to unplug both cables from the Edison, plug each cable in turn into your computer USB port and the explorer board OTG port. If your folder/window explorer shows Edison as a drive then the cable supports data. You need both to be data cables.

g) If Edison reboots correctly but never gets picked up by the flashall.sh script and the flashing process does not start, and you’ve re-confirmed that the two cables you are using are indeed good data cables, check the Edison device ID. It will probably come out automatically after the flashall.sh script fails with a list of available devices connected to the machine. On Linux, you can run lsusb to get a list of usb devices with their device ID. If the device ID is different from the one expected on flashall.sh, you can edit the script and change lines containing: USB_VID=8087 & USB_PID=0a99 to whatever the Edison has for an ID. Some users have encountered their devices ID to be 8087:0a9e

h) If you have attempted the firmware flash with Jubilinux several times and the flash will not complete successfully, it is highly recommended that you follow the mmeowlink deprecated Ubilinux instructions [https://github.com/oskarpearson/mmeowlink/wiki/Prepare-the-Edison-for-OpenAPS#ubilinux-deprecated]. Note that those instructions will have notes throughout for steps which are specific to the flash of Ubilinux. Additional steps help to align the Edison’s operating system with Jubilinux. You must do these steps.

If you’re having issues with a Windows flash of Jubilinux, try following along with the videos below. OpenAPS users have cited their instructions in successful flashes of Ubilinux. You will still need to go through the extra Ubilinux configuration steps mentioned in the linked mmeowlink wiki above.

	Flash Ubilinux Onto Intel Edison via Windows, 5 Part Video [https://www.youtube.com/watch?v=L57RC8POJzM] (Cygwin)

	uCast #21: Installing Ubilinux on the Edison (Windows) [https://www.youtube.com/watch?v=BSnXjuttSgY&t=16s] (Windows Command Prompt)

i) If none of the above has worked with the Explorer board, try swapping the two microUSB cables, or replacing them with new ones. See “f)” above too.

j) If you’ve attempted all of the troubleshooting steps above but still aren’t successful, it’s worth trying to use a different computer to flash.

Troubleshooting rescue mode

	If your edison boots to a console and says it is in rescue mode (you can hit ctrl-d to continue or enter the root password), you may need to change a u-boot environment variable to make it boot normally. During the boot process you will see:

*** Ready to receive application ***

U-Boot 2014.04 (Feb 09 2015 - 15:40:31)

 Watchdog enabled
DRAM: 980.6 MiB
MMC: tangier_sdhci: 0
In: serial
Out: serial
Err: serial
Hit any key to stop autoboot: 0

	Hit any key to drop to a prompt and type:printenv bootargs_target

	If the answer isbootargs_target=first-installthen type:setenv bootargs_target multi-usersaveenv

	And to exit that firmware u-boot prompt:run do_boot

	If this doesn’t fix the problem, and your boot gets stuck here:

[OK] Mounted /home.

 Starting Rescue Shell...

[OK] Started Rescue Shell.

[OK] Reached target Rescue Mode.

You may have an issue with the flashall.sh script. (This seems to only impact mac users).
In the “flash window” terminal where you downloaded Jubilinux

	Edit the flashall scriptnano flashall.sh

	Find the following text (around line 220) Your text may vary slightly, with additional echo statements or such

echo "Flashing U-Boot Environment Backup and rebooting to apply partiton changes"
 flash-command --alt u-boot-env1 -D "${VARIANT_FILE}" -R

 dfu-wait

	Modify this line to remove the -R and the dfu-wait command

echo "Flashing U-Boot Environment Backup and rebooting to apply partiton changes"
 flash-command --alt u-boot-env1 -D "${VARIANT_FILE}"

	Reboot one last time - install should take a good deal longer than previous executions.

Override DNS resolvers

Some users have reported problems with connecting to internet sites. If you are experience poor internet connections, try ‘nano /etc/resolv.conf’ and change the first two nameservers to:

 nameserver 8.8.4.4
 nameserver 8.8.8.8

Also see the instructions here [https://wiki.debian.org/NetworkConfiguration#The_resolvconf_program] to add these nameservers to your /network/interfaces file as the resolv.conf file is likely to be overwritten.

Alternatively, add the nameservers you want to see in resolv.conf to /etc/resolvconf/resolv.conf.d/tail and they’ll be automatically added to resolv.conf. (You may need to create the folder by running this command first: mkdir -p /etc/resolvconf/resolv.conf.d)

IP address conflicts (able to ping external but not LAN addresses)

Some users have reported problems where the local router uses the same IP block as that of usb0 config. The default configuration for usb0 in /etc/network/interfaces uses 192.168.2.15, so if your local router also uses 192.168.2.xx you may not be able to properly connect to your Edison using SSH, and external connectivity may intermittently fail.

To check which IP address your router is using, you can run ipconfig on Windows or ifconfig on Mac/Linux. If you’re getting an address starting with 192.168.2.x, you’ll want to edit your Edison’s configuration to use a different subnet for usb0:

Use vi /etc/network/interfaces to edit the static usb0 interface address from 192.168.2.15 to another valid private IP, like 192.168.29.29. The resulting config should look like:

interfaces(5) file used by ifup(8) and ifdown(8)
auto lo
iface lo inet loopback

auto usb0
iface usb0 inet static
 address 192.168.29.29
 netmask 255.255.255.0

auto wlan0
iface wlan0 inet dhcp
 wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

Once that looks correct, save the file and reboot your rig for the changes to take effect.

Interrupting Kernel Messages in Console/Screen Mode

[image: Example kernel message]

Fix for individual console/screen session:

Type this at the prompt: dmesg -D

Permanent solution:

vi /etc/rc.local
press i for insert mode

add this line: sudo dmesg -n 1

[image: adding dmesg]

(remember to save and exit the vi editor by using esc and then :wq)

Prev.: Installing OpenAPS on your rig

Next: Step 2: Wifi and Dependencies

​

 Step 2: Wifi and Dependencies

Step 2: Wifi and Dependencies

The directions for this step depend on which type of rig you are using:

	Intel Edison

	Raspberry Pi

Intel Edison instructions

Prep Computer and Login to rig

To get your first wifi connection set up and install OpenAPS, you’ll need to log in to the rig via the console. Follow the console login directions [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Build Your Rig/logging-into-rig-serial.html] to get a console window open, then the rest of the instructions below.

Bootstrap script

If you’re not already, make sure you’re logged into your rig via root. You should see root@jubilinux on the command prompt.

The box below is the Bootstrap script, which will set up your first wifi network connection and install dependencies. Copy this text (all of it in the box):

#!/bin/bash
(
dmesg -D
echo Scanning for wifi networks:
ifup wlan0
wpa_cli scan
echo -e "\nStrongest networks found:"
wpa_cli scan_res | sort -grk 3 | head | awk -F '\t' '{print $NF}' | uniq
set -e
echo -e /"\nWARNING: this script will back up and remove all of your current wifi configs."
read -p "Press Ctrl-C to cancel, or press Enter to continue:" -r
echo -e "\nNOTE: Spaces in your network name or password are ok. Do not add quotes."
read -p "Enter your network name: " -r
SSID=$REPLY
read -p "Enter your network password: " -r
PSK=$REPLY
cd /etc/network
cp interfaces interfaces.$(date +%s).bak
echo -e "auto lo\niface lo inet loopback\n\nauto usb0\niface usb0 inet static\n address 10.11.12.13\n netmask 255.255.255.0\n\nauto wlan0\niface wlan0 inet dhcp\n wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf" > interfaces
echo -e "\n/etc/network/interfaces:\n"
cat interfaces
cd /etc/wpa_supplicant/
cp wpa_supplicant.conf wpa_supplicant.conf.$(date +%s).bak
echo -e "ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev\nupdate_config=1\nnetwork={\n ssid=\"$SSID\"\n psk=\"$PSK\"\n}" > wpa_supplicant.conf
echo -e "\n/etc/wpa_supplicant/wpa_supplicant.conf:\n"
cat wpa_supplicant.conf
echo -e "\nAttempting to bring up wlan0:\n"
ifdown wlan0; ifup wlan0
sleep 10
echo -ne "\nWifi SSID: "; iwgetid -r
sleep 5
curl https://raw.githubusercontent.com/openaps/oref0/master/bin/openaps-install.sh > /tmp/openaps-install.sh
bash /tmp/openaps-install.sh
)

Copy all of those lines; go back to Terminal/PuTTY and paste into the command line (Paste in PuTTY is just a right mouse click). Then, hit enter. The screenshot below is an example of what the pasted text will look like (highlighted in blue for clarity). (If you have trouble copying from the box, click here [https://raw.githubusercontent.com/openaps/oref0/master/bin/openaps-bootstrap.sh] and ctrl-a or command-a to copy the text from there.)

Note: This setup script will require you to have an available working internet connection to be successful. If anything fails during the installation, the setup may end early before you get to the setup script questions. In that case, you can just paste the script above into the command line again and try again. (Don’t try to use the up arrow, it probably won’t work.) If you get repeated failures, bring your questions and error messages into Gitter or FB for help with troubleshooting.

[image: Example of wifi bootstrap script finding wifi options]

The script will do some initial installing, check the wifi, and ask you to hit enter to proceed. It will run for a while again, and then ask you to type in your wifi name and press enter; and type your wifi password and press enter. Pay careful attention to capital letters, spacing, and special characters.

[image: Example of wifi bootstrap script finding wifi options]

	Change your hostname (a.k.a, your rig’s name). Make sure to write down your hostname; this is how you will log in in the future as ssh root@what-you-named-it.local

	Pick your time zone (e.g., In the US, you’d select US and then scroll and find your time zone, such as Pacific New if you’re in California).

Now that step 2 is done, the bootstrap script will then continue to run awhile longer (~20+ minutes)...this next part is installing the necessary dependencies (step 3) before you move onto the setup script (step 4). You’ll see an awful lot of lines going by as the process goes on. Eventually, the successful bootstrap ends with this screen below:

[image: End of Bootstrap script]

At the completion, you will be prompted to press enter if you want to continue the setup script (oref0-setup). If you don’t have time to run the setup script (a fresh install of setup script can take about an hour to run), then you can cancel and come back to it later. Regardless of your answer, you should now return to the Setup Script section [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Build Your Rig/step-3-setup-script.html] for finishing step 3.

Now that you have a wifi connection to your rig, you have the option of logging into it using SSH [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/monitoring-OpenAPS.html#accessing-your-online-rig-via-ssh] from a computer on the same network, rather than using a cable.

Manual instructions for Intel Edison

Below are the manual instructions for reference only - it is strongly recommended that you use the bootstrap script above instead.

Initial Edison Setup

Log in as root/edison via serial console.

Type/edit the following:

myedisonhostname=<thehostname-you-want> #Do not type the <>

And then paste the following to rename your Edison accordingly:

echo $myedisonhostname > /etc/hostname
sed -r -i"" "s/localhost(jubilinux)?$/localhost $myedisonhostname/" /etc/hosts

Run these commands to set secure passwords. Make sure you save them somewhere - you will need them! It will ask you to enter your new password for each user 2 times. Type the password in the same both times. To use SSH (which you will need to do shortly) this password needs to be at least 8 characters long. Do not use a dictionary word or other easy-to-guess word/phrase as the basis for your passwords. Do not reuse passwords you’ve already used elsewhere.

passwd root
passwd edison

Set up Wifi:

vi /etc/network/interfaces

A screen similar to the one below will appear. Type “i” to enter INSERT mode for editing on the file.

[image: Wifi edit screen]

Type ‘i’ to get into INSERT mode. In INSERT mode

	Uncomment ‘auto wlan0’ (remove the # at the beginning of the line)

	Edit the next two lines to read:

auto wlan0
iface wlan0 inet dhcp
 wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

Comment out (add # at the start of the line) or delete the wpa-ssid and wpa-psk lines.

After editing, your file should look like:

interfaces(5) file used by ifup(8) and ifdown(8)
auto lo
iface lo inet loopback

auto usb0
iface usb0 inet static
 address 192.168.2.15
 netmask 255.255.255.0

auto wlan0
iface wlan0 inet dhcp
 wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

Press Esc and then type ‘:wq’ and press Enter to write (save) the file and quit.

To set up a wireless connection, enter

vi /etc/wpa_supplicant/wpa_supplicant.conf

Type ‘i’ to get into INSERT mode and add the following to the end, once for each network you want to add. Be sure to include the quotes around the network name and password. If you have a hidden wifi network add the line scan_ssid=1.

network={
 ssid="my network"
 psk="my wifi password"
}

The networks you enter here are the wifi networks that your rig will be able to use to stay connected to internet. After getting your initial wireless connection set up, you can return to the instructions for adding additional wireless connections [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/Wifi/on-the-go-wifi-adding.html] to add more options to your rig at any point.

[image: Wifi edit screen]

On a Mac, if you experience any erratic behavior while using the screen editor, such as the cursor overwriting or deleting adjacent words when typing or even when using the cursor arrow keys, this may be due to incorrectly set Mac Terminal window settings. Try going to the “Shell” on the menu bar above and selecting “Show Inspector.” Ensure the Columns setting is set to “80” and the Rows setting is set to “25.”

Press Esc and then type ‘:wq’ and press Enter to write the file and quit.

Run ifup wlan0 to make sure you can connect to wifi. A successful connection should look similar (IP address numbers will be different than mine):

[image: ifup wlan0 example]

Make sure you see a message showing you are successfully connected, then reboot to apply the wifi changes and (hopefully) get online.

After rebooting, log back in and type iwgetid -r to make sure you successfully connected to wifi. It should print out your network name. If the rig isn’t online, go back and check your /etc/network/interfaces and /etc/wpa_supplicant/wpa_supplicant.conf files above: you probably either missed a step or made a typo.

Note: If you are reflashing an Edison, you might get a scary looking error about “WARNING: POSSIBLE DNS SPOOFING DECTECTED WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!” that is likely because you are attempting to login to a rig that has the same hostname as a previous rig that has been logged into on the computer. You can delete the history of known hosts for the rig by entering the commands cd .ssh and then rm known_hosts. This will delete the log of known hosts on your computer. There’s no significant downside to removing the known_host log, except that you will need to answer yes to the key fingerprint additions again for the first time you login to old rigs again.

[image: Mac spoofing error]

Run ifconfig wlan0 to determine the IP address of the wireless interface, in case you need it to SSH below. Alternatively, if you know how to login to your router, you can also see the Edison’s IP address there.

[image: IP address]

Leave the serial window open in case you can’t get in via SSH and need to fix your wifi config.

If you need more details on setting up wpa_supplicant.conf, see one of these guides:

	http://weworkweplay.com/play/automatically-connect-a-raspberry-pi-to-a-wifi-network/

	http://www.geeked.info/raspberry-pi-add-multiple-wifi-access-points/

	http://raspberrypi.stackexchange.com/questions/11631/how-to-setup-multiple-wifi-networks

	http://www.cs.upc.edu/lclsi/Manuales/wireless/files/wpa_supplicant.conf

Install packages, ssh keys, and other settings

From a new terminal or PuTTY window, ssh root@myedisonhostname.local. If you can’t connect via youredisonhostname.local (for example, on a Windows PC without iTunes), you can instead connect directly to the IP address you found with ifconfig above.

If you see warnings about the authenticity of host can’t be established, you can say yes to continue and add the new edison to your known hosts list. This message typically appears when you’ve set-up multiple edisons on the same computer.

Log in as root (with the password you just set above), and run these three lines one by one. The first line “dpkg -P ... ” will be quick. Check the printout to see that it ran without error. Then run the apt-get lines one at a time. They may take several minutes.

dpkg -P nodejs nodejs-dev
apt-get update && apt-get -y dist-upgrade && apt-get -y autoremove
apt-get install -y sudo strace tcpdump screen acpid vim python-pip locate

And these three (the first two will be fast, the last line will take you to a screen for setting up your timezone):

adduser edison sudo
adduser edison dialout
dpkg-reconfigure tzdata # Set local time-zone
 Use arrow button to choose zone then arrow to the right to make cursor highlight <OK> then hit ENTER

[image: Time zone examples]

Enter vi /etc/logrotate.conf, press “i” for INSERT mode, and make the following changes:

	set the log rotation to daily instead of weekly

	remove the # from the “#compress” line, in order to enable log compression; this reduces the probability of running out of disk space

Press ESC and then type “:wq” to save and quit

[image: Log rotation examples]

If you’re not using the Explorer board and want to run everything as edison instead of root, log out and log back in as edison (with the password you just set above). (If you’re using an Explorer board you’ll need to stay logged in as root and run everything that follows as root for libmraa to work right.)

If you have an ssh key and want to be able to log into your Edison without a password, copy your ssh key to the Edison (directions you can adapt are here [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Resources/Deprecated-Pi/Pi-setup.html#mac-and-linux]). For Windows/Putty users, you can use these instructions: https://www.howtoforge.com/ssh_key_based_logins_putty.

If you’re not using the Explorer board, are running as the edison users, and want to be able to run sudo without typing a password, run:

 $ su -
 $ visudo

and add to the end of the file:

 edison ALL=(ALL) NOPASSWD: ALL

Raspberry Pi instructions

Note: there are two key ways to setup a Pi rig. One uses Pi Bakery, the other is a manual method. If your Pi Bakery process does not work, just use Option B.

Option A - Use Pi Bakery

There are many ways setup Raspian (the operating system...like jubilinux is for Edison board) microSD card to use in your Raspberry Pi. One easy way for a new user is to use PiBakery, a free application you’ll download from the internet. (Note that if this is not successful, you can switch to Option B below).

Download PiBakery here [http://pibakery.org/download.html]. Follow the directions for installing PiBakery on your computer (the directions on their site include screenshots that are helpful). The download is fairly large (2.2GB) so it may take a couple minutes to complete.

Once you open PiBakery installer, you will be presented with a choice of installing Raspian Full or Raspian Lite. Unselect the checkbox for Raspian Full, and keep the installation for Raspian Lite. When the installation is done, you will be asked if you want to move the PiBakery installer to the trash. That is fine to do.

[image: "install piBakery"]

When the install has finished, find and open the PiBakery app from your applications folder on the computer. You may be prompted for your computer’s passcode; if so, enter it.

The starting screen for the PiBakery is fairly empty, but we are going to basically use visual boxes to build a puzzle of what we would like to install on our SD card. So start by clicking on the “Startup” selection on left column. Click, drag, and drop the “on first boot” box over to the white area to the right of the window.

[image: "install piBakery"]

Next, click on the Network category and drag over the Setup Wifi box to near the On First Boot box.

[image: "install piBakery"]

You want to have the boxes link together (if you have audio on, you’ll hear a little click noise as the boxes link together). You can drag more wifi network boxes if you already know the wifi networks that you’d like to add already. Don’t worry though, you’ll have the opportunity to add more later...this is just an important step to get started the first time with at least one network.

[image: "install piBakery"]

Note: Raspbian requires a Country Code (such as US, UK, DE, etc) - otherwise wifi will remain disabled on the Pi. This is different than the Edison/Jubilinux setups so be aware! The default country code is GB, because that is where the PiBakery author is from. Most users will need to change this. Wondering what the codes are? You can look up your two letter code here [https://www.iso.org/obp/ui/#search/code/].

Enter in your network name, password, and country code. Capital and lowercase matter. You can leave the type as WPA/WPA2 unless you specifically know your network uses a different connection type.

You can add as many special “recipe ingredients” as you’d like. Advanced users may find ingredients they are specifically interested in. Shown below is a relatively simple setup that will have good utility (one wifi network and setting the OTG port to serial to make future offline-connections easier).

[image: "install piBakery"]

Put your microSD card into a reader for your computer. Once you get your recipe completed in PiBakery, click on the “Write” icon in the upper left of the window. You’ll select your SD card’s name from the menu that appears and the Operating System will be Raspbian Lite. Click the Start Write button. Click yes to the warning about erasing the content of the card to begin the writing process.

[image: "install piBakery"]

Boot up your Pi and connect to it

After a couple minutes, the writing should be done and you can eject the microSD card from your computer, insert it into your Pi (card slot location shown below), and plug in power to the Pi, and turn on the power switch (off/on positions are labeled on the HAT board for ease).

[image: "install piBakery"]

Give the rig a couple minutes to boot up. Once the green LED stops blinking as much, you can try to log in.

On Mac, open Terminal and use ssh pi@raspberrypi.local

On Windows, use PuTTY and establish an SSH connection, with username pi, to hostname raspberrypi.local. If you receive a warning that the rig’s host key is not yet cached, respond YES to add it.

Troubleshooting: If you have problems connecting, try rebooting your router. If you have multiple channels (2.4Ghz vs 5Ghz), you could try redoing the PiBakery setup with the other channel’s network name, if the first one fails.

The default password for logging in as pi is raspberry. The pi username and default password is only used for this initial connection: subsequently you’ll log in as root with a password and rig hostname of your choosing.

Run openaps-install.sh

Once you’re logged in, run the following commands to start the OpenAPS install process:

sudo bash
curl -s https://raw.githubusercontent.com/openaps/oref0/dev/bin/openaps-install.sh > /tmp/openaps-install.sh && bash /tmp/openaps-install.sh

	Change your hostname (a.k.a, your rig’s name). Make sure to write down your hostname; this is how you will log in in the future as ssh root@whatyounamedit.local

	You’ll be prompted to set two passwords; one for root user and one for pi user. You’ll want to change the password to something personal so your device is secure. Make sure to write down/remember your password; this is what you’ll use to log in to your rig moving forward. You’ll type it twice for each user. There is no recovery of this password if you forget it. You will have to start over from the top of this page if you forget your password.

	Pick your time zone (e.g., In the US, you’d select US and then scroll and find your time zone, such as Pacific New if you’re in California).

The script will then continue to run awhile longer (10 to 30 minutes) before asking you to press enter or control-c for the setup script options. Successful completion of this section should look like below.

[image: "install piBakery"]

If you are installing to a Pi with a legacy radio (Ti-stick, SliceOfRadio, etc.) - Press enter. Jump to finishing the installation

If you are installing to a newer Pi with a HAT or RFM69HCW as radio: Do not press enter! Continue on to Pi-Hat instructions..

Troubleshooting: If your screen stops as shown below or jumps ahead to the interactive portion before successful completion (as shown above), rerun the curl -s command line shown above.

[image: "install piBakery"]

Switch to dev branch for your pi HAT

If you are here - you should be building a rig with a Pi HAT(recommended) or RFM69HCW (experimental). Instead of proceeding with the setup script, press control-c to cancel the setup script.

Reboot your rig by entering reboot. This will end your ssh session. Give your rig time to reboot, reconnect to wifi, and then login to the rig again. This time the rig will be using the rig name you chose before in the setup so use ssh root@yourrigname.local on a Mac. On a Windows PC with PuTTY, the hostname can be either yourrigname or yourrigname.local, and the username will be root.

Now we will select a Raspian-compatible updated branch by using cd ~/src/oref0 && git checkout dev. On your first install you should see a message returned of “Branch dev set up to track remote branch dev from origin. Switched to a new branch ‘dev’”. On subsequent installs or updates you would follow the direction to execute the command “git pull”.

Finish installation

First, update npm to the latest version. Run npm install npm@latest -g.

Next, change to the oref0 directory if you are not in it already. Run cd ~/src/oref0.

Now run npm run global-install. After about 10-15 minutes, the installations will end and you will be dropped off at the root@yourrigname:~/src/oref0# prompt. Successful completion of this step should look like below.

[image: "install piBakery"]

Now you can run the interactive oref0 setup script:

cd && ~/src/oref0/bin/oref0-setup.sh

Answer all the setup questions. A successful setup script will finish asking you if you want to setup cron. Say yes to those two questions. Finally, you’ll see a message about Reboot required. Go ahead and reboot the rig. You’ve finished the loop installation. Login to the rig again.
[image: "install piBakery"]

Troubleshooting: If your rig gets stuck at the point shown below, simply login to the rig again and run the setup script one more time. Usually, running the setup script a second time will clear that glitch.
[image: "install piBakery"]

Once your setup script finishes, make sure to watch the pump loop logs [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Build Your Rig/step-4-watching-log.html]

NOTE: If you are using RFM69HCW as RF module:

If you have connected your RFM69HCW module as described in Soldering RFM69HCW [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Gear Up/pi-based-rigs.html#soldering], while running interactive setup use following options:

Are you using an Explorer HAT? [Y]/n n
Are you using mmeowlink (i.e. with a TI stick)? If not, press enter. If so, paste your full port address: it looks like "/dev/ttySOMETHING" without the quotes.
What is your TTY port? /dev/spidev0.0
Ok, TTY /dev/spidev0.0 it is.

Would you like to [D]ownload released precompiled Go pump communication library or install an [U]nofficial (possibly untested) version.[D]/U u
You could either build the Medtronic library from [S]ource, or type the version tag you would like to use, example 'v2018.08.08' [S]/<version> s
Building Go pump binaries from source
What type of radio do you use? [1] for cc1101 [2] for CC1110 or CC1111 [3] for RFM69HCW radio module 1/[2]/3 3
Building Go pump binaries from source with + radiotags + tags.

after running oref0-setup.sh run the following:

$ rm -rf ~/go/src/github.com/ecc1
$ go get -u -v -tags "rfm69 walrus" github.com/ecc1/medtronic/...
$ cp -pruv $HOME/go/bin/* /usr/local/bin/
$ mv /usr/local/bin/mmtune /usr/local/bin/Go-mmtune

This will help in building the right pump communication libraries.

	You’ll want to also delete the openaps-menu folder to avoid error messages in your logs. rm -rf

 Step 3: Setup script

Step 3: Setup script

	If you pressed enter to continuing on with the setup script at the end of the bootstrap script, you do NOT need to specifically enter the command in the box below. By pressing enter to continuing on with setup script, the command was automatically started for you.

	If you pressed control-c to end at the completion of the bootstrap script and did not continue automatically with setup script, this is where you’ll pick back up. At this point, your rig should have your first wifi connection finished and your dependencies installed.

Log in to your rig and run the following command (aka “the setup script”):

`cd && ~/src/oref0/bin/oref0-setup.sh`

If this is your first time logging into the rig since running bootstrap script, you will have to change your rig’s password on this first login. You will enter the default password first of edison and then be prompted to enter your new password twice in a row. If you get an error, it is likely that you forgot to enter edison at the first prompt for changing the password.

Be prepared to enter the following information into the setup script:

The screenshot below shows an example of the questions you’ll be prompted to reply to during the setup script (oref0-setup). Your answers will depend on the particulars of your setup. Also, don’t expect the rainbow colored background - that’s just to help you see each of the sections it will ask you about!

	6-digit serial number of your pump

	whether you are using an 512/712 model pump (those require special setup steps that other model pumps do not)

	whether you are using an Explorer board
	if not an Explorer board, and not a Carelink stick, you’ll need to enter the mmeowlink port for TI stick. See here [https://github.com/oskarpearson/mmeowlink/wiki/Installing-MMeowlink] for directions on finding your port

	if you’re using a Carelink, you will NOT be using mmeowlink. After you finish setup you need to check if the line radio_type = carelink is present in your pump.ini file.

	CGM method: The options are g4-upload, g4-local-only, g5, mdt, and xdrip.
	Note: OpenAPS also attempts to get BG data from your Nightscout. OpenAPS will always use the most recent BG data regardless of the source. As a consequence, if you use FreeStyle Libre or any other CGM system that gets its data only from Nightscout, you’ll be fine choosing any of the options above.

	Note: For Medtronic 640G (CGM) users, it is recommended that you enter ‘xdrip’ - otherwise the BG values may not be read from your Nightscout. (The reason being, the ‘MDT’ option applies only for the enlite sensor attached to the actual pump you’re looping with)

	Note: G4-upload will allow you to have raw data when the G4 receiver is plugged directly into the rig.

	Nightscout URL and API secret (or NS authentication token, if you use that option)

	BT MAC address of your phone, if you want to pair for BT tethering to personal hotspot (letters should be in all caps)
	Note, you’ll still need to do finish the BT tethering as outlined here [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/Wifi/bluetooth-tethering-edison.html] after setup.

	Your desired max-iob

	whether you want Autosensitivity and/or Autotune enabled

	whether you want any carbs-required Pushover notifications (and if you do, you’ll need your Pushover API token and User Key)

[image: Oref1 setup script]

At the end of the questions, the script will ask if you want to continue. Review the information provided in the “to run again with these same options” area...check for any typos. If everything looks correct, then press y to continue. If you see a typo, press n and then type cd && ~/src/oref0/bin/oref0-setup.sh to start the setup questions over again.

After the setup script finishes building your loop (called myopenaps), it will ask if you want to schedule a cron (in other words, automate and turn on your loop) and remove any existing cron. You’ll want to answer y to both - and also then press enter to reboot after the cron is installed. If your setup script stalls out before those two questions happen, rerun the setup script again.

Log rotate fix

Click here to expand notes about checking log rotate, which was fixed in 0.6.1:

 Step 4: Watch your Pump-Loop Log

Step 4: Watch your Pump-Loop Log

THIS IS A REQUIRED MUST-LEARN HOW-TO STEP - DO NOT MOVE ON WITHOUT DOING THIS! This is a key skill for monitoring your OpenAPS setup to “check” or “monitor” or “watch” the logs.

It’s easy: simply type the letter l (short for “log”, aka the very important pump-loop.log). (This is a shortcut for the full command, tail -F /var/log/openaps/pump-loop.log.)

What you’ll see while waiting for your first loop (common non-error messages)

If this is your first rig, you are probably (1) going to underestimate how long it takes for the first loop to successfully run and (2) while underestimating the time, you’ll freak out over the messages you see in the pump-loop logs. Let’s go over what are NOT errors:

[image: First loop common messages]

Click here to expand the explanation of the non-error messages

 Step 5: Finish your OpenAPS setup

Step 5: Finish your OpenAPS setup

You’re looping? Congrats! However, you’re not done quite done yet.

Shortly after you confirm your loop is running, you should set your preferences [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/preferences-and-safety-settings.html]. Don’t forget, your preferences are reset to defaults after each run of a setup script, so please remember to check preferences after confirming a loop is successfully run/rerun.

So you think you’re looping? Now keep up to date!

If you’ve gone “live” with your loop, congratulations! You’ll probably want to keep a very close eye on the system and validate the outputs for a while. (For every person, this amount of time varies).

One important final step, in addition to continuing to keep an eye on your system, is letting us know that you are looping.

This is important in case there are any major changes to the system that we need to notify you about. One example where this was necessary is when we switched from 2015 to 2016: the dates were incorrectly reporting as 2000, resulting in incorrect IOB calculations. As a result, we needed to notify current loopers so they could make the necessary update/upgrade.

After you have looped for three consecutive nights:

So that we can notify you if necessary, please fill out this form if you have been looping for 3+ days [http://bit.ly/nowlooping]. Your information will not be shared in any way. You can indicate your preferred privacy levels in the form. As an alternative, if you do not want to input info, please email dana@openaps.org. Again, this is so you can be notified in the case of a major bug find/fix that needs to be deployed.

Note: you only ever need to fill this form out once. If you’re building multiple rigs, or switching between DIY systems, no need to fill this out multiple times. We’re just counting - and wanting to connect with in terms of safety announcements - humans. :)

Optional step: improving the battery life of your Raspberry Pi

!! Important for Enlite users: If you are using Enlite as CGM source, your rig will not work when it’s underclocked, since the loop will not run fast enough! (You will always see the “BG too old” error). We are aware of that issue and try to find a solution...

Version - CPU Clock - Battery Life @ 2500mAh (Li-Po)

	0.6.2 - 1000 MHz - 8 hours

	0.7.0-dev - 1000 MHz - 9 hours

	0.7.0-dev - 500 MHz - 14.5 hours

As you can see, 0.7.0 made some battery life improvements, but under-clocking the CPU makes an even more significant improvement.

To accomplish this, log into your rig via SSH and modify the file /boot/config.txt.

Scroll down to find the line

#arm_freq=1000

and change it to

arm_freq=500

Note the removal of the # at the beginning of the line. Save your change and reboot your rig!

Customizing your closed loop

As your time permits, there’s still more useful and cool things you can do to make looping more efficient and automated.

	First, review some common situations you may encounter and practical advice for using your loop. [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/usability-considerations.html]

	Add more wifi networks to your rig [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/Wifi/on-the-go-wifi-adding.html] so that when you are away from home, the rig has access to trusted wifi networks

	Set up Papertrail [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/monitoring-OpenAPS.html#papertrail-remote-monitoring-of-openaps-logs-recommended] Papertrail will even allow you to remotely track your logs when you are not logged into your rig. Setting up Papertrail and watching your logs will dramatically help you understand your rig and help troubleshoot if you run into problems.

	Set up IFTTT for your phone or watch [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Customize-Iterate/ifttt-integration.html] to allow you to use Nightscout’s temp targets, carb entries, and similar for single button interactions with your rig

	Finish Bluetooth tethering your phone [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/Wifi/bluetooth-tethering-edison.html] so that when you are away from trusted wifi networks, your rig can automatically access your phone’s mobile hotspot for continued online looping.

	Learn about offline looping [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Customize-Iterate/offline-looping-and-monitoring.html] for times when your rig is not able to access internet (no wifi, no hotspot).

	Additional access to your rig via other types of mobile apps. [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Customize-Iterate/useful-mobile-apps.html] Grab some of these other apps, based on your preference, for accessing your rig in different ways.

Remember, the performance of your DIY closed loop is up to you. Make sure you at least look at the rest of the documentation for help with troubleshooting, ideas about advanced features you can implement in the future when you’re comfortable with baseline looping, and more. Plus, the docs are updated frequently, so it’s worth bookmarking and checking back periodically to see what features and preference options have been added.

Prev.: Step 4: Watch your Pump-Loop Log

Next: Logging into your Explorer Board rig via console

​

 Logging into your Explorer Board rig via console

Logging into your Explorer Board rig via console

Prerequisites for Windows users

	Install the Intel Edison drivers for Windows [https://software.intel.com/en-us/iot/hardware/edison/downloads]. Select the “Windows standalone driver” download if available. (Note: Intel has announced the Edison will be discontinued at the end of 2017. As part of this, apparently, the old link to Edison drivers has been removed. We are unsure if this is a temporary issue or long term. Therefore, if the link above for Intel Edison Drivers is not working, you can use this link [https://www.dropbox.com/s/d5ooojru5jxsilp/IntelEdisonDriverSetup1.2.1.exe?dl=0] to download them directly from an OpenAPS user’s dropbox. Obviously screenshots below will be different if Intel has not fixed or repaired their driver downloads page for Edisons.) After it is done downloading, click on the downloaded file and it will execute installation. You do not need to reflash the Edison or setup security or Wi-Fi with this tool because later steps in this process will overwrite those settings.

[image: Edison Drivers]

[image: Edison Drivers]

	Install PuTTY [http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html]. PuTTY is the program you will normally use to login to your rig in the future from the computer. Creating a desktop shortcut for it is a good idea, since you will likely use it often. Download the installation file that matches your PC’s architecture (32-bit or 64-bit). If you are unsure, you can check your computer’s build and memory in the Control Panel. Example shown is for a 64-bit computer. If unsure, installing the 32-bit version won’t harm anything...it just might be a little slower to use PuTTY.

[image: Control Panel]

[image: Putty]

[image: Putty]

[image: Putty]

Plugging in cables and starting console

Your Explorer Board has 2 micro USB connectors. They can both provide power. On the community developed Edison Explorer Board, the port labeled OTG is for flashing, and the one labeled UART provides console login. You must connect both ports to your computer to complete the flash process. If you need to log into the rig using the console in the future, you will only need to connect to the UART port.

You must use DATA micro USB to USB cables. How do you know if your cable is for data? One good way is to plug the cable into your computer USB port and the explorer board OTG port. If your folder/window explorer shows Edison as a drive then the cable supports data.
If you don’t… 1) Try unplugging and replugging the existing cables; 2) try different cables. If your USB port is bad and not recognizing the device, you may need to reset your SMC first [https://support.apple.com/en-au/HT201295] (it’s not hard to do, takes 2 minutes.)

[image: Edison in Finder]

[image: Edison in Finder]

Note: If you are using a Macbook with a USB-C Hub you may encounter some issues with the flashing process, including unexpected rebooting and the wireless LAN setup not functioning correctly. If you have an option to use a PC or Laptop with directly connected USB cables, it will be easier to do so. Direct USB-C to micro-USB cables are better than a hub and a USB-to-microUSB cable, but still not as good as a regular USB port.

	Connect a USB cable (one that carries data, not just power) to the USB console port. On the Explorer board or Sparkfun base block, this is the port labeled UART. On the Intel mini breakout board, this is the USB port that is labeled P6 (should be the USB closest to the JST battery connector). Plug the other end into the computer (or Pi) you want to use to connect to console.

	Plug another USB cable (one that carries data, not just power) into the USB port labeled OTG on the Explorer board or Sparkfun base block, or the port that is almost in the on the bottom right (if reading the Intel logo) if setting up with the Intel mini breakout board. Plug the other end into the computer (or Pi) you want to flash from.

[image: Explorer Board rig with two cables and red light on]

If you’re using a Raspberry Pi or Mac for console:

	Open a terminal window and type sudo screen /dev/tty.usbserial-* 115200

	If you do not have screen installed you can install with sudo apt-get install screen.

	If necessary, replace the ‘*‘ with your Edison UART serial number, obtained using lsusb.

	You’ll most likely be asked for your computer password again because you’re using sudo. Enter it.

	Continue with the All platforms section below.

If you’re using a Windows PC for console:

	Once you plug in the cable, you need to determine which COM number it’s using. On your computer, go to Control Panel\All Control Panel Items\Device Manager\Ports\ and look for USB Serial Port COMXX. If you have multiple and are unsure of which is the port you need: Make note of existing ports. Unplug the cable from the Explorer board. Notice which port disappears. This is the port you are looking for. (If only one shows up, that is your Edison’s port.)

[image: Port Select]

	Open PuTTY, and change from SSH to Serial. It normally defaults to COM1 and speed of 9600. Change the COM number to the number you found when you plugged into the Explorer board. Change the speed (baud rate) to 115200.

[image: Putty port]

	Once you’ve made those changes, Click on OPEN at the bottom of your Putty configuration window.

	Continue with the All platforms section below.

All platforms:

	Once the screen comes up, press enter a few times to wake things up. This will give you a “console” view of what is happening on your Edison.

	Now you will see a login prompt for the edison on the console screen.

	Don’t resize your console window: it will likely mess up your terminal’s line wrapping. (Once you get wifi working and connect with SSH you can resize safely.)

If you have a problem getting to the Edison login prompt, and possibly get a warning like “can’t find a PTY”, exit your console window. Then unplug the usb cables from your computer (not from the Edison... leave those ones as is) and swap the USB ports they were plugged into. Then try the above directions again. Usually just changing the USB ports for the cables will fix that “can’t find a PTY” error.

Not sure of your password?

You should have changed your rig’s root password during setup; if not, please [go back and do so now](../Build Your Rig/step-1-flashing). The default password is most likely “edison” without quotes, but check the slip of paper that might have come with your pre-flashed Edison.

Prev.: Step 5: Finish your OpenAPS setup

Next: Understanding the determine-basal logic

​

 Understanding the determine-basal logic

Understanding the determine-basal logic

The core, lowest level logic behind any oref0 implementation of OpenAPS can be found in oref0/lib/determine-basal/determine-basal.js [https://github.com/openaps/oref0/blob/master/lib/determine-basal/determine-basal.js]. That code pulls together the required inputs (namely, recent CGM readings, current pump settings, including insulin on board and carbohydrates consumed, and your profile settings) and performs the calculations to make the recommended changes in temp basal rates that OpenAPS could/will enact.

Basic diabetes math

OpenAPS follows the same logic that a person with diabetes uses to make dosing decisions. Generally, this means looking at the current BG; subtracting the target; and applying your ISF (correction factor) to determine how much insulin is needed to correct the blood sugar to target. You can subtract any “insulin on board” from the amount needed. You can also add insulin needed to cover carbohydrates.

In OpenAPS, we can do both a positive (more insulin) and a negative (less insulin) correction by making adjustments to your underlying basal rates to adjust insulin up or down to help bring the “eventual” BG into target.

OpenAPS decision inputs

In OpenAPS, we take the same inputs you would use to manually decide what to do, but we also factor other things into our calculation.

This includes:

	Blood glucose information

	delta = change in BG between glucose (most recent BG) and an average of BG value from between 2.5 and 7.5 minutes ago (usually just a single BG value from 5 minutes ago)

	glucose = most recent BG

	short_avgdelta = average rate of change (per 5m) in BG values between glucose (most recent BG) and each BG reading from 2.5 to 17.5 minutes ago

	long_avgdelta = average rate of change (per 5m) in BG values between glucose (most recent BG) and each BG reading from 17.5 to 42.5 minutes ago

	Past insulin dosing information, pulled from your pump

	iob = Units of Insulin on Board (IOB), net of your pre-programmed basal rates. Net IOB takes all pre-programmed basal, OpenAPS temp basal, and bolus insulin into account. Note: iob can be negative when OpenAPS temp basal rate is below your pre-programmed basal rate (referred to as “low-temping”). This will always be different than pump-calculated IOB, because it only takes into account boluses - ignore pump IOB. This is a high level overview, but you can dive into more detail around how insulin activity is calculated here [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/How it works/understanding-insulin-on-board-calculations.html].

	basaliob = Units of net basal Insulin on Board (IOB). This value does not include the IOB effects of boluses; just the difference between OpenAPS temp basal rates and your pre-programmed basal rates. As such, this value can be negative when OpenAPS has set a low-temp basal rate.

	bolusiob = Units of bolus Insulin on Board. Does not take into account any temp basals.

	We also add other calculations that we do to better predict and analyze what is happening:

	dev or deviation = how much actual BG change is deviating from the BGI

	BGI (Blood Glucose Impact) = the degree to which BG “should” be rising or falling based on insulin activity alone.

	ISF (Insulin Sensitivity Factor; sometimes known as correction factor) = ISF is anchored from the value in your pump; but if you use autotune and/or autosens, the ISF value shown is what is currently being used by OpenAPS, as modified by the Sensitivity Ratio

	CR (Carb Ratio) = As with ISF, it is anchored from the value in your pump; but if you use autotune and/or autosens, the CR value shown is what is currently being used by OpenAPS

	Eventual BG= what BG is estimated to be by the end of DIA

	minGuardBG, IOBpredBG, UAMpredBG = eventual BG predictions based on 1) the lowest your BG is estimated to get over DIA; 2) predictions based on IOB only; and 3) predictions based on current deviations ramping down to zero at the same rate they have been recently. These represent the last entry on the purple prediction lines.

	Sensitivity Ratio = the ratio of how sensitive or resistant you are. This ratio is calculated by “Autosensitivity” (or “autosens”), and this ratio is applied to both basal and ISF to adjust accordingly. <1.0 = sensitive; >1.0 = resistant. If your preferences allow it, sensitivityRatio can also be modified by temp targets.

	Target = pulled from your pump target; overridden if you have enacted a temporary target running.

	Carb Impact = we estimate carb impact by looking at what we predict to happen with your carbs entered (predCI) and adding it to our estimate of the remaining carb impact (remainingCI)

	Safety Threshold = min_bg - 0.5*(min_bg-40) where min_bg is your BG target

[image: Estimating carb impact]

You may also see information about settings, either from your pump or from your preferences.json file, that are limiting the insulin dosing decisions that OpenAPS would otherwise make. Make sure to read the preferences page [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/preferences-and-safety-settings.html] before you set up OpenAPS to understand what settings you have by default, and know how to get back to that page if you ever see a setting displayed in your pill. There is also a handy chart with examples [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/preferences-and-safety-settings.html#a-few-examples] to help you understand how settings may impact the dosing output.

OpenAPS decision outputs

After taking into account all of the above, oref0 will put out a recommendation of what needs to be done. This also includes the explanation of the variables above, so you can check and assess if you think it’s doing the right thing. Generally, it will display all of the above values, plus the output of the decision of any temporary basal rates and/or boluses it decides it needs. This is the “reason” field.

	Temp basals will be displayed with the duration (length of time temp basal will run. A duration of 0 indicates none is running) and rate (units/hr basal rate).

	You may also see insulinReq, showing how much insulin is needed. This usually displays when OpenAPS is prepping to issue SMB’s (an advanced setting [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Customize-Iterate/oref1.html]).

Understanding the purple prediction lines

Once you enable forecast display in your Nightscout configuration, you will be able to see multiple purple line predictions. To do this, click the three dots next to your timeframe horizon (3HR, 6HR, 12HR, 24HR) and then enable “Show OpenAPS Forecasts”. Once enabled, you will have multiple purple line predictions in Nightscout. These purple lines show you the different predictions based on current carb absorption; insulin only; (optional feature: unannounced meal/effect detection); and showing how long it will take BG to level off at/above target if deviations suddenly cease and we run a zero temp until then.

These purple lines are helpful in understanding, at a glance, why OpenAPS is making the decisions it is, based on your near-term and longer-term BG predictions.

[image: Purple prediction line examples]

OpenAPS algorithm examples

Scenario 1 - Zero Temp for safety

In this example, BG is rising in the near-term time frame; however, it is predicted to be low over a longer time frame. In fact, it is predicted to go below target and the safety threshold. For safety to prevent the low, OpenAPS will issue a zero temp, until the eventualBG (in any time frame) is above threshold.

[image: Dosing scenario 1]

Scenario 2 - Zero temp for safety

In this example, BG is predicted to go low in the near-term, although you are predicted to eventually be above target. However, because the near-term low is actually below the safety threshold, OpenAPS will issue a zero temp, until there is no longer any point of the prediction line that is below threshold.

[image: Dosing scenario 2]

Scenario 3 - More insulin needed

In this example, a near-term prediction shows a dip below target. However, it is not predicted to be below the safety threshold. The eventual BG is above target. Therefore, OpenAPS will restrain from adding any insulin that would contribute to a near-term low (by adding insulin that would make the prediction go below threshold). It will then assess adding insulin to bring the lowest level of the eventual predicted BG down to target, once it is safe to do so. (Depending on your settings and the amount and timing of insulin required, this insulin may be delivered via temp basals or SMB’s).

[image: Dosing scenario 3]

Scenario 4 - Low temping for safety

In this example, OpenAPS sees that you are spiking well above your target. However, due to the timing of insulin, you already have enough in your body to bring you into range eventually. In fact, you are predicted to eventually be below target. Therefore, OpenAPS will not provide extra insulin so it will not contribute to a longer-timeframe low. Although you are high/rising, a low temporary basal rate is likely here.

[image: Dosing scenario 4]

Exploring further

For each different situation, the determine-basal output will be slightly different, but it should always provide a reasonable recommendation and list any temp basal that would be needed to start bringing BG back to target. If you are unclear on why it is making a particular recommendation, you can explore further by searching lib/determine-basal/determine-basal.js (the library with the core decision tree logic) for the keywords in the reason field (for example, “setting” in this case would find a line (rT.reason += ", setting " + rate + "U/hr";) matching the output above, and from there you could read up and see what if clauses resulted in making that decision. In this case, it was because (working backwards) if (snoozeBG > profile.min_bg) was false (so we took the else), but if (eventualBG < profile.min_bg) was true (with the explanatory comment to tell you that means “if eventual BG is below target”).

If after reading through the code you are still unclear as to why determine-basal made a given decision (or think it may be the wrong decision for the situation), please join the #intend-to-bolus channel on Gitter [https://gitter.im/nightscout/intend-to-bolus] or another support channel, paste your output and any other context, and we’ll be happy to discuss with you what it was doing and why, and whether that’s the best thing to do in that and similar situations.

Prev.: Logging into your Explorer Board rig via console

Next: Understanding Insulin on Board (IOB) Calculations

​

 Understanding Insulin on Board (IOB) Calculations

Understanding Insulin on Board (IOB) Calculations

The amount of Insulin on Board (IOB) at any given moment is a key input into the determine-basal logic, which is where all the calculations for setting temporary basal rates or small microboluses (SMBs) takes place. This amount of insulin on board gets passed into oref0/lib/determine-basal/determine-basal.js [https://github.com/openaps/oref0/blob/master/lib/determine-basal/determine-basal.js] as part of the iob.json file. That information is then used to project forward blood glucose (BG) trends, which the determine-basal logic then responds to in order to correct course. This piece of the OpenAPS documentation provides an explanation of the assumptions used about how insulin is absorbed and how those assumptions translate into the insulin on board calculations used to project BG trends.

First, some definitions:

	dia: Duration of Insulin Activity. This is the user specified time (in hours) that insulin lasts in their body after a bolus. This value comes from the user’s pump settings.

	end: Duration (in minutes) that insulin is active. end = dia * 60.

	peak: Duration (in minutes) until insulin action reaches it’s peak activity level.

	activity: This is percent of insulin treatment that was active in the previous minute.”

Insulin Activity

The code in oref0/lib/iob/calculate.js [https://github.com/openaps/oref0/blob/master/lib/iob/calculate.js] calculates a variable called activityContrib, which has two components: treatment.insulin and a component referenced here as actvity. The unit of measurement for treatment.insulin is units of insulin; the unit of measurement for activity is percent of insulin used each minute and is used to scale the treatment.insulin value to units of insulin used each minute. (There is no variable activity created in oref0/lib/iob/calculate.js [https://github.com/openaps/oref0/blob/master/lib/iob/calculate.js]. There is, however, a variable called activity created in oref0/lib/iob/total.js [https://github.com/openaps/oref0/blob/master/lib/iob/total.js], which represents a slightly different concept. See the FINAL NOTE, below, for more details.)

There are three key assumptions the OpenAPS algorithm makes about how insulin activity works in the body:

	Assumption #1: Insulin activity increases linearly (in a straight line) until the peak and then decreases linearly (but at a slightly slower rate) until the end.

	Assumption #2: All insulin will be used up.

	Assumption #3: When insulin activity peaks (and how much insulin is used each minute) depends on a user’s setting for how long it takes for all their insulin to be used up. That setting is their duration of insulin activity (dia) and generally ranges between 2 and 8 hours. The OpenAPS logic starts off with a default value of 3 hours for dia, which translates into 180 minutes for end, and assumes that insulin activity peaks at 75 minutes. (This is generally in line with findings that rapid acting insluins (Humalog, Novolog, and Apidra, for example) peak between 60 and 90 minutes after an insulin bolus.) This assumption, however, is generalizable to other user dia settings. That is, peak can be expressed as a function of dia by multiplying by the ratio (75 / 180):

peak = f(dia) = (dia * 60 * (75 / 180))

So, for example, for a dia of 4 hours, peak will be at 100 minutes:

100 = (4 * 60 * (75 / 180))

NOTE: The insulin action assumptions described here are set to change with the release of oref0, version 0.6.0 [https://github.com/openaps/oref0/tree/0.6.0-dev]. The new assumptions will use exponential functions for the insulin action curves and will allow some user flexibility to use pre-set parameters for different classes of fast-acting insulins (Humalog, Novolog, and Apidra vs. Fiasp, for example). For a discussion of the alternate specifications of insulin action curves, see oref0 Issue #544 [https://github.com/openaps/oref0/issues/544]. When oref0, version 0.6.0 is released and the current assumptions are no longer recommended, this documentation will be updated.

What The Insulin Activity Assumptions Look Like

Given a dia setting of 3 hours, insulin activity peaks at 75 minutes, and between the 74th and 75th minutes, approximately 1.11 percent of the insulin gets used up.

[image: activity_dia_3]

Adding up all the insulin used each minute between 0 and end, will sum to 100 percent of the insulin being used.

[image: activity_dia_3_area]

The area under the “curve” can be calculated by taking the definite integral [https://en.wikipedia.org/wiki/Integral] for the activity function, but in this simple case the formula for the area of a triangle is much simpler:

Area of a triangle = 1/2 * width * height

 = 1/2 * 180 * 1.11

 = 99.9 (close enough to 100 -- the actual value for activity is 1.1111111, which gets even closer to 100)

For shorter dia settings, the peak occurs sooner and at a higher rate. For longer dia settings, the peak occurs later and at a lower rate. But for each triangle, the area underneath is equal to 100 percent.

[image: activity_dia_2_8]

Cumulative Insulin Activity

Given these activity profiles, we can plot cumulative activity curves, which are S-shaped and range from 0 to 100 percent. (Note: This step isn’t taken in the actual oref0/lib/determine-basal/determine-basal.js [https://github.com/openaps/oref0/blob/master/lib/determine-basal/determine-basal.js] program, but plotting this out is a useful way to visualize/understand the insulin on board curves.)

[image: activity_dia_3]

Just like how the insulin activity curves shift depending on the setting for dia, the cumulative activity curves do as well.

[image: activity_dia_3]

Insulin on Board

Insulin on board (iob), is the inverse of the cumulative activity curves. Instead of ranging from 0 to 100 percent, they range from 100 to 0 percent. With dia set at 3 hours, about 70 percent of insulin is still available an hour after an insulin dosage, and about 17 percent is still available two hours afterwards.

[image: activity_dia_3]

Similar to how the activity “curves” (triangles) and cumulative actvity curves vary by dia settings, the iob curves also vary by dia setting.

[image: activity_dia_3]

Similar to calculations above, the code in oref0/lib/iob/calculate.js [https://github.com/openaps/oref0/blob/master/lib/iob/calculate.js] calculates a variable called iobContrib, which has two components: treatment.insulin and and a component referenced here as iob. The unit of measurement for treatment.insulin is units of insulin; the unit of measurement for iob is percent of insulin remaining each minute and is used to scale the treatment.insulin value to units of insulin remaining each minute. (There is no variable iob created in oref0/lib/iob/calculate.js [https://github.com/openaps/oref0/blob/master/lib/iob/calculate.js]. There is, however, a variable called iob created in oref0/lib/iob/total.js [https://github.com/openaps/oref0/blob/master/lib/iob/total.js], which represents a slightly different concept. See the FINAL NOTE, below, for more details.)

Finally, two sources to benchmark the iob curves against can be found here [http://journals.sagepub.com/doi/pdf/10.1177/193229680900300319] and here [https://www.hindawi.com/journals/cmmm/2015/281589/].

A NOTE ABOUT VARIABLE NAMES: A separate program—

oref0/lib/iob/total.js [https://github.com/openaps/oref0/blob/master/lib/iob/total.js]—

creates variables named activity and iob. Those two variables, however, are not the same as the activity and iob variables plotted in this documentation page. Those two variables are summations of all insulin treatments still active.

The activity and iob concepts plotted here are expressed in percentage terms and are used to scale the treatment.insulin dosage amounts, so the units for the activityContrib and iobContrib variables are units of insulin per minute and units of insulin remaining at each minute, repectively. Because the activity and iob variables in oref0/lib/iob/total.js [https://github.com/openaps/oref0/blob/master/lib/iob/total.js] are just the sums of all insulin treatments, they’re still in the same units of measurements: units of insulin per minute and units of insulin remaining each minute.

Understanding the New IOB Curves Based on Exponential Activity Curves

As mentioned at the top of this page, the next OpenAPS release will have new activity curves available for users to use.

In the new release, users will be able to select between using a “bilinear” (looks like what was plotted above: /) or “exponential” curves. Unlike the bilinear activity curve (which varies only based on dia values in a user’s pump), the new exponential curves will allow users to specify both the dia value to use AND where they believe their peak insulin activity occurs.

A user can select one of three curve default settings:

	bilinear: Same as how the curves work in oref0, version 0.5 – IOB curve is calculated based on a bilinear activity curve that varies by user’s dia setting in their pump.

	rapid-acting: This is a default setting for Novolog, Novorapid, Humalog, and Apidra insulins. Selecting this setting will result in OpenAPS to use an exponential activity curve with peak activity set at 75 minutes and dia set at 300 minutes (5 hours).

	ultra-rapid: This is a default setting for the relatively new Fiasp insulin. Selecting this setting will result in OpenAPS to use an exponential activity curve with peak activity set at 55 minutes and dia set at 300 minutes (5 hours).

Note: If rapid-acting or ultra-rapid curves are selected, a user can still choose a custom peak and dia time, but subject to two constraints:

	dia must be greater than 300 minutes (5 hours); if it’s not, OpenAPS will set dia to 300 minutes.

	peak must be set between 35 and 120 minutes; if it’s not, OpenAPS will set peak to either 75 or 55 minutes, depending on whether the user selected rapid-acting or ultra-rapid default curves.

What Do The Exponential Curves Look Like?

Most commonly, exponential is associated with exponential growth – as in, how quickly bacteria might grow in a petri dish, for example. A little less commonly, exponential is associated with exponential decay – as in, what the radioactive half-life of a particular element might be.

Examples of such exponential growth and exponential decay could look like this:

[image: example_exponential_growth_and_decay]
(Though the mathematical formulas can be written such that how steep the growth or decay curves can vary quite a bit.)

In the application of exponential curves in modeling how insulin is used in the human body, the trick is to write a mathematical formula that combines some delay in the activity, some rapid growth in the activity to the peak, and then a smooth transition down until all the insulin is used up. (See the Technical Details, below for links to the underlying math.)

With dia set to 5 hours and the peak set to 75 minutes (the default settings for rapid-acting insulins), the exponential activity curves in the OpenAPS dev branch looks like this:

[image: exponential_activity_curve_dia_5_peak_75]

Just like how the bilinear curve in OpenAPS version 0.5.4, the activity curves in version 0.6 will start at zero and end at zero and the area under the curve will sum up to 100 percent of the insulin being used up.

[image: exponential_activity_curve_dia_5_peak_75_area]

The shape of exponential activity curves can vary by either dia or by peak. Below is what the activity curves look like for three separate peak settings, but holding the dia setting fixed at 5 hours.

[image: exponential_activity_curves_dia_5_peak_60_75_90]

A useful way to visualize how the activity curves translate to the iob curves is to first show what the cumulative activity curves look like:

[image: exponential_cum_activity_curves_dia_5_peak_60_75_90]

And then the iob curves are just the inverse of the cumulative activity curves:

[image: exponential_iob_curves_dia_5_peak_60_75_90]

How Do The Exponential Curves Compare To The Bilinear Curves?

The most important question to a user might be: “Well which set of curves is better for me to use?”

Everyone is different, and their bodies may absorb insulin at different rates. Furthermore, an individual’s insulin absorption may vary from day-to-day or week-to-week for many reasons. But with a lot of parameter settings, finding the best one is often a process of trial-and-error.

That said, the bilinear curve currently used in OpenAPS 0.5.4 is a relatively simple model of how insulin is absorbed. Although it’s a simple model, in many cases it provides decent approximations. The proposed exponential curves are more complex and more closely aligned to how an individual’s body might absorb their insulin. But users may or may not find significant differences in how their OpenAPS performs just by switching to the exponential curves.

You can think of the exponential curve for the default rapid-acting insulin settings (dia = 5 hours, peak = 75 minutes) as being a combination of two bilinear curves. One where dia is set to 3 hours and the peak occurs at 75 minutes; and another one where the dia is set to 5 hours, but the peak occurs at 125 minutes.

[image: activity_curves_bilinear_vs_exponential]
(The area under each of the three curves sums to 100 percent.)

To make a more direct, apples-to-apples, comparison, setting the exponential curve with dia = 5 hours and peak = 125 minutes, the difference between the two curves is a little clearer:

[image: activity_curves_bilinear_vs_exponential_dia_5]
NOTE: As described above, OpenAPS will NOT allow you to set a peak value above 120 minutes. This graph is shown just to make a direct comparison between the two types of curves.

Finally, going back to an exponential curve with dia set to 5 hours and peak set to 75 minutes, the comparison between how the iob curve looks relative to the iob curve using the bilinear activity curve with dia set to 5 hours is probably the most relevant:

[image: iob_curves_bilinear_vs_exponential]

The iob curve based on the exponential activity curve has insulin being used up significantly faster than the iob curve based on the bilinear activity curve. After one hour, for example, there is a 13 percent difference in how much insulin is remaining between the two curves, and after 2 hours there is a 17 percent difference between the two curves.

Technical Details

The source for the new functional forms for the exponential curves were calculated by Dragan Macsimovic [https://github.com/dm61] and can be found as part of a discussion on the LoopKit Github page [https://github.com/LoopKit/Loop/issues/388#issuecomment-317938473]. There were many others contributing to this discussion, development, and testing of exponential curves for Loop and OpenAPS. The full discussion [https://github.com/LoopKit/Loop/issues/388] is very technical, but useful if you want more information on the exponential curves.

Prev.: Understanding the determine-basal logic

Next: Autotune

​

 Autotune

Autotune

Autotune is a tool to help calculate potential adjustments to ISF, carb ratio, and basal rates.

This page describes how Autotune works. For information on how to run it, please see Running autotune [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/running-autotune.html].

The difference between autotune and autosens

Autosensitivity/resistance mode (aka “autosens”) [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/How it works/autosens.html] is a feature in OpenAPS that looks at 24 hours of data and makes adjustments to ISF and targets based on the resulting sensitivity calculations. This can help make global adjustments to your insulin needs for transient changes such as illness, an aging pump site, or variation in activity level.

Autotune, by contrast, is designed to iteratively adjust basals, ISF, and carb ratio over the course of weeks. Because it makes changes more slowly than autosens, autotune ends up drawing on a larger pool of data, and is therefore able to differentiate whether and how basals and/or ISF need to be adjusted, and also whether carb ratio needs to be changed. Whereas we don’t recommend changing basals or ISF based on the output of autosens (because it’s only looking at 24h of data, and can’t tell apart the effects of basals vs. the effect of ISF), autotune is intended to be used to help guide basal, ISF, and carb ratio changes because it’s tracking trends over a large period of time.

Note: Autotune currently tries to tune one ISF and carb ratio throughout the day. Here is the issue [https://github.com/openaps/oref0/issues/326] if you want to keep track of the work to make autotune work with multiple ISF or carb ratios. If you are running Autotune on an OpenAPS rig and using the results, note that Autotune will only adjust the FIRST ISF and the FIRST carb ratio in your profile. If you have widely-varying ISFs and carb ratios throughout the day, or if Autotune is making relatively large adjustments, this may lead to suboptimal results, as you will be using your original settings the rest of the day. For instance, if Autotune thinks you should receive less basal but use a stronger correction factor (lower ISF), it will make the adjustments to your basal, but the stronger correction factor will be used only during the first segment - which might be say 12am to 4am! Review the output carefully, and consider whether your varying carb ratios and correction factors might be compensating for other variation [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/While You Wait For Gear/collect-data-and-prepare.html#optimize-your-settings-with-autotune].

How Autotune works

There are two key pieces: oref0-autotune-prep and oref0-autotune-core. (For more autotune code, you can see oref0-autotune-(multiple files) listed in oref0/bin here [https://github.com/openaps/oref0/tree/dev/bin] - and there are also some autotune files in oref0/lib [https://github.com/openaps/oref0/tree/dev/lib].

1. oref0-autotune-prep:

	autotune-prep takes three things initially: glucose data; treatments data; and starting profile (originally from pump; afterwards autotune will set a profile)

	It calculates BGI and deviation for each glucose value based on treatments

	Then, it categorizes each glucose value as attributable to either carb sensitivity factor (CSF), ISF, or basals

	To determine if a “datum” is attributable to CSF, carbs on board (COB) are calculated and decayed over time based on observed BGI deviations, using the same algorithm used by Advanced Meal Assist. Glucose values after carb entry are attributed to CSF until COB = 0 and BGI deviation <= 0. Subsequent data is attributed as ISF or basals.

	If BGI is positive (meaning insulin activity is negative), BGI is smaller than 1/4 of basal BGI, or average delta is positive, that data is attributed to basals.

	Otherwise, the data is attributed to ISF.

	All this data is output to a single file with 3 sections: ISF, CSF, and basals.

2. oref0-autotune-core

	autotune-core reads the prepped glucose file with 3 sections. It calculates what adjustments should be made to ISF, CSF, and basals accordingly.

	For basals, it divides the day into hour long increments. It calculates the total deviations for that hour increment and calculates what change in basal would be required to adjust those deviations to 0. It then applies 20% of that change needed to the three hours prior (because of insulin impact time). If increasing basal, it increases each of the 3 hour increments by the same amount. If decreasing basal, it does so proportionally, so the biggest basal is reduced the most.

	For ISF, it calculates the 50th percentile (median) deviation for the entire day and determines how much ISF would need to change to get that deviation to 0. It applies 10% of that as an adjustment to ISF.

	For CSF, it calculates the total deviations over all of the day’s mealtimes and compares to the deviations that are expected based on existing CSF and the known amount of carbs entered, and applies 10% of that adjustment to CSF.

	Autotune limits how far it can adjust (or recommend adjustment, if running autotune outside oref0 closed loop) basal, or ISF or CSF, from what is in the existing pump profile. Autotune uses the same autosens_max and autosens_min multipliers found in your preferences.json for oref0. So if autotune is running as part of your loop, autotune can’t get too far off without a chance for a human to review the changes.

Note: Autotune does not read from the active profile (e.g. Pattern A or Pattern B if set). The Standard Basal Pattern is what will be pulled to be used and tuned by Autotune.

Understanding autotune output

Safety reminders

Autotune is a WIP (work in progress) tool. Do not blindly make changes to your pump settings without careful consideration. You may want to print the output of this tool and discuss any particular changes with your care team. Make note that you probably do not want to make long-term changes based on short term (e.g. 24 hour) data. Most people will choose to make long term changes after reviewing carefully autotune output of 3-4 weeks worth of data.

Example output from autotune

[image: Example output from autotune]

What you’ll see in autotune inputs and outputs

	You might wonder what CSF in the autotune results refers to: Carb Sensitivity Factor is the amount your blood sugar will rise for a given quantity of carbs consumed. An initial value for CSF is calculated from your ISF and carb:insulin ratio (CR), i.e., CSF = ISF / CR (e.g., for an ISF of 42(mg/dL)/U and CR of 14g/U, CSF is 3(mg/dL)/g.) Subsequent autotune estimates for CSF are adjusted for the actual observed post-meal BG rise (relative to what would be expected based on insulin activity) compared to the number of carbs eaten.

	You might wonder what min_5m_carbimpact in profile.json refers to: It tells autotune how fast to decay carbs when your BG isn’t rising. The default value means to assume 8mg/dL per 5m of carb absorption, even when your BG is falling or rising less than that.

	If you only input one basal rate in the profile.json, it will only show one basal in the left hand column, and tune the day around that basal. You can go back and edit the profile.json (and cp again to make all files the same) with your multiple basal rates if you want to appropriately tune and most easily compare the output suggested against what your existing basal schedule is.

If you are DIY closed looping and looking at autotune:

With carbs logged in Nightscout

...you can look at everything that autotune outputs

Without carb information in Nightscout

...you should only look at overnight basals, daytime basals that are not around typical meal times, and (with caution) ISF. Ignore carb ratio.

If you are not DIY closed looping and are looking at autotune:

With all boluses and carb treatments (even rescue, or low carbs) in Nightscout

...you can look at everything that autotune outputs

Without boluses and carb treatments in Nightscout

...don’t use autotune until you log this data.

If you don’t have Nightscout

...it’s probably easiest to set up Nightscout [http://nightscout.info] and log some data in order to use autotune. This may change in the future (and let us know if you want to work on ways to bring other data types into autotune).

Prev.: Understanding Insulin on Board (IOB) Calculations

Next: Auto-sensitivity mode (Autosens)

​

 Auto-sensitivity mode (Autosens)

Auto-sensitivity mode (Autosens)

Wouldn’t it be great if the system knew when you were running sensitive or resistant? That’s what we thought, so we created “auto-sensitivity mode”. Autosens allows the system to analyze historical data on-the-go and make adjustments if it recognizes that you are reacting more sensitively (or conversely, more resistant) to insulin than usual. Autosens will then make temporary adjustments to the basal, ISF, and targets used for calculating temp basals, in order to keep BG closer to your configured target.

The difference between autotune and autosens:

Autosensitivity/resistance mode (aka “autosens”) is an advanced feature in OpenAPS that you can enable that looks at 24 hours of data and makes adjustments to ISF and targets based on the resulting sensitivity calculations. If you have a dying pump site, or have been sick and are resistant, your ISF is likely to be calculated down by autosens and then used in OpenAPS calculations accordingly. The opposite for being more sensitive is true as well. (Here’s a blog post describing autosensitivity during sick days.) [https://diyps.org/2016/12/01/sick-days-with-a-diy-closed-loop-openaps/]

Autosens will make temporary adjustments to whatever basal, ISF, and target profiles are currently set for the loop. If autotune is not enabled, that means autosens will be making on-the-go adjustments based on the settings read from your pump. If autotune is enabled, that means autosens will be using the autotuned-profile as the basis for making adjustments.

Autotune, by contrast, is designed to iteratively adjust basals, ISF, and carb ratio over the course of weeks. Because it makes changes more slowly than autosens, autotune ends up drawing on a larger pool of data, and is therefore able to differentiate whether and how basals and/or ISF need to be adjusted, and also whether carb ratio needs to be changed. Whereas we don’t recommend changing basals or ISF based on the output of autosens (because it’s only looking at 24h of data, and can’t tell apart the effects of basals vs. the effect of ISF), autotune is intended to be used to help guide basal, ISF, and carb ratio changes because it’s tracking trends over a large period of time.

Understanding autosens logs

When you watch your autosens log (shortcut command is autosens-looplog) and sensitivity changes is going to be detected, you might see something like this:

Calculating sensitivity using 8h of non-exluded data
Setting lastSiteChange to Tue Dec 19 2017 09:42:24 GMT-0600 (CST) using timestamp 2017-12-19T09:42:24-06:00
u(xxxxxxxxxxxx11hxxxxxxxxxxxx12h=43g(xxxxxxxxxxxx13hxxxxxxxxxxxx14h=xxx45gxxxxxxxxx15hxxxxxxxxxxx16h=xxxxxxxx17hxxxxxx0gx)u(xxxxx18h=x35g(xx46gxxxxxxxxx19hxxxxxxx38gxxxxx20h=xxxxxxxxxxxx21hxxxxxx-x-x-x-x-x-x-22h=x-x-x-x-x-xxxxxxx23hxx0gx
Using most recent 18 deviations since Tue Dec 19 2017 09:42:24 GMT-0600 (CST)
Adding 15 more zero deviations
36% of non-meal deviations negative (>50% = sensitivity)
Sensitivity normal.
ISF adjusted from 120 to 120
Calculating sensitivity using all non-exluded data (up to 24h)
Setting lastSiteChange to Tue Dec 19 2017 09:42:24 GMT-0600 (CST) using timestamp 2017-12-19T09:42:24-06:00
u(xxxxxxxxxxxx11hxxxxxxxxxxxx12h=43g(xxxxxxxxxxxx13hxxxxxxxxxxxx14h=xxx45gxxxxxxxxx15hxxxxxxxxxxx16h=xxxxxxxx17hxxxxxx0gx)u(xxxxx18h=x35g(xx46gxxxxxxxxx19hxxxxxxx38gxxxxx20h=xxxxxxxxxxxx21hxxxxxx-x-x-x-x-x-x-22h=x-x-x-x-x-xxxxxxx23hxx0gx
Using most recent 18 deviations since Tue Dec 19 2017 09:42:24 GMT-0600 (CST)
Adding 15 more zero deviations
36% of non-meal deviations negative (>50% = sensitivity)
Sensitivity normal.
ISF adjusted from 120 to 120
Using 24h autosens ratio of 1 (ISF 120)
Autosens refreshed: {"ratio":1}

Here’s what each symbol above means:

“x” : deviation is excluded. All deviations are excluded when there is COB through the time that COB drops to zero (carbs are fully absorbed) and deviations go negative once again. This is appropriate to eliminate the impact of rising BG due to carb absorption from sensitivity calcualations and not falsely attribute it to insulin resistance. Deviations may also be excluded becuase of an unexplained high deviation (site failure, etc).

“+” : deviation was above what was expected

“-” : deviation was below what was expected. In addition, if a high temp target is running (e.g. activity mode), a negative deviation is added every 5 minutes, to nudge sensitivityRatio downward to reflect the sensitivity likely to result from activity.

“=” : BGI is doing what we expect. Neutral deviations are also added every 2h to help decay sensitivityRatio back toward 1 if all data is excluded.

“4h” : time stamp to mark hour of day - e.g. 4h = 4am, 22h = 10pm, etc.

“8g” : COB is displayed at any time a new carbs are recorded. Initial carb entry will show as full carbohydrate count followed by “(” with subsequent COB notes (4g) as calculated net COB at any time when additional carbs are entered.

“u” : UAM check is based on total IOB as compared to normal basal rates. If IOB is > 2 hours of basal, UAM will be triggered and will remain until deviations turn negative again (with IOB < 2h basal).

The symbols are in chronological order, moving from oldest to newest. As there are typically CGM readings every 5 minutes, there are usually 12 comparisons each hour

Reviewing autosens adjustments

If you have papertrail setup (or are watching similarly through your rig itself), you can get an idea of how often, how much, and what autosens is adjusting. For example, here’s a screen capture using “adjust” as the search filter for one of my rigs.

[image: Autosens adjustments logged in papertrail]

As you can see, there are several types of adjustments that have occurred during the day.

	In the morning, autosens was detecting some excess insulin sensitivity...so basals, targets, and ISF were adjusted down (by multiplier of 0.94).

	Later in the day (the blue boxed section), another adjustment was made to her BG targets because of a persistent high. While not an adjustment by autosens itself, this is similar and can be set in preferences.json by setting the “adv_target_adjustments” to true. Basically this preference will automatically lower BG targets (to as low as “eating soon” mode target of 80 mg/dl) for persistent high BGs.

	Later in the day, a couple brief periods of insulin sensitivity were short-lived.

	Finally at night, we had a low-treatment for a BG. We used an IFTTT button to enter our low treatments and at the same time, the IFTTT set up a temp target of 110 mg/dl for 60 minutes to make sure the loop didn’t want to correct much on the recovery. That temp target was respected by autosens and basals and targets were not adjusted (even though autosens might have liked to).

Notes about autosensitivity

	“Autosens” works by reviewing the both the last 8 hours and last 24 hours of data (so it’s a rolling calculation with a moving window of 24 hours) and assessing deviations to determine if you are more sensitive or resistant than expected. If a pattern of such deviations is detected, it will calculate the adjustment that would’ve been required to bring deviations back to normal. It will then use the more conservative between the rolling 8 hour calculation or the 24 hour calculation.

	Autosens does NOT take into account meal/carb deviations; it only is able to assess the impact of insulin, and thus will adjust ISF, basals, and targets to help compensate for changes in sensitivity.

	Most users will notice the changed ISF numbers in their OpenAPS pill, along with autosens-adjusted targets.

	Note that a Nightscout care portal or IFTTT temp target (for activity/exercise as an example) will override the autosens-adjusted target but IT WILL NOT override an advance target adjustment to bring high BG down. This is because in 0.5.x, the temp target is honored, but the advanced target adjustment is applied after the temp target. So, if current BG is high, the advanced target adjustment will be applied starting from the activity temp target, so if BG is high enough it will still reduce the active target to 80 mg/dL / 4,4 mmol/L. Consequently, be cautious of activity periods that follow a high BG; your IOB could be quite significant and cause you to go low quite fast as you start moving. If you do not want OpenAPS to apply advanced target adjustment that can be turned off by editing preferences.json (shortcut command edit-pref) and setting the “adv_target_adjustments” to false. Finally, if you do not want autosens to adjusted target that can be turned off by editing preferences.json (shortcut command edit-pref) and setting the “autosens_adjust_targets” to false. In oref0 0.6.0, adv_target_adjustments is set to false by default, as its functionality has been replaced by instead using the (safer) zero-temp BG predictions to decide when it’s safe to dose additional insulin when high. The 0.6.0 exercise_mode feature also helps improve OpenAPS’ response to high temp targets.

	The reason for autosens automatically adjusting targets in 0.5.x is because the other adjustments it makes can’t be fully applied without creating a feedback loop, so automatically adjusting the target it thinks it’s shooting for lets autosens get BG closer to your actual target most of the time. When autosens needs to adjust basal and ISF, it can very straightforwardly use that for adjusting the temp basal it’s about to set, by assuming a higher or low neutral temp basal to start from, and by calculating a bigger or smaller expected impact of current IOB. What it can’t do is calculate IOB in a way that reflects the adjusted basals and ISF, because doing so would change the autosens result, which would require recalculating IOB again, which would further change the result, in an unpredictable feedback loop. So instead, we simply acknowledge that the IOB calculation doesn’t reflect sensitivity or resistance, and instead adjust the target to compensate. These limitations have been addressed in oref0 0.6.0.

	Autosens is limited by the safety multipliers in preferences.json. The defaults are:

"autosens_max": 1.2, <----multiplier for adjustments during insulin resistance
"autosens_min": 0.7, <----multiplier for adjustments during insulin sensitivity

We do not recommend widening these multipliers; but an easy way to turn “off” autosens after you’ve enabled it is to adjust the safety multipliers to 1. However, note that this will also disable autotune adjustments if you are running autotune.

Prev.: Autotune

Next: Entering carbs & doing boluses

​

 Entering carbs & doing boluses

Entering carbs & doing boluses

How do you enter carbs & do boluses with OpenAPS? You have a variety of ways to do things.

Doing boluses

Boluses always have to be set on the pump for OpenAPS to take them into consideration. For safety reasons, insulin added to Nightscout NOT via the pump - for instance, logging an event when using an insulin pen - will not be taken into account. (If you are briefly away from your pump and using injections, the simplest solution to keep OpenAPS up to date is to bolus into air!)

	Easy bolus button: Previously before OpenAPS, you probably used the easy bolus button [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/While You Wait For Gear/collect-data-and-prepare.html#easy-bolus-button] to add up a bolus in increments. (E.g. if your pump had increments of 0.5u, you could quickly dial up to a bolus by pressing the up button as many times as needed; hitting enter to confirm it; hitting enter again to deliver the bolus.)

	Bolus wizard: Or, you may have used the bolus wizard, sometimes with BG or carb entry, or just as a bolus.

In OpenAPS, you can still use those same methods for delivering manual doses of insulin (boluses).

Entering carbs into OpenAPS

Before OpenAPS, you may or may not have entered carbs into your pump. With OpenAPS, most people do want the rig to know about carbs.

Carbs can be either entered on the pump (for example, using Bolus Wizard) or into Nightscout (carb entries in Nightscout can either be made directly using the Care Portal) or via IFTTT or XDrip.
You have a variety of ways to enter them, depending on whether your rig is online or offline.

Look at this image for the big picture:

[image: Different methods for entering carbs]

Offline carb entry

	You can still use the bolus wizard to enter carbs, although a non-zero amount of bolus must be delivered in order for OpenAPS to record the carbs. If you adjust the bolus recommended by the bolus wizard down to zero and deliver the zero units (as you might ordinarily do if you ate carbs in order to treat a low), the pump may (depending on your pump version) fail to record a bolus wizard record in pumphistory, causing OpenAPS to ignore the carbs as if you hadn’t entered them. In that situation, consider delivering the smallest unit of bolus possible (like 0.05u or 0.1u) so that OpenAPS will record the carbs entered into the bolus wizard.

	Some pumps can use the ‘meal marker’ feature [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Customize-Iterate/offline-looping-and-monitoring.html#entering-carbs-while-offline].

	See section on extended and dual wave substitutes [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/While You Wait For Gear/collect-data-and-prepare.html#extended-and-dual-wave-substitute] for information on how extended boluses are handled in OpenAPS.

SAFETY WARNING ABOUT BOLUS WIZARD: If the pump has a target range high end set lower than the BG input into the Bolus Wizard, the Bolus Wizard will add insulin to cover the carbs as well as bring BG down to the high end. E.g. if your high end is 110 and you enter a 160 BG and 45g of carbs in the Bolus Wizard, the Bolus Wizard will dose 1U to bring BG to 110 and 3U for carbs (assuming 50 (mg/dL)/U and 15g/U factors). The rig will likely have already dosed insulin to bring your BG to your low target, and you are potentially “double dosing”. In these scenarios, you will have too much insulin onboard and can experience a severe low. If you use the Bolus Wizard, ensure the high end of the BG target range is a high number such as 250 mg/dL. OpenAPS default behavior (wide_bg_target_range preference) is to only use the target range lower end. Setting the high end does not impact the OpenAPS algorithms.

Online carb entry

If your rig is online, you have a variety of ways to enter carbs online.

	Nightscout care portal

	AndroidAPS NS Client (Download the app-nsclient-release APK from here [https://github.com/MilosKozak/AndroidAPS/releases].)

	Many options for using IFTTT to get carbs into Nightscout Care portal. (See the IFTTT page here for instructions [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Customize-Iterate/ifttt-integration.html].)
	Pebble or Apple watch

	Google Calendar

	Siri, Alexa, Google, etc.

	Android users: you can use the Care portal option in NSClient app found here [https://github.com/nightscout/NSClient-Android/releases].

Prev.: Auto-sensitivity mode (Autosens)

Next: Understanding your preferences and safety settings

​

 Understanding your preferences and safety settings

Understanding your preferences and safety settings

All of the settings specific to OpenAPS (that can’t be read from the pump) will live in this file, so when running the setup scripts or building your loop, you will have the preferences.json file built for the system to read, in addition to your pump profile settings. Many of these are important safety settings, with reasonable default settings, so other than described below, you likely won’t need to adjust these. If you do decide to adjust a setting, the best practice is to adjust one setting at a time, and observe the impact for 3 days. Changing multiple variables at once is a recipe for a lot of headaches and a lot of painful troubleshooting.

(Note that there are some preferences that show up by default; these are the most commonly adjusted. There are additional preferences available to set that are not used by everyone, and are described below - any of these can also be added to the preferences.json)

Click here to expand a clickable list to jump to each preference:

 Understanding all the ways to monitor your rigs

Understanding all the ways to monitor your rigs

There are two general groups of ways to monitor your rigs:

	Online, meaning it requires the rig to have internet connectivity (via a wifi or hotspot/tethered connection)

	Offline, meaning the rig does not have any internet connectivity

[image: Examples of online and offline monitoring]

The main ways of monitoring your rig ONLINE include:

	Papertrail

	Accessing via SSH (either using an app on your phone, or your computer)

	Nightscout [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/While You Wait For Gear/nightscout-setup.html]

	AndroidAPS NS Client (Download the app-nsclient-release APK from here [https://github.com/MilosKozak/AndroidAPS/releases].)

	Pebble watch (your watchface of choice, such as Urchin [https://github.com/mddub/urchin-cgm])

	Apache Chainsaw

The main ways of monitoring your rig OFFLINE include:

	Connecting via SSH over a serial connection [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Build Your Rig/logging-into-rig-serial.html].

	Pancreabble (offline connection to your Pebble watch)

	For Android users: “Hot Button“

	Accessing via SSH over Bluetooth, or by using a mobile router so your phone/rig can connect to the same network offline

	For any phone type: Creating a web page that can be accessed on the phone via the rig’s IP address

Accessing your online rig via SSH

See below for different ways to access your rig:

	If your computer and rig are on the same wifi network

	If your iPhone and rig are on the same wifi network

	Set up an autossh reverse tunnel to access from a different network

If your computer and rig are on the same wifi network

These instructions will work only if your computer and rig are on the same wifi network. If they are on different networks, you will need to connect using a data cable connected to the UART port on the rig to use SSH. See these instructions [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Build Your Rig/logging-into-rig-serial.html].

[image: If your computer and rig are on the same wifi network]

For Mac computers

	Open the Terminal App found in the Utilities folder in Applications.

	Use the command ssh root@edisonhost.local (or whatever you named your edison host, in the example below, the hostname was edison1). If this is your first time logging in to the rig on the computer, you may get a message about the authenticity of the host and whether you want to add the key fingerprint to the list of known hosts. Go ahead and answer yes. You will be asked for the password for the rig...enter your root password that you setup in Phase 0 (the default was edison). Realize that keystrokes will not appear as you enter the password. A successful login will result in a screen similar to below.

[image: Mac ssh login]

	If you get an error about “could not resolve hostname”, it is likely that your rig is actually connected to a different wifi network than the computer. Try the screen method (directions below) for connecting to your rig.

[image: Mac ssh unknown host]

	If you get an scary looking error about “WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!” that is likely because you are attempting to login to a rig that has the same hostname as a previous rig that has been logged into on the computer. (This is why you want to use unique hostnames if you are going to have multiple rigs.) You can delete the history of known hosts for the rig by entering the commands cd .ssh and then rm known_hosts. This will delete the log of known hosts on your computer. There’s no significant downside to removing the known_host log, except that you will need to answer yes to the key fingerprint additions again for the first time you login to old rigs again. After you delete the known hosts, you can use the ssh root@edisonhost.local command to login, as described above.

[image: Mac spoofing error]

For Windows computers

	Open PuTTY program

	Click the SSH radio button and then enter the IP address of the rig on the “Host Name” line in PuTTY.

[image: Windows IP address for rig]

	If you do not know the IP address of the rig, you can obtain it by first logging on using Serial connection (described below) and using the command ifconfig.

[image: Windows IP address for rig]

	Click the “Open” button in the PuTTY window and, if this is your first time logging into the rig using PuTTY using ssh, you may see a warning regarding the server’s host key. Click yes to add the host key to PuTTY’s cache.

[image: Windows key hostname]

	Login using login name root and password is whatever you changed it to during setup in Phase 0. The default password was edison. As you type the password, no keystrokes will appear on the screen. Successful login will leave you at a prompt for the root user.

[image: Windows IP address for rig]

autossh Reverse Tunnel

If you have an ssh server that is always accessible on the Internet, you can use it as a known hop point to ssh into your rig as long as the rig has an Internet connection.

On the rig, install autossh: apt-get install autossh

Your ssh environment must be setup to use key based authentication. (Basic instructions are here [https://www.debian.org/devel/passwordlessssh].)

On the rig, add the lines below to the /etc/ssh/ssh_config file.

 ServerAliveInterval 60
 ServerAliveCountMax 5

On the server, add the lines below to the /etc/ssh/sshd_config file.

 ClientAliveInterval 60
 ClientAliveCountMax 5

The configuration values above ensure when the rig moves from wifi network to wifi network, it will require 5 minutes at most for autossh to establish a new link to the server.

Test the ssh setup by executing autossh on the rig:

autossh -f -M 0 -T -N <Internet server address> -o "ExitOnForwardFailure yes" -R 20201:localhost:22`

Test ssh into the rig from another device by ssh to the internet server address on port 20201 instead of the default port 22.

Once the test are successful, add a line to your rig crontab to launch autossh at boot using the autossh command above: @reboot autossh -f -M 0 -T -N <Internet server address> -o "ExitOnForwardFailure yes" -R 20201:localhost:22

Papertrail remote monitoring of OpenAPS logs (RECOMMENDED)

If you want to remotely view the rig’s logs/loops, you can use Papertrail service. We HIGHLY recommend setting up this service for at least the first month of your OpenAPS use to help remotely and quickly troubleshoot your rig, if you have problems. The first month of Papertrail comes with a very generous amount of free data. If you decide you like the service, you can sign up for monthly plan. Typically, the monthly cost for using Papertrail with OpenAPS is approximately $5-7 depending on how many rigs you use and how long you’d want to save old data.

Get an account at Papertrail

Go to http://papertrailapp.com and setup a new account. Choose to setup a new system. Notice the header at the top of the new system setup that says the path and port that your logs will go to. You’ll need that information later.

[image: Papertrail hosting information]

System logging

Login to your rig. If you need help with that, please see the Accessing Your Rig section of these docs. Copy and paste the code that is displayed in your new system setup’s shaded box, as shown in the red arrowed area in the screen shot above. This will setup papertrail for just your syslogs. But, we now will need to add more (aggregate) your logs such as pump-loop and ns-loop.

Aggregating logs

	Copy and paste each of these four command lines, one at a time. The screenshot below shows the successful results of each command. The first command will run for a short time and end with similar information to the green box. The remaining three commands will not display anything specific as a result of the command.

For Intel Edison rigs, use:

wget https://github.com/papertrail/remote_syslog2/releases/download/v0.19/remote_syslog_linux_i386.tar.gz

For Raspberry Pi rigs, use:

wget https://github.com/papertrail/remote_syslog2/releases/download/v0.18-beta1/remote_syslog_linux_arm.tar.gz

Then, for either rig type, run:

tar xzf ./remote_syslog*.tar.gz

cd remote_syslog

sudo cp ./remote_syslog /usr/local/bin

[image: Papertrail aggregating]

	Create the file that will store all the logs you’d like to aggregate:

vi /etc/log_files.yml

	press “i” to enter INSERT mode, and then copy and paste the following (updating your host and port on the lines shown to match what your new system info shows as described above):

files:
 - /var/log/openaps/pump-loop.log
 - /var/log/openaps/autosens-loop.log
 - /var/log/openaps/ns-loop.log
 - /var/log/openaps/network.log
 - /var/log/openaps/autotune.log
 - /var/log/openaps/cgm-loop.log
 - /var/log/openaps/pushover.log
destination:
 host: logs5.papertrailapp.com # NOTE: change this to YOUR papertrail host!
 port: 12345 # NOTE: change to your Papertrail port
 protocol: tls

type ESC and ”:wq” to save changes and exit.

	Start a new aggregate

sudo remote_syslog

Now you should be able to see your new logs in your papertrail, but we need to make it so this runs automatically when the rig is restarted.

Install auto restart at reboot

	Create a new file that will restart the papertrail logging at reboot

vi /etc/systemd/system/remote_syslog.service

	press “i” to enter INSERT mode, and then copy and paste the following:

[Unit]
Description=remote_syslog2
Documentation=https://github.com/papertrail/remote_syslog2
After=network-online.target

[Service]
ExecStartPre=/usr/bin/test -e /etc/log_files.yml
ExecStart=/usr/local/bin/remote_syslog -D
Restart=always
User=root
Group=root

[Install]
WantedBy=multi-user.target

type ESC and ”:wq” to save changes and exit.

	enable the reboot service by using these two commands, one at a time.

systemctl enable remote_syslog.service

systemctl start remote_syslog.service

	reboot your rig to test the papertrail

reboot

and then go to your papertrailapp website to see the log

[image: papertrail log example]

Optimize Papertrail use

To make the most of your Papertrail logs, setting up some of your account settings and filters will help streamline your troubleshooting.

Account Filters

Adding filters to your incoming Papertrail logs will help minimize unuseful data (and help keep you below your data caps) and streamline your review of your relevant OpenAPS logs. You can go to your Papertrail account’s Settings and then choose the Log Destinations. Click on Log Filters to go to the screen where you can add specific filters.

[image: papertrail log destinations]

Click on the Add Log Filter button and add three filters for CRON, libmraa, and sudo. Save the changes and within 60 seconds, your logs will be filtered. The CRON, libmraa, and sudo logs usually provide very little help for troubleshooting OpenAPS problems. You can always undo these filters, if you want to see what those provide in the future.

[image: papertrail log filters]

Saved Searches

Unfortunately, Papertrail does not currently have an app for use on mobile devices. Instead, you will be using an internet browser to view your papertrail. Setting up saved searches, in advance, can help you sort through your logs more efficiently. Most OpenAPS troubleshooting will involve either wifi connection issues or pump communications. Some helpful searches to save in order to find those issues fastest are:

	pump-loop.log to see just your pump loop...similar to using the l command when logged into your rig.

	network will show just your oref0-online results and whether/which wifi network your rig is connected to. If you see results of 192.168.1.XX, then your rig is likely connected to a wifi network. If you see results of 172.20.10.XX then your rig is likely connected to your phone’s personal hotspot. If you see error, cycling network results, you should check out troubleshooting steps.

	pump-loop.log adjust will show your basal and ISF adjustments being made by autosens, if enabled.

If you are running multiple rigs, you can also setup these searches to include the hostname of a particular rig, if you want to see results just for that rig. For example, this screenshot below would be saving a search for a particular rig with the hostname of edison1 and only for its pump-loop.log.

[image: papertrail log filters]

Once you get your desired searches saved, it is an easy process to make them more accessible on your mobile device by using its browser’s add to homescreen button. For example, below are the quick links to the saved searches for an OpenAPS user with three rigs...

[image: papertrail homescreen buttons]

Troubleshooting using Papertrail

Papertrail can be very valuable to quickly troubleshoot a rig, because it is quite easy to see all the loops that log information about your rig’s actions. BUT, the way that the information comes into Papertrail is based on the time the action took place. So, you’ll be seeing information stream by that may or may not help you troubleshoot WHICH area your issues are.

First, let’s start with messages that ARE NOT ERRORS

	Anything in the first 15 minutes (pretty much) of a new loop setup. Let the loop run for 15 minutes before you start to investigate the messages. Many messages resolve themselves during that time, such as cat: enact/enacted.json: No such file or directory is because the loop hasn’t enacted a temp basal suggestion yet...so the file doesn’t exist.

	Radio ok. Listening: .No pump comms detected from other rigs This message is NOT an error. This means your rig is checking to make sure it is not interrupting another rig that may already be talking to your pump. It’s being polite.

	[system] Failed to activate service 'org.freedesktop.hostname1': timed out This message is NOT an error. Jubilinux does not use the hostname service...so it does not activate.

	Many messages that say there are failures, are not really failures for your rig. For example, there are a lot of scary looking messages when your rig is changing networks from wifi to/from BT...an unfiltered papertrail will show every message like this:

[image: papertrail homescreen buttons]

But, really, most of those messages are the normal course of the rig telling you what’s going on. Like “Hey, I seem to have disconnected from the wifi...I’m going to look for BT now. Hold on. I need to organize myself. Bringing up my stuff I need to find BT. Ok, found a BT device. Well, I can connect to it, but some of the features I don’t need...like an audio BT connection.” But, the rig doesn’t speak English...it speaks code. So, if you don’t speak code...sometimes a filter for network might help you filter for the English bits of info a little better. Here’s what that same period of time looked like with a network filter applied. It’s a little more clear that my rig was changing from a BT tether to a wifi connection when you filter the results.

[image: papertrail homescreen buttons]

Therefore when you start to troubleshoot, USE YOUR FILTERS to narrow down the logs that you are looking at. Here are some specific errors/issues you may find.

PUMP TUNING

Use pump-loop search filter to start with. What messages are you seeing? Poor pump comms are one of the most frequent causes of loops stopping. If you see 916, 0, -99 tuning results, then you know that your rig is not getting a usable communication with your pump. Try moving your pump and rig closer together. Check if your pump battery is good.

[image: papertrail poor pump tune]

Ideally you should be seeing pump tuning somewhat like the filter for mmtune below shows...this is a kid at school, carrying the rig in a purse/backpack. Some periods of time she leaves her rig behind (like PE class) and other shorter times where there’s poor pump comms. But, generally speaking seeing mmtune results in the 70s and 80s will sustain good looping.

[image: papertrail mm tune]

GIT LOCK

There are files that get written to in a directory called /root/myopenaps/.git Sometimes a process crashes and causes a file in that directory to get locked and the writing can’t continue. Your loop may fail as a result. This can be a short term issue, and it could resolve on its own...other times it may require you to delete the file that is causing the problem. For example, below is a short-term error. The message says there is a problem in the /root/myopenaps/.git and I may need to remove that file to get things going again. However, you can also see that a few minutes later, the problem resolved on its own.

If you find a .git lock error is causing a long period of time where your loop is failing, you can remove the file, as the error suggests by using rm -rf /root/myopenaps/.git/filename or you can delete the whole .git directory (it will get rebuilt by the loop automatically) with rm -rf /root/myopenaps/.git

[image: papertrail git lock]

FLAKEY WIFI

Having flaky router or wifi issues? Some routers or ISPs (I still haven’t completely determined the cause) will not work nice with the Avahi-daemon. What the means for you...spotty time staying connected to your wifi. Does your rig not loop consistently? Sometimes are you getting kicked out of ssh sessions with your rig? Look for the message shown in the screenshot below:

[image: papertrail avahi error]

Or alternatively, if you see this message when you login to your rig:

[image: papertrail avahi at login]

The solution to this is to login to your rig and use this command systemctl disable avahi-daemon as shown below

[image: papertrail avahi disable]

AND also make this edit using vi /etc/default/avahi-daemon Change the number on the last line from 1 to 0 so that it reads AVAHI_DAEMON_DETECT_LOCAL=0 as shown in the screenshot below. (remember i to enter INSERT mode for editing, and esc and :wq to save and exit the editor)

[image: papertrail avahi disable]

reboot your rig after the change to enable the fix.

subg_rfspy state or version??

If your loop is failing, lights are staying on, and you see repeated error messages about “Do you have the right subg_rfsby state or version?” as below, then you need to head to this section of docs [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Troubleshooting/Common-error-messages.html#could-not-get-subg-rfspy-state-or-version-ccprog-or-cannot-connect-to-cc111x-radio] to fix that issue. Don’t worry, it is a 5 minute fix. Very straight-forward.

[image: papertrail subg error message]

[image: papertrail subg lights]

Apache-chainsaw

[image: Apache picture]
If your computer and rig are on the same wifi network you can use Apache Chainsaw2 from a pc (running windows/mac/linux) to watch your logs. Chainsaw2 main advantages are:

	Easy setup.

	Strong filtering capabilities.

	Strong finding capabilities.

	Coloring capabilities.

	Adding marker capabilities.

	Logs can be searched for a long time (kept localy on the rig).

	Can tail new data.

example picture:

To setup appache chainsaw on your computer, follow the following instructons:

	Download the following version of appache chainsaw from here: https://github.com/tzachi-dar/logging-chainsaw/releases/download/2.0.0.1/apache-chainsaw-2.0.0-standalone.zip (please note this version was changed to fit the openaps project, other releases of appach chainsaw will not work with a rpii).

	Unzip the file.

	On ypur pc, create a configuration file called openaps.xml with the following data (for example notepad openaps.xml):

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration >
<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/" debug="true">
 <appender name="A2" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.SimpleLayout"/>
 </appender>

 <plugin name="VFSLogFileReceiver1" class="org.apache.log4j.chainsaw.vfs.VFSLogFilePatternReceiver">
 <param name="fileURL" value="sftp://root:password@192.168.1.20:22/var/log/openaps/openaps-date.log"/>
 <param name="name" value="sampleVFSLogFileReceiver1"/>
 <param name="tailing" value="true"/>
 <param name="timestampFormat" value="yyyy-MM-dd HH:mm:ss"/>
 <param name="logFormat" value="TIMESTAMP LOGGER MESSAGE"/>
 <param name="autoReconnect" value="false"/>
 <param name="group" value="group"/>
 </plugin>

 <root>
 <level value="debug"/>
 </root>
</log4j:configuration>

Make sure to replace the password, with your rigs password, and 192.168.1.20 with the ip/hostname of your rig.

	run chainsaw by the command: bin\chainsaw.bat (pc) or bin\chainsaw (linux and mac)

	From the file menu choose ‘load chainsaw configuration’

	Choose use chainsaw configuration file.

	press open file.

	choose the file openaps.xml

	(optional) mark the checkbox “always start chainsaw with this configuration.”

Chainsaw has a welcome tab and a good toturial, use them.
Still here are a few highligts:

	To see only pump-loop you can either select ‘focus on openaps.pump-loop.log’ or on the refine focus on field enter ‘logger==openaps.pump-loop’

	To filter only messages that contain the words ‘autosens ratio’ enter on the ‘refine focus’ logger==openaps.pump-loop && msg~=’autosens ratio’

	To highlight lines that contain ‘refine focus’, enter msg~=’autosens ratio’ on the find tab.

Accessing your offline rig

Pancreabble - offline connection to Pebble watch

(TO DO Note - Pancreabble instructions for OpenAPS need to be re-worked to reflect the oref0-setup script way of making it work. Below is notes about Pancreabble setup prior to oref0-setup.sh being in existence.)

Pancreabble [https://github.com/mddub/pancreabble] is a way to monitor your loop locally, by pairing a Pebble smartwatch directly with the Raspberry Pi or Intel Edison.

In other words, whereas the default setup looks like this:

Raspberry Pi/Intel Edison -> network -> Nightscout server -> network -> smartphone
 |
 -> laptop
 |
 -> Pebble watch

And by default, your Pebble is paired thus:

 smartphone -> Bluetooth -> Pebble watch

With Pancreabble, the setup looks like this:

Raspberry Pi/Intel Edison -> Bluetooth -> Pebble watch

Using a Pebble watch can be especially helpful during the “open loop” phase: you can send the loop’s recommendations directly to your wrist, making it easy to evaluate the decisions it would make in different contexts during the day (before/after eating, when active, etc.).

See Pancreabble [https://github.com/mddub/pancreabble] for initial setup instructions.

Once you’ve done the first stages above, you’ll need to do generate a status file that can be passed over to the Pebble Urchin watch face. Fortunately, the core of this is available in oref0.

Go to ~src/oref0/bin and look for peb-urchin-status.sh. This gives you the basic framework to generate output files that can be used with Pancreabble. To use it, you’ll need to install jq using:

apt-get install jq

If you get errors, you may need to run apt-get update ahead of attempting to install jq.

Once jq is installed, the shell script runs and produces the urchin-status.json file which is needed to update the status on the pebble. It can be incorporated into an alias that regularly updates the pebble. You can modify it to produce messages that you want to see there.

When installing the oref0-setup you will need to replace all instances of AA:BB:CC:DD:EE:FF with the Pebble MAC address. This can be found in Settings/System/Information/BT Address. NOTE: Make sure the MAC address is in ALL CAPS.

Once you’ve installed, you will need to pair the watch to your Edison.

Bluetooth setup for Pancreabble

	Restart the Bluetooth daemon to start up the bluetooth services. (This is normally done automatically by oref0-online once everything is set up, but we want to do things manually this first time):

sudo killall bluetoothd

	Wait a few seconds, and run it again, until you get bluetoothd: no process found returned. Then start it back up again:

sudo /usr/local/bin/bluetoothd --experimental &

	Wait at least 10 seconds, and then run:

sudo hciconfig hci0 name $HOSTNAME

	If you get a Can't change local name on hci0: Network is down (100) error, start over with killall and wait longer between steps.

	Now launch the Bluetooth control program: bluetoothctl

	And run: power off

	then power on

	and each of the following:

discoverable on

scan on

agent on

default-agent

On Your Pebble

Settings/BLUETOOTH to make sure Pebble is in pairing mode

from terminal

trust AA:BB:CC:DD:EE:FF
pair AA:BB:CC:DD:EE:FF

you might need to do this several times before it pairs

you will see on the edison

Request confirmation [agent] Confirm passkey 123456 (yes/no): yes

	(WARNING: You must type in yes not just y to pair)

Once paired, type quit to exit.

Currently the peb-urchin-status.sh has 1 notification and 3 different options for urchin messages.
in you APS directory there is a file called ‘pancreoptions.json’

"urchin_loop_on": true, <--- to turn on or off urchin watchface update
"urchin_loop_status": false, <--- Gives a message on urchin watchface that it's running
"urchin_iob": true, <--- Gives a message on urchin watchface of current IOB
"urchin_temp_rate": false, <--- Gives a message on urchin watchface of current temp basal
"notify_temp_basal": false <--- Notification of temp basal when one shows up in enact/suggested.json

note only one of the messages for the urchin watchface can be true at once

the peb-urchin-status.sh gets called from the crontab and will run automatically.
By default the urchin_loop_on, and urchin_iob is set to true. You must manually change notify_temp_basal to true to start getting temp basal notifications. you can edit this file using nano pancreoptions.json from your APS directory.

Hot Button - for Android users

Purpose

NOTE: The Hotbutton app linked below has disappeared from Google Play. There are several others available if you search “SSH Button”, but the app setup instructions won’t match exactlty.

Hot Button app [https://play.google.com/store/apps/details?id=crosien.HotButton] can be used to monitor and control OpenAPS using SSH commands. It is especially useful for offline setups. Internet connection is not required, it is enough to have the rig connected to your android smartphone using bluetooth tethering.

App Setup

To set up a button you need to long click. Then go to Server Settings. For Server’s IP, add the IP address that your rig has when connected to your phone. Under Server’s Port, add the port number 22. Under Authenication Settings, you need to add your rig’s username, password, and the root password. Be sure that the password for the private key file is blank unless you are setting up a key authentication (which is not necessary). Go back to the previous button setup screen and click “Set as default!”. This will save all your server settings so that you can easily load them onto each new button you make.

Basic commands

For the Command part of the button setup you can write any command which you would run in the ssh session. (If you are running a command that would need to be run with root privileges, be sure to check the box “Execute as root!”) Here are some suggested commands:

To show Automatic Sensitivity ratio, you can set:
cat /root/myopenaps/settings/autosens.json
To show the last enacted loop, you can set:
cat /root/myopenaps/enact/enacted.json
To show your rig’s network name, you can set:
iwgetid -r
To show your rig’s battery status, you can set:
cat /root/myopenaps/monitor/edison-battery.json
To show your pump’s battery status, you can set:
cat /root/myopenaps/monitor/battery.json

After setting up the button, simply click it to execute the command. The results are displayed in the black text area below the buttons. You can change the font size of the text in the box, and you can add more buttons under the main Hot Button menu.

Temporary targets

It is possible to use Hot Button application for setup of temporary targets. The oref0 repo has a script named oref0-append-local-target that sets a temp target locally on the rig.

To set an activity mode target of 130 mg/dL for 60m, run:
oref0-append-local-temptarget 130 60

To set an eating soon mode target of 80 mg/dL for 30m, run:
oref0-append-local-temptarget 80 30

SSH Login Speedup

To speed up the command execution you can add to the /etc/ssh/sshd_config the following line:
UseDNS no

Accessing your offline rig via SSH over Bluetooth

Your phone and rig must be BT paired and connected over BT PAN. See here [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Usage and maintenance/Wifi/bluetooth-tethering-edison.html] for BT PAN configuration. When you first open Termius on your mobile device (JuiceSSH and SimpleSSH are also good choices) it will prompt you to add a new host. Click the + button to add a new host. Turn the toggle on for Use SSH and then fill out the following information:

Alias – use an alias name that let’s you know which rig and which connection point this host is for, for example YourRigName on device BT
Hostname – Enter the IP address of the rig as assigned by your BT PAN
Username – click to the left of the little blue man and type root
Password – Enter your rig’s root password (default is “edison” but you should have changed it during setup)

Click Save in the upper right corner. You should now see the host you just created. If you click on that host, you’ll see a message that it is connecting (first time connections will ask if you want to save the rig to known hosts, cick continue and then you’ll be connected to a terminal app screen. You can now issue commands and edit files just like you can over an SSH connection from your computer.

Accessing your offline rig via SSH when your phone and rig are connected to the same network

Just like the trick for getting internet to your rig through a network that requires you to log in via a portal (a “captive” network), a mobile router (e.g. HooToo [https://www.hootoo.com/network-devices.html]) or other brand) can create a network that allows your phone and rig both to be connected, allowing you to then SSH into your rig, just as if they were connected via cellular.

You can then use the same methods to SSH in for the phone or computer (that you’re using to SSH) being on the same network as the rig.

Note: you will want to set your mobile router up in advance, and give it the same network name and password as a network already on your rig; or otherwise make sure to add the network and password to your rig before you travel and want to use this offline.

Generally, the steps for getting online with the HooToo, which you should practice with before you travel:

	Plug in the HooToo/turn it on.

	Use your phone or computer and join the HooToo network.

	If you plan to loop offline and just want to SSH in, you should be able to SSH in and see your logs.

For using the HooToo to join plane or hotel wifi, after you’ve joined the HooToo router network:

	Open a browser and type in a URL (e.g. cnn.com) and hit enter. This should redirect you to the HooToo log in page.

	Follow your router’s instructions for how to get to the network page and scan and click to join the right network.

	Open another tab, type a URL again (e.g. cnn.com) and hit enter. This should take you to the login page (e.g. GoGo or the captive portal of the hotel wifi). Input your credentials or otherwise log in. Once you’re successfully through that step, the router is online and will begin sharing the internet connectivity with the other devices that are joined to the network.

Offline web page from rig - for any phone user

Starting with oref0 0.6.1, you can enable a rig hosted offline webpage that can be accessed over a local LAN. To do this, simply open a web browser and go to your rig’s IP address. In most cases, this will be in the format 192.168.x.x

[image: Successful pump-loop] [image: Unsuccessful pump-loop]

The box around your current BG will be either green or red, depending on the last time OpenAPS was able to successfully complete a pump-loop. The box functions similarly to the OpenAPS pill in Nightscout. If you tap on it, you will be able to view more info about the current state of your rig and its decision making process.

[image: Offline webpage OpenAPS pill]

NOTE: If the webpage does not load, check your crontab. On master (oref0 version 0.6.x) your crontab should contain the line @reboot cd ~/src/oref0/www && export FLASK_APP=app.py && flask run -p 80 --host=0.0.0.0 You can check this by logging into your rig and typing crontab -l. If you need to edit your crontab the command is crontab -e.

Old instructions for an offline webpage. It is HIGHLY recommended that you use the method above for oref0 0.6.0 or greater.

TODO - implement this as a proper oref0 script that can be installed by oref0-setup

This allows you to extract data from the various files that OpenAPS creates and access the locally from the phone that is connected to the rig, giving a full information set.

A. First, you need to set up the script that will do this for you. An example is shown below:

rm ~/myopenaps/enact/index.html
touch ~/myopenaps/enact/index.html

(cat ~/myopenaps/enact/smb-enacted.json | jq -r .timestamp | awk '{print substr($0,12,5)}') >> ~/myopenaps/enact/index.html

(cat ~/myopenaps/enact/smb-enacted.json | jq -r .reason) >> ~/myopenaps/enact/index.html
(echo -n 'TBR: ' && cat ~/myopenaps/enact/smb-enacted.json | jq .rate) >> ~/myopenaps/enact/index.html
(echo -n 'IOB: ' && cat ~/myopenaps/enact/smb-enacted.json | jq .IOB) >> ~/myopenaps/enact/index.html
(echo -n 'Edison Battery: ' && cat ~/myopenaps/monitor/edison-battery.json | jq -r .battery | tr '\n' ' ' && echo '%') >> ~/myopenaps/enact/index.html
(echo -n 'Insulin Remaining: ' && cat ~/myopenaps/monitor/reservoir.json) >> ~/myopenaps/enact/index.html

Create the above script by running nano /root/myopenaps/http.sh , then paste the above, and save it.

You may need to adjust the values in '{print substr($0,12,5)}' - whilst I know these work on the rigs I have set them up on, other’s have had better results with {print substr($0,13,5)}'

B. You will also need to start up the SimpleHTTPserver service that is already installed on jubilinux in the location you will place your file. This is done by adding the following line to your Cron (refer to the resources [https://draft-openaps-reorg.readthedocs.org/en/latest/docs/Resources/technical-resources.html#linux-shell-terminal] section for help on editing crontabs):

@reboot cd /root/myopenaps/enact && python -m SimpleHTTPServer 1337

The final thing to do is to make sure the script runs regularly to collect the data and publish it. This requires an additional cron line:

*/5 * * * * (bash /root/myopenaps/http.sh) 2>&1 | tee -a /var/log/openaps/http.log

In this case the script is running from the /root directory and I am publishing to the ~/myopenaps/enact directory.

C. Accessing via your phone

IPHONE USERS: To access this from an iphone browser, enter something like the following: http://172.20.10.x:1337/index.html and you should receive an unformatted html page with the data in it. The value you need will be the ip address you see when you first set up bluetooth on your rig, and can be found using ifconfig bnep0 when your rig is connected to your phone via bluetooth. If you want to improve the output for a browser, the script can be modified to generate html tags that will allow formatting and could provide colouring if various predicted numbers were looking too low.

ANDROID USERS: On Android, you can download http-widget (https://play.google.com/store/apps/details?id=net.rosoftlab.httpwidget1&hl=en_GB) and add a widget to your home screen that will display this data. You will need the IP address that your rig uses. If you are using xdrip as your glucose data source, it is the same as the value you use there.

SAMSUNG GEAR S3 WATCH USERS: If you use a Samsung Gear S3 watch, you can use the above http-widget with Wearable Widgets (http://wearablewidgets.com) to view what OpenAPS is doing locally, without internet connection.

Prev.: Understanding your preferences and safety settings

Next: Using your loop: practical advice for common situations

​

 Using your loop: practical advice for common situations

Using your loop: practical advice for common situations

Now that you’ve closed the loop, you probably have a lot of new “first” experiences to deal with. Like much of this looping experience, you’ll figure it out as you go along, and figure out what’s right for you. But here are some common situations and questions you may encounter:

	How can you make adjustments to insulin delivery while on the go? - Optimizing with Temporary Targets

	What do you do with the loop in airport security when you travel

	What do you do with your loop when you travel across timezones? How do you update devices for a time zone change?

	What do you do with the loop when you shower?

	What do you do when you change sites?

	What do you do when you exercise?

	What do you do if you want to be off the pump for long periods during a day when you’re really active? Like for the beach or water park or sporting activity or similar?

	What if I want to turn off the loop for a while?

	How do I open loop?

	How do I switch between insulin types, or switch to Fiasp? What should I change?

How can you make adjustments to insulin delivery while on the go? - Optimizing with Temporary Targets

The use of Temporary Targets can provide additional fine tuning of insulin control on the go, or remotely for parents monitoring children when they are at school or away from home. As described elsewhere in this documentation, an Eating Soon-type (lower than normal) Temporary Target can be used in advance of a meal or activity. Lower Temporary Targets can also be used to force the OpenAPS system to be somewhat more aggressive in correcting a rising blood sugar. Similarly, a higher temporary target can soften a blood sugar drop and help avoid a low, or help limit stacking of insulin that is likely to peak during activity. Temp targets can be set by entering them in Nightscout Care Portal; you can also set up IFTTT buttons to set common temp targets from your watch or phone with a single button.

Temporary Targets can be set in advance by setting a future date/time stamp in Nightscout when you set them. For example, a parent may wish to set a week’s worth of Eating Soon or Activity Modes in advance of a regular school week. This may be particularly helpful for meals or activity (e.g. gym class) which are regularly scheduled but for which you may have difficulty remembering to trigger the Temporary Target at the right time. Scheduled or remotely activated Temporary Targets can also be very useful in supporting children in optimal management at school or other locations where there may not be an adult who is in a position to set the Temporary Target each time it is needed. It’s also helpful even for adult PWDs when traveling; a lo