dpdk

Release 0.11

Nov 23, 2017

Contents

10

11

12

13

14

Linux'V-& L DPDKAI 1485
Getting Started Guide for FreeBSD
Sample Applications User Guides
AETE e

HowTo Guides

DPDK Tools User Guides

Testpmd Application User Guide
Network Interface Controller Drivers
Crypto Device Drivers

Event Device Drivers

Xen Guide

Contributor’s Guidelines

Release Notes

FAQ

25

37

249

435

471

483

537

641

659

665

673

717

793

CHAPTER 1

Linux*F-4 FDPDKA | 1985

1.1 FH

KSR 6L S DPDKE 22 25 AL & A R UL - B ER B P REB IR T E . X EE#R T
FELinuxIA5E N 4miE A0 21 TDPDKM FHREF, (2 S0 H AR ADPDK A E AR SEEIAH Y .

1.1.1 ORI

PR S — {7 S U (3 1 FIDPDK 2 7% SRS 371 5% -

o KA SRESHEAITICERER, BESCRFRITIEE, RE, BERRE, DRSS . 1t
b, 3B AFAQUT UM T I (R0 M i

o N IER (R3CH) - MR ZRMECEDPDK, SERBI AP REEF -
o« GREETREE . HRIN A
- WO T 6 (SRBIAER) AR AELinux IR P RO %

- DPDKMIEZENE, RGWE (BFE T LI/EDPDKIR B 5kMakefile - 844 @ T B AL FIR FHFR T 1) i
L) R RS AEA -

- ARG, DUIGHTIT R H R 25 B — et -
SR T U E R RIARTER -
« APIZ% . $RAUH CDPDKIIAE - ARSI E w25 HIHEAIE B -

« REIRFRPTEE . T AR . SOET#RE T DR, Ros T REERMIhEE, HREtETHE
KM G ~ B ATANGEFH AU -

1.2 RGLESR

AERIR T JiEDPDK T 75 I, -

dpdk, Release 0.11

=3

Note: fRUI7EIntelA 7] FI89xxiE (5,00 4V & L FIDPDK, 15233 Intel® Communications Chipset 89xx
Series Software for Linux Getting Started Guide o

1.2.1 X86 L Tistix & BIOS
WA ZECF G, R ADPDKIBE LN BIOSH I TAFER R E - SR, X THPETE I 281 f R B Th B

LR T 315406 R b/ NE b Byt ge, TP RERG 22 B IBIOSIX & - A LA [E ™Y Enabling Additional
Functionality IRBUCE AIEMRAIEE. -

1.2.2 4%#¥DPDK

THE£.:

Note: DL N iiiFH7EFedora 18 L 7 Mk o HAh RGP FF BB &2 & AL AT 68 H i AE - B H
b Linux Z 47 BRI AR B E B, 152 A DPDK & A i -

¢ GNU make.

e coreutils: cmp, sed, grep, arch &

gee: 49LL FRIRASER T RIE &« FERERMRAT, BT —SEEE miEasin S R &
(54 ““fstack-protector*) - THZ [AL A MIUAF] gcc —dumpspecs.

libe Sk 32 , i % T B B gcc-multilib (glibc-devel.i686 / libc6-dev-i386;
glibc—devel.x86_64 / libc6-dev FH Tlntel 6407 22 ¥ 4% 3%; glibc-devel .ppc64 Fi TIBM
641 BEFE GiE;)

o B Linux NAZIRER P T3 L 00K SO FIRE S - (kernel - devel.x86_64; kernel - devel.ppc64)
o TEOANL A GT T JiFe 320 B R S MR ZE R
— glibc.i686, libgec.i686, libstdc+-+.i686 J glibe-devel.i686, i I FIntel H1i686/x86_64;
— glibc.ppc64, libgee.ppc64, libstde++.ppc64 K glibe-devel.ppe64 & T IBM ppe_64;

Note: x86_x32 ABIH Fij{{#EUbuntu 13.105 LA it A 8 3 Debianfz L (Y & fTIRCAS b5 o miEds 7l
Zgee 4.9+RRUA

* Python, 2.7+ or 3.2+hUZR, F T8 T DPDKER {3, A A & FRE B A -
1By =
* Intel® C++ Compiler (icc). Z3icc] RETR BRIMNIE, B S M mi1Fas 258 H K T Micc T3S FaH -

o IBM® Advance ToolChain for Powerlinux. X & —HFIEFZ T EFMEITE - A% FH - fFLinux - #
FHIBM B HTPOWERE A FIE s « BARZEEESRIBMMNE 7 &35 308 -

» libpcap 3k CAFIZE (libpcap-devel) , T4 13 A1 1# H 2 Tlibcap AR 1A IR SNIR T - BRAEIL T, %
IXENFRFF A, AT LGB A RS IR AL B S CONFIG_RTE_LIBRTE_PMD_PCAP=y KIF/F -

o T EAE i libarchive Sk STAF AN EEALHEAT HE 2L {5 tar PR IBCBR R FR) B TE 0, -

2 Chapter 1. Linux*¥& DPDKAT{5F

dpdk, Release 0.11

1.2.3 ;=47DPDKN HEF

SL2{TDPDKMIREY, FFEAE A brbilas LT 5L gl -

R

Ak
¢ Kernel version >= 2.6.34

IS AT LU i i A

uname —r

* glibe >= 2.7 (J5 B {# F cpusetfH S A5 1)
A B4 1dd ——version BE -
¢ Kernel configuration

1E Fedora OS N H Al H WEI & THUA Y, 1 Ubuntu 5 Red Hat Enterprise Linux, #t5 F#ALHIEE T LLBTT K%
ST HEAB N, KA DPDK & AL L4 :

- UIO I #F
— HUGETLBFS 3 #f
— PROC_PAGE_MONITOR ¥ ##

— MR FEHPETX ¥, LR FF /5 HPET and HPET_MMAP B B %1 - H #1582 % High Precision
Event Timer (HPET) Functionality ETRNEZER -

7 Linux S5 Hugepages

F T 8098 A1 2% i [X A0 KL N 72 1 49 B 75 B Hugepages SCHF (40 B9 BTk, L E BT HIN K T S
HUGETLBFS #%£%i) - @i Ko E, BFFREFE/DTE, Haedm, BB/ rTLBED T ¥
%Mﬁﬁi&ﬂt@]ﬁ)ﬁ%fiﬁﬁi&ﬂt@?ﬁ?E@Hﬂ“I‘ETJo RBE KT, FRMER/ N TUR 2 S EUIE FITLB miss,
TERE TR -

i Hugepages %4 DPDK f#
RKIHBLNZERG G FNEE BoE RIER, CUBSYENFREAL . ZESIFNTIE R, &

YELinux NAZ A AT 1% 28— 2HL -

ST 2MBAR/NTLE, AR 2 Rrhugepagesi eI {Z 1B 26 N - a1, T 1024 12MB K/ NHpage, {#H:

’hugepagesleZél ‘

wof FH A A NHhugepage, BIAHIGHITT, K/ANMLAIFIRFEE - Hlin, BEFRE4NIGK/IOTHATERF, FE
1335 LU IR TR

’default_hugepageszzlG hugepagesz=1G hugepages=4 ‘

Note:

1.2, RGEK 3

dpdk, Release 0.11

CPUS #FJhugepage K/NA] LA IntelZE 14 _E) CPUFREALIARE - WISRFF7Epse, NISCFF2Mhugepages, U5 pagelghfFiE.
TEIBM PowerZ2#4 74 | T H# ' hugepage K/N N 16MBF116GB -

Note: X T64fiFEfF, WEHRF&H, EUFH1GBAhugepages -

FERGETENUMARI R S8 L, 722 B TR Hhugepage® H B H7ER MG S Z R PF > (ORI EE_EH0E 2
T HINTF)

B XA HA NZETIRIE R, 15 S LinuxiE S B 5 H /kernel-parameter. txt 3£ -
il

ST 2MBTLHE, AR IERG RN Z G H 2 HL, iBiE M /sys/devices/ H X T Hinr_hugepages 15
Ahugepage$t BRI . XTI SRS, FHAGSW T (BXFEI02410T1) -

echo 1024 > /sys/kernel/mm/hugepages/hugepages—-2048kB/nr_hugepages

TENUMAR & H, 3 BLROZ BTS2 AR 17

echo 1024 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages
echo 1024 > /sys/devices/system/node/nodel/hugepages/hugepages—-2048kB/nr_hugepages

Note: X TIGUH, RGANLIETCIETE TTH AN -

DPDK f#F Hugepages

— B8 T hugepageNT7, A THNFRHTDPDK, 1HHITLLTPER:

mkdir /mnt/huge
mount -t hugetlbfs nodev /mnt/huge

IR — T BINE] /etc/ fstab XHFH, LA AATLIFEE B K AR

’nodev /mnt /huge hugetlbfs defaults 0 0 ‘

ST IGBAAE, TUH K/ MO IAE 2 I 48 5 -

’nodev /mnt /huge_1GB hugetlbfs pagesize=1GB 0 0

Linux 3£+ Xen Domain0 L #F
A AN A7 H SE IR T Linux A% Ahugepage MLl - FEXen SN E FRREFH, X TFDomainUZ 7 ¥ A 5L
FFRMREDPDKIEF S5 & P —HEIEH TI1E.

B, Domain0/~ ¥ Ffhugepages - N T fEHIX NRE], 8N T — BN B rte_domO_mm A F /7 H N 77
B4 BOAIBR S 3# 3 TOCTL (4-AC) F1 MMAP (B51).

4 Chapter 1. Linux*¥& DPDKAT{5F

dpdk, Release 0.11

DPDK H{#fiE Xen DomO#i=,
2% A B M N , DPDK#Y # B 2 | ff F§ Xen Dom0 W ® o FE T F Xen

Dom0, CONFIG_RTE_LIBRTE_XEN_DOMO & MNIZXH “y”, YmiEht 7 %= -
AN, AT RIFRENERERFID, CONFIG_RTE_EAL_ALLOW_INV_SOCKET_IDW X% EH “y” .

fn#; DPDK rte_dom0_mm #&Hk

FZEXen Dom0 Nz i T/ DPDKN AR, /1 Frsv_memsizelETH rte_dom0_mm BEINEELZ1THI
WNAZH . ZESA TDPDK B AR B 3R kmodF H3RH - BIZfF Finsmod g & IHE LB, 40F Fior:

sudo insmod kmod/rte_domO_mm.ko rsv_memsize=X

XHHEFEA T4096(MB).

B & W77 F TDPDK{E H

Efn#irte_dom0_mm.koN#ZAER 2 f5, F U AELEDPDKAF AN E R/ o X 28T NERNEANE
H3k /sys/devices/ FHIXXFmemsize FARLINAT « LU & (BUX 75 22048MB):

echo 2048 > /sys/kernel/mm/dom0O-mm/memsize-mB/memsize

M PErT LR T Ha S RE LR T 2PN

cat /sys/kernel/mm/dom0-mm/memsize-mB/memsize_rsvd

Xen Domain0 N X FFNUMARLE, It ——socket—mem M2 1ET% Xen Domain0TCAK -

Note: memsizeJ{HNEE K Trsv_memsize -

7 Xen Domain0 | iZ1TDPDK#&F

FfEXen Domain0_jZ21TDPDKAEF, FFE— PRI 21T ——xen-dom0 -

1.3 RS 4%¥DPDK H b5 344

Note: X/ AE AR TAERT LUBIE BT 3 FH BIAC PR A Stk AR AR R LT -

1.3.1 ZIEDPDK X IRTG
B, AR SO A SIDPDKIE SR B

tar xJf dpdk-<version>.tar.xz
cd dpdk—-<version>

1.3. fFHTFES%3DPDK B #1304 5

dpdk, Release 0.11

DPDKFIC LA H A A
+ lib: DPDK & 3(fF
» drivers: DPDK ¥ if)3K SR 3L 44
app: DPDK R T2 (B sl 34
« examples: DPDK K 51|12
« config, buildtools, mk: HEZEFH 5 fiimakefile « FHIAS 7 Fic B S {4

1.3.2 DPDK H tr¥ifts 43

DPDK HFr 3 RRE = A

ARCH-MACHINE-EXECENV-TOOLCHAIN

Hrp.
o ARCH AJPA&:: 1686, x86_64, ppc_64
e MACHINE A]I&Z: native, powers8
¢ EXECENV A LL:#: linuxapp, bsdapp
* TOOLCHAIN AJLLJE: gcc, icc

H b5 S BUR THE 1T BRI 23207 18 640 % & - P LAZEDPDKHY /config B SRH B AT A H iR, ANREfHE
Fdefconfig_Hij % -

Note:

fit & MR 38 RTE_MACHINE AL B A E 53 AIHRAE . ERLE N ER, RTE_MACHINE At E N native,
BIRE CRIFENTE RSB ENENTE L. BRUEXENELZEER, 21 DPDK JRIEFEHE -

Z i FIntel® C++ FmiF 2y (ico)sh, Mo FI32f, 77 B LT a2 T . FE ., shelllfl A8 & & Hr
SPATHE, HWICABERFE—TMSWEFHIT. WA, BRIZRERIESRNZEES, EATEEARRE .

source /opt/intel/bin/iccvars.sh intel64
source /opt/intel/bin/iccvars.sh 1a32

ETZ B make install T=<target> AR BRI
Fan, R T BicedmiFA Aloahs B AR, BT T iid:

’make install T=x86_64-native-linuxapp-icc ‘

T geeSmiE A A2 0L BFRSCHE, T

’make install T=i686-native-linuxapp-gcc ‘

MR R AR BRI, AT, i, BREXHFREFEEHHRIE, £H nake config

T=<target> ﬁﬁ/%:

make config T=x86_64-native-linuxapp-gcc ‘

6 Chapter 1. Linux*¥& DPDKAT{5F

dpdk, Release 0.11

Warning: E{FEEZ/THINEL, 40 igb_uio, kni, WA S HFR YR 3 AE B AN 3547 9%
. WFEDPDKATE Hbri&k & FAEE, MR RTE_KERNELD IR P20 8K 9 1% 48 A B A8 H Rl L
FRNZRAREIA (X IFRNZRAE) -

B EMEME 2 e, P AT LI EhE] HAREASE B 5%, FRARSE SR Hga 1% - FH P mT LUE i S i build H
K EY.config X DPDKEE EHATIEEL - GXETHZR H 5% defeonfig 31 FA LRI A) -

cd x86_64-native-linuxapp—-gcc
vi .config
make

B4, make cleanfir < AT LUH TMIBR-EMIVE B0, DUERSRSEE . T E i -

1.3.3 Browsing the Installed DPDK Environment Target

—H B UHARAIE, RS TR S AR TR FIDPDKIMERIFTE FE, SRR P An =k 3L
o BEAh, testflitestpmd S AR & Ebuild/app H & T, A LLA TN - 18F — Tkmod H 3K, FAUAIRE
i B N AL R -

1.3.4 JNEHEIR S 5 DPDKIA S E EHIUIOT) fE

ST IDPDK R R, T 2R & 1& MuiolRE MBI S AN ZT - EZEIHEN T, LinnkWZE &
THRER uio_pci_generic BEERAEAT LISE ftuiofE /) « IRIEER AT LLFEF A< 0 %k

sudo modprobe uio_pci_generic

XAF uio_pci_generic , DPDKIME T — 1 vigb_uiofEil (A LAfFkmod H% F#%]) - Al L@ A
AN

sudo modprobe uio
sudo insmod kmod/igb_uio.ko

Note: Xf T — T AZFERGPMAE, FIWEMIIE (VF) &&, LAHEM igb_uio RKEMN

uio_pci_generic TR

FTDPDK 1.7ARAFEMEVEIOSCFFE, Frll, X FZFFVFIORF&, REMNUIO, A LA -

1.3.5 JNEVFIOK

DPDKFE T %P # FHVFIORT, FFEME, viio-pei M.

’sudo modprobe vfio-pci

EE, ZMEMAVFIO, EIL, IREIFE NMA LA FFVFIOINRE - Linux A% M3.6.00U4 2 &5 it — B 6
EVFIORER, B EBAFFAED - ABIEE I AT O LI AR B AFAE -

Hah, ZEFFVEIO, NIZMBIOSHL SRy, HELE M FEHIOR L (W1 Intel® VT-d) -

N T ARIE SRR AU P2 T DPDK A BERS IE R ERTEVEIO, 4N % & IEREAIABR « 3% AT LAE i3 DPDK Y it & fitl
7K (dpdk-setup.sh 3 Frusertools H K H) «

1.3. fFHTFES%3DPDK B #1304 7

dpdk, Release 0.11

1.3.6 L% 1 40 X /M 0 5 B N B 2k THABE R

MMAL.47F 46 . DPDKN. R F AN B o EERFTA M4mO 5 F 2 N IZ RS BRI E R R - HR
), DPDKEFEBITHI, T Z I EM A4 D95 E 2] uio_pci_generic, igb_uio B vfio-pci
B E o AR Linux NAZ AR5 45 1% H TC A9 DPDK PMDAK BT (% A -

Warning: ECAIEOL T, DPDKFTER B N H 3RS E WK 554 1 B5¢ & - DPDKR % A
BT O T S Linux B%, H40E%| uio_pci_generic, igb_uio Bl viio-pci Bk I .

Fivi O MLinux NAZ RS, RIEHPEE| uio_pci_generic, igb_uio B viio-pci iR FALDPDKFA ,
AT LA FH Bl A dpdk_nic _bind.py (fii Tusertools H3x&) o X T HAT DI THAE 2 5 R 5 EM&&E: ORIk
SHE, e e Rk BNENZERPED - LU Z ARG 48 H) — 2585 o 8§ H --help or
——usage WHHHMZA, 7JLRGHEAN ZEMASHEDEE . BEER, ZHEOHE R vioslviiofiF,
TSR MR INE B N, T84T dpdk-devbind. py FHIA -

Warning:

HTVFIOR TAEA X, && G HVFIOZHE HBREIF - K52 HIOMMUA FIThEEFRE R -
FEAR] A R FUL% A& AT LU 5 FI VIO, B 24 A% & sk f e v D 48 € B VFIO, Bl Hp—it
YREFIVFIO, T H Al O RN GEL & BTl E A X sh AR T

WRIRE S AL T PCL-to-PCIHF 2 J5 , WS N & FTEEIOMMU K —ER 4 - (R, HiEiRahie
RIS [fRARRE -

Warning: SR P #R AT LULE Tdpdk-devbind. py Bl A SRS B P44 #2 R A, (E 298 @ A4 & N5
EroothlfR -

BE ARG ETE M4 O AR

./usertools/dpdk-devbind.py —--status

Network devices using DPDK-compatible driver

0000:82:00.0 '"82599EB 10-GbE NIC' drv=uio_pci_generic unused=ixgbe
0000:82:00.1 '"82599EB 10-GbE NIC' drv=uio_pci_generic unused=ixgbe

Network devices using kernel driver

0000:04:00.0 "I350 1-GbE NIC' if=em0 drv=igb unused=uio_pci_generic xActivex
0000:04:00.1 '"I350 1-GbE NIC' if=ethl drv=igb unused=uio_pci_generic
0000:04:00.2 'I350 1-GbE NIC' if=eth2 drv=igb unused=uio_pci_generic
0000:04:00.3 "I350 1-GbE NIC' if=eth3 drv=igb unused=uio_pci_generic

Other network devices

G E 1A ethl,°04:00.1°,] uio_pci_generic MWE:

./usertools/dpdk-devbind.py —--bind=uio_pci_generic 04:00.1

B

8 Chapter 1. Linux*¥& DPDKAT{5F

dpdk, Release 0.11

’./usertools/dpdkfdevbind.py —-bind=uio_pci_generic ethl

WEi&4 82:00.0 FLinux NAZEPE IR

’./usertools/dpdkfdevbind.py ——-bind=ixgbe 82:00.0

1.4 GrFEALa TR SN R

ARESBUNAIAEDPDKENE T i ALE T R FER? - 1898 M N RE P IR 2 -

Note: It FEATHR M RIEH AT LUERBIASRSER - 2% (IR AS DA 2 B Hlid

1.41 wFE—NEBENHEF

— DPDK B FRIME G 7 SE T (00 x86_64-native-linuxapp-gcc), BEEHRF—ITNHEFTTE
FR AR RN kL S0 -

M Linux* 2 X EIMEHRFEN AR, UTEEFRETIESH:
e RTE_SDK - 8[MDPDKZ-%% H 3
* RTE_TARGET - I8 [MDPDK H#REA5% H 3% -

DL 2 8I# helloworld MAREFEAF, %% fEDPDK Linux A3 H32 1T « XA~ SE6 7] DLZE H %
${RTE_SDK} /examples K| .

P E AL main. c SCHE . 4OCHESDPDK F FRERSET H0FELE & BRI, V8R4 F0E 50014 (L DPDKERSE

WNia, NETEFEHPcoreBsh—MAD S AENHEER) - BRIMEH T, 3 SO 7 i Ebuild H %
M.

cd examples/helloworld/
export RTE_SDK=$HOME/DPDK
export RTE_TARGET=x86_64-native-linuxapp—-gcc

make
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

1s build/app
helloworld helloworld.map

Note: 7t LTI TH, helloworld SEfEDPDKHIH A M- H9R, AT LK HAEDPDK H R Z
5b, DMRIEDPDKAIZEIGAAS - RHEIAF] T, helloworld MAREFHEHIEI— MEHAIERT -

export RTE_SDK=/home/user/DPDK

cp —-r $(RTE_SDK) /examples/helloworld my_rte_app
cd my_rte_app/

export RTE_TARGET=x86_64-native-linuxapp—-gcc

make

1.4. wiEMITHE AN HERF 9

dpdk, Release 0.11

CC main.o

LD helloworld

INSTALL-APP helloworld
INSTALL-MAP helloworld.map

1.4.2 2f7— MR B H N AR

Warning: UIOYX 5 fThugepage > I AEFE 712 TR B LT -

Warning: N R0 BEMNG 0, 0 € 2 A @ RN IR B ER L, AnEETy 2% b [20 e /R0 o2
B NAZ L TRIR SR RIBIRE -

N5 DPDK AR ISR R (BEAL) FEAHRER, %R 1 A DPDKEE il i) — 2% -
PAN EEALSR it) — L% 171571 5% -

./rte-app —c COREMASK [-n NUM] [-b <domain:bus:devid.func>] \
[-—socket-mem=MB, ...] [-m MB] [-r NUM] [-v] [--file-prefix] \
[-—proc-type <primary|secondary|auto>] [-—- xen-domO]

IR LR -

s —c COREMASK: ZafTHINZEI T/l . FE, PFEZEmS I aERFE, FEFELHE -
o —n NUM: B IR RN AR ESEE -
e b <domain:bus:devid. func>: WO EZE EHEEALS AT ERMPCIXE -

o ——use-device: UFRHFEERILLRKM%AE . FHIES 5 [domain: bus:devid. func {H, TEE
5 —p FEI—E A -

s ——socket-mem: MWFFE I I hugepage s BLINTT -
-m MB: W17 Mhugepage 7 HL, NEAFEESHEE - A ——socket —mem T HEIX 1M7L -
o —r NUM: NFFELE -
o —v: BB IR S -
s ——huge-dir: fH#hugetlbfsH H 5 -
s ——file-prefix: F Thugepage {44 HIRIZRIAN -
* ——proc—type: ﬁr@%%%%ﬂo
+ ——xen-dom0: X FFfEXen Domain0 3217, {EAEBhugetlbfsHITET -
s ——vmware-tsc-map: i VMware TSC BT A2 A H#HIRDTSC -
s ——base-virtaddr: FEEEABHLE -
« —vfio-intr: EEEMVFIOFEMHFEIRE . ANRASFFVFIO, MALE TR -
HoAf —c ZmfiERy, H oy rhEEcE -

FDPDKR AR b S0 #% B BAnik &, IR N a2 @E NS 1-F e o ENH4 N8
&, FHFEEcore0~3HTBTIEF):

10 Chapter 1. Linux“F& LDPDKA[]$5H

dpdk, Release 0.11

./helloworld -c £ —n 4

Note: 1% ——proc-type fl ——file-prefix A Tia17% "DPDK#HE - 155 A “L£ N ARRFLH)” =47
J¢ DPDK JRT2FE R SREUCHE Z 4077

B2 - FH 32 # Core

X FDPDKM FHFEFF, coremaskZ IR L2 WY « RS B4R L 4 N T Linux# 4t)32 #core ID. HT
X LB core MRS, DARAMITZENUMATGRE b B ST al RER P S5, R BRSSO T 5
HJcoremaksk, #LEE FEEF 5 Hcoreffi) -

TEDPDKEE F WG L EALIZE , ¥ TR ZAF FH 1938 Hcore L H A M7 & - 7] LLE N 3EH /proc/cpuinfo
AERIRI ARG LT E core B B - FIAIHUT cat /proc/cpuinfo. Fl| K Hphysical id B R REFE
FICPUTHFE -« YU {HH T HMANFERS R T 2 B core B fl T AURLSTET, X LL(F BIREH -

Note: 7] LU B — 1 Linux L& 1stopo HRIKHGE Hcorefi HHIEEALE B - #EFedora Linux_ b, 7] DLiE i
WA LR TE:

sudo yum install hwloc
./1lstopo

Warning: 2 core7E N [F FIFE IR _EFTREANE, 76N PR 15 FH coremaks B 75 22581 € -

N #2715 F I Hugepage N 77

2nAT MR R, BRI F Shugepage B UM £ — 2L - G0FLBITHIEH —m 8l ——socket-mem
ZHe N, IXHDPDKLE R FAE R s B Eh5ERK -

WHRIEIT BoRE AN —m Bl ——socket-mem 1B, HEFERMNERL T1ZME, MABFERITRE . HE,
W P E SR BINF/N T 78 Flhugepage-memory, N HATEFH SR, FEAIR L MFH T —m LA
H 2, % RS EEMEOMEM FE1024 M FIEE F2MBTUE , WS AH FiEsk128 MBRIINTE, Al REfEE64 D
TR & BRIV
o N1 H BE7E 3 18 1 ¥fhugepage-memory# 2 it 25 N FHFE 7 - EX MBI T, WHR N HEF 2 0
NGO NS, Bl WringB FH N AE M, AR 4B BT R R T B X A R, B
——socket-mem EIEAL —m HEI -
o XEETE AT REN TY BN REENME , REDPDK EALY i AE BN TR R BRI 7R, (R
TA A BERANESL R - ZEXMIER T, NABFLEST RN -
15 F socket-memi%E 11] LA A RF & BT 18 8 KA B R/ANONE - B Rt ——socket—mem Fr& A1 1S
FENFEECE RSN, W ——socket-mem=0, 512 F TR EFESI2MBINE - KLU, 49
MRS LE, R RGEERBEOMN2 LS ECIGBN, MR LA H S %L ‘—socket-mem=1024,0,1024“ S5CHL . 40
RDPDKTCIAEE T _E 2 BC BRI NAE, IBEALWIHA L R -

1.4.3 HARFIFREF

HAl) — LEIR 2 7 1 & 7ES (RTE_SDK Yexamples H 3K T o X BRI 5 AT LA FH 5 M Bif 1 508 73 Bk)

1.4. wiEMITHE AN HERF 11

dpdk, Release 0.11

FERTEIEIT - A5, BZH DPDKOREIREF R85 T RN AR HORnA - e AT i B4R Bl
DA B A e

1.4.4 KR
AN, TR 7 I R R AL B R B o X ERYE ST F DPDK/app EE T, #5 HFtestlltestpmd B2 -
AIFEFE Y J5, AT LAZEbuild B 3 E) .

o testFRF N DPDK)4 P Th L2 M B AR i) it -

o testpmdFEFHR ML TR ZANFEEIR AR, F140, 7EIntel® 82599 10 Gigabit Ethernet Controller™?
4N A1 {5 A Flow Director -

1.5 5 HMTnThae
1.5.1 BIFEFHER 2 (HPET) IRE

BIOS X #F

ZE FHHPETTh RERT , W SE7EF GBIOS R /3 miAg B E I s - A&, ERIAME 00 71 4 A Bsf [B0 £ s
(TSC) - EHEOH T, YL F2 7] LLUFRIBIOS - 285 A 7 Al LS AL EIHPETL Y - 7ECrystal Forest™F
ABIOS I, #127: Advanced -> PCH-IO Configuration -> High Precision Timer -> ({1752, ¥fDisabled
MM Enabled) -

FEOEEI ARG L, FTRMER LN i & AR EHPETR &5 H

grep hpet /proc/timer_list

WREEZE, MLAHEBIOSH E FHHPET, (EEREH B ESh R Y0 -

Linux N FF

DPDKiH i3 % B 25 71 2 s WA B AR Hhdik 2 [R5 (3 1 -F 5 WIHPETZORE, b, ZIRJTE spET_MMAP R
GUNAZBCE I -

Warning: 7EFedorasf# H A H W FILinux ZfThRA (WUbuntw) 7, BAAASE A HPET_MMAP 1870 -
EEFRWES IR, 155 AT IR K150 -

DPDK H{# & HPET

2L ¥ &% N , DPDKEL & X f# # 2 % FHPETH 8 9 - % {f HHPET, F ZE ¥
CONFIG_RTE_LIBEAL_USE_HPET X &N v KITBHIF-

X FACLEfEF rte_get_hpet_cycles() X rte_get_hpet_hz () APHEORMNFHREF, FHEF
THPETYE Hrte_timerZE FIECIART B0, fFZAEWIEILA A rte_eal hpet_init () API. X1 APIW
FRFARUEHPET R A, G0SRHPET /A AT H@FI 4N, WA%%E /8 HPET_MMAP {H8E), A% iR | — 5 iR
8- WARHPETAEZATINGANFT A, N AR AT A5 (8 AR BOCE A F5 756 -

12 Chapter 1. Linux“F& LDPDKA[]$5H

dpdk, Release 0.11

Note: xR L R B B € B SSAPL, T N RHPETE Y Sf O MR P, @A
rte_get_timer_cycles () fl rte_get_timer_hz () APIVF, M AZHPET API. iXY:iE A AJAPIHE
ATSCHHPETH #JF, B AREH RN EGR T N F 2 SV A <‘rte_eal_hpet_init() “#HG1L, LLIGEITH &
45 & a] s

1.5.2 %HRoott FR1E . i1 DPDKR. 2T

S IRDPDK R RS B T 9 480 O S A AR BE R, (EDE I 2/ MORUR S, 7T LL A i BRrooti R
O P TR N AR - 9 T RIEE B A Linux F PR DUZATIX SRR 7R Z AN T Linux U1
RYRFR:

» 15 H ThugepagetE# S SR E S, W /mnt /huge
o /dev FHIUIO® A M, 41 /dev/uio0, /dev/uiol %&
« UIORGEC B, 40 uioo:

/sys/class/uio/uio0/device/config
/sys/class/uio/uio0/device/resourcex

« WRFEMHEMHPET, FL2 /dev/hpet HFHEE

Note: 7EHLLinux %4+, /dev/hugepages tHEENIA B E# hugepage £33 IS A -

1.5.3 HIREHATTEETIEE

5 24 FHDPDKHY L5 5 H DI B8, 2 J0 £ °F & BIOSH! J5 A 14 72 HIntel SpeedStep@ Technology - 7+
My, sysX kT /sys/dev1ces/system/cpu/cpuo /cpufreq FFANTELE, ABEMHE TCPUMZE K
PUREHE . i AR HIBIOS SCRY U 2 AT X i

flan, 7EHLIntelZ%F & L, FF/5Enhanced Intel SpeedStep® Technology 12

Advanced
-> Processor Configuration
—-> Enhanced Intel SpeedStep® Tech

AN, C3 1 Co ROIZAFRE ISCFFFRIRE T . C3 1 Co FIAL & BAZ N

Advanced
—> Processor Configuration
—-> Processor C3 Advanced
—-> Processor Configuration
—-> Processor C6

1.5.4 f§iH] Linux Core B& &R LT X #

S IRDPDK N F A2 7 FH A £ A2 [2 72 R U A2 B b (HLinux i B2 AR 57 8 7] AFE X 26 4% Eim 17 HoA
S5 - N T PR EE T RSN TAE M E, FTLUFEM isolcpus Linux WS HOREH 58 H
A Linux i SR Fr BB B Tk -

fFltn, wRDPDKI AT EZEZ2, 4, 6 LiafT, NCRINNARMEINZSEE .

1.5. 5 HKHnzh&e 13

dpdk, Release 0.11

isolcpus=2,4,6

1.5.5 jn# DPDK KNI A% &R

FZ1TDPDK Kernel NIC Interface (KNI) N 2T, F5 2R — PRI N AZAE S (knitEEH) I E BN ZH - 1%
RN FDPDK H kkmod T HFXH - 5 igb_uio BHINEEML, (Ri%YFTH FmtZDPDK H¥):

insmod kmod/rte_kni.ko

Note: HHKXAIFEMFEE, FILAZH “Kernel NIC Interface Sample Application” & 11/l DPDK 7~FITESF F 7 #5
.

—

1.5.6 Linux IOMMU Pass-Throughf#HIntel® VT-d;z1TDPDK

FELinux N H B Aintel® VI-d, WABCE —RINANGED, ALFE:
e TOMMU_SUPPORT
e TOMMU_APT
e INTEL_TIOMMU

AN, FEF FHIntel® VI-diZ4T7DPDK, 1 igb_uio MWENITLAIER iommu=pt 8- XFEEFNATLLE
A DMAE BT B . Ao, EAET GRS INTEL_TOMMU_DEFAULT_ON £:%%, B4 thh4ifH
A intel_iommu=on . iXA] IR Intel IOMMU #IEF WAL, -

HER, X igb_uio MENEF, #MH iommu = pt B/ide . viio-pci MENEEFSKFF L AT AR {5

M iommu = pt Ml iommu = on -

1.5.7 40G NIC - FI/Na b3 = P fE
B T 76 B A R AT B A T AR B E 18, TR G R 0 47 B e B 3 LUK B 5 M R . R

Intel’s Network Division TFEITHK R LLHIT B H -] LS EDPDKIRA & 17U B, DL i40e JX5)
FE P BINICH) B 48 E [E A hRUA

i F16B R/ NIRXIH IR FF

HI T i40e PMD SZH#F16BAI32BAIRXIHIAST , 1 16B A/ NEIFH A FF 7] LA B /NS e R itk g, BRIt
B CONFIG_RTE_LIBRTE_T40E_16BYTE_RX_DESC M 1# F16B K/ INHEHALT o

oo P RE AN BRI B SR AN

HFEERT, B E0EaHRTT R S E T ENICNER R WG 5 - R A0 E/NaIBE AT AR SR 1Al i il &
S AEF) CONFIG_RTE_LIBRTE_I40E_ITR_INTERVAL T85E - EREWIAGE, EEZECE A LIEHHF
BATHAEE, XEGRTHPROMNE, BAREREmEESEIE LR -

14 Chapter 1. Linux*¥#& L DPDKA[1#5r

dpdk, Release 0.11

1.6 {3 FH VA PRty 3

usertools H 3k H1 f¥)dpdk-setup.shfi s, [\ A A FEHE T ST £S5 ThRE:
« MJ#DPDKJ%E
* IN#/EEDPDK IGB_UIOMAZ 53R
o INE/EEVFION LR
« JN#/#E EDPDK KNI IZIE R
o GIE/MERNUMA 5% non-NUMAF & fhugepages
o BE ML RS TI RS 45 DPDK B FH AR (58 A s 1
« B E JErootH P A VEIOFIA R
* i&fTtestHtestpmd N FHFE T
» &&meminfo ! 'lhugepages
« JIHTE /mnt /huge Ffhugepages
« JHBRMA & FIDPDKZE

fFEA—ANEALHFR, —H5EA T X BT, H] DR B © R AEEALZE F & 12 10 N 2 7 1 g1
#DPDK I -

1.6.1 JIZRAHL

dpdk-setup.shifi A7E 2 58 _E AR R P H#ZIRFFHITE — R IID TR . B PRER A T F 2RIk e S H P 5%
REFTRRHIESS o LUN BN P ERATE B4

Step 1: Build DPDK Libraries

BITUG, P AL 7045 € tagert 28 2 DU 4 i3 IE B 1A/

WA TR R R AE TR, FHP LA Z BT 2 TR R - R . BRI ds -

Step 2: Setup Environment

F P #F 2 AL E Linux* A5 LUSCRFDPDK N AR FFHYIZTT - AT LLAINUMA Biinon-NUMA %4t 43 Bt Hugepages -
FEAT R R B 217 7E Fhugepages R B M B - 7] DAZE P B A 4 A 75 FDPDK N AZ B S, B AT DURE) 4%
ity 40 € B AR BEDPDK A

Step 3: Run an Application

— BT T HMBER, HP B LS TestReF - ZFEFF VFH 7 VDPDKIZ 1T — RSN Zh eI . AT iz
17 SCRPEE LR ORT &5) testpmd RE 7 «

Step 4: Examining the System

WP TR T — L TR B Hugepage MU IR SR T A -
Step 5: System Cleanup

e —H BE R RGIE B FE RS -

1.6. 15 FH R AS Podi A 15

dpdk, Release 0.11

1.6.2 Use Cases

PLF /215 F dpdk-setup.sh I 7= 1] o FHIAS B71% {% F source i 21517 -

PR EEERIN -

REIAS A B 0 TR AR SRR 1 2 Wi S

Warning: /i Sroot 41221 Tdpdk-setup.sh -

source usertools/dpdk-setup.sh

Step 1: Select the DPDK environment to build

[1] i686-native-linuxapp-gcc

[2] i686-native-linuxapp-icc

[3] ppc_64-power8-linuxapp—-gcc
[4] x86_64-native-bsdapp-clang
[5] x86_64-native-bsdapp-gcc

[6] x86_64-native-linuxapp-clang
[7] x86_64-native-linuxapp—-gcc

[8] x86_64-native-linuxapp-icc

Step 2: Setup linuxapp environment

[11] Insert IGB UIO module

[12] Insert VFIO module

[13] Insert KNI module

[14] Setup hugepage mappings for non-NUMA systems
[15] Setup hugepage mappings for NUMA systems
[16] Display current Ethernet device settings
[17] Bind Ethernet device to IGB UIO module

[18] Bind Ethernet device to VFIO module

16

Chapter 1. Linux*¥& DPDKA1$5E

dpdk, Release 0.11

[19] Setup VFIO permissions

Step 3: Run test application for linuxapp environment
[20] Run test application (SRTE_TARGET/app/test)
[21] Run testpmd application in interactive mode ($SRTE_TARGET/app/testpmd)

Step 4: Other tools

Step 5: Uninstall and system cleanup
[23] Uninstall all targets

[24] Unbind NICs from IGB UIO driver
[25] Remove IGB UIO module

[26] Remove VFIO module

[27] Remove KNI module

[28] Remove hugepage mappings

[29] Exit Script

Option:
DU IETER T “x86_64-native-linuxapp-gec™ DPDKJZ [(] % o

Option: 9

Installing x86_64-native-linuxapp—-gcc

Configuration done
== Build 1lib

Build complete
RTE_TARGET exported as x86_64-native-linuxapp—-gcc

DU 3557 H T2 1/DPDK UIOYRBHAEF -

1.6. A BIARE 2

17

dpdk, Release 0.11

Option: 25

Unloading any existing DPDK UIO module
Loading DPDK UIO module

DU ETE R T ZENUMA R 58 0 B hugepage - 75 T node 73 BL 10241 2MBR T - N AET RIZ A -m
4096 K53, DUEDIREX A NE RIS . @R EE -m k3, W 3305860 -

Note: IR EoR3R7R AMBRIGES SO0, BRIy -

Option: 15

Removing currently reserved hugepages

mounting /mnt/huge and removing directory

Input the number of 2MB pages for each node

Example: to have 128MB of hugepages available per node,
enter '64' to reserve 64 x 2MB pages on each node
Number of pages for nodeO: 1024

Number of pages for nodel: 1024

Reserving hugepages

Creating /mnt/huge and mounting as hugetlbfs

LUN BRI T B shilli R AR LUIAE B core BI2FT

Option: 20

Enter hex bitmask of cores to execute test app on
Example: to execute app on cores 0 to 7, enter Oxff
bitmask: 0x01

Launching app

EAL: coremask set to 1

EAL: Detected lcore 0 on socket 0

EAL: Master core 0 is ready (tid=1b2ad720)
RTE>>

1.6.3 NHEF

— B H 217 dpdk-setup.shifl 7, 3 T BAMEFHF HIXE T hugepages, P B A] DIKEEAGEALZTT H T
(N PR P B RS 2 HE A 7R 1) -

fexamples H 3K FIEMEFIRFIFEF N T EDPDKIR M TRIFAE A - LR 74 7R T helloworld S FH AR 7 FIE
HBAEIT AR . ER42.17, N R A ECore iR, HiEEEH T N T Mcoremask s, T E
TEF B 12 Hcore AT JF -

cd helloworld/
make
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

sudo ./build/app/helloworld -c Oxf -n 3
[sudo] password for rte:

18 Chapter 1. Linux“F-& -DPDKA[1#5/

dpdk, Release 0.11

EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
EAL:
hello
hello
hello
hello

set to £
lcore 0
lcore 1

coremask
Detected
Detected
Detected lcore 2 as
Detected lcore 3 as
Setting up hugepage
Ask a virtual area
Virtual area found
Ask a virtual area
Virtual area found
Ask a virtual area
Virtual area found
Ask a virtual area
Virtual area found
Ask a virtual area
Virtual area found
Ask a virtual area
Virtual area found
Ask a virtual area
Virtual area found
Ask a virtual area
Virtual area found
Ask a virtual area
Virtual area found
Ask a virtual area
Virtual area found
Ask a virtual area
Virtual area found
Ask a virtual area
Virtual area found
Ask a virtual area
Virtual area found
Ask a virtual area
Virtual area found
Requesting 1024 pag

as
as

core
core
core
core 1

socket
socket
socket
socket

on
on
on
on

= O O

memory. .

of
at
of
at
of
at
of
at
of
at
of
at
of
at
of
at
of
at
of
at
of
at
of
at
of
at
of
at
es

Requesting 1024 pages

Master
Core 1
Core 3
Core 2
from
from
from
from

is ready
is ready
is ready
core 1
core 2
core 3
core O

core 0 is ready

0x200000 bytes
0x7£0add800000

= o~ o

(size

0x3d400000 bytes

0x7£0aa0200000
0x400000 bytes
0x7£0a9£c00000
0x400000 bytes
0x7£0a9£600000
0x400000 bytes
0x7£0a9£000000
0x800000 bytes
0x7£0a9e600000
0x800000 bytes
0x7£0a9dc00000
0x400000 bytes
0x7£0a9d600000
0x400000 bytes
0x7£0a9d000000
0x400000 bytes
0x7£0a9ca00000
0x200000 bytes
0x7£0a9c600000
0x200000 bytes
0x7£0a9c200000

(size

(size

(size

(size

(size

(size

(size

(size

(size

(size

(size

0x3£fc00000 bytes

0x7£0a5c400000
0x200000 bytes
0x7£0a5c000000

(size

(size

0x200000)

0x3d400000)

0x400000)

0x400000)

0x400000)

0x800000)

0x800000)

0x400000)

0x400000)

0x400000)

0x200000)

0x200000)

0x3£c00000)

0x200000)

of size 2MB from socket 0
of size 2MB from socket 1

(tid=de25b700)
(tid=5b7£e700)
(tid=5a7£c700)
(tid=5af£d700)

1.7 R Entel & £ W R s A8

A — D EAR AT Intel ¥ & L5247 DPDKAE FF UREUE EEMERE -

1.71

N T RS R AEERE, 15 FIntel Xeon W fiRk55 %8 RYL, Wlvy Bridge, HaswellEL 5 SARUA -

1.7. AR EIntel & & W+ BB AEERE

19

dpdk, Release 0.11

?ﬁﬂ%”{{%ﬁﬂﬁiﬁiﬁi&ﬁk—ﬁ\mﬁDlMM, BANFEERANFRNEDHAGB - Note: XM HEREHERE
RN -

Al LB IS dmidecode RAGE NAFOLE:

dmidecode -t memory | grep Locator

Locator: DIMM_Al
Bank Locator: NODE 1
Locator: DIMM_A2
Bank Locator: NODE 1
Locator: DIMM_BI1
Bank Locator: NODE 1
Locator: DIMM_B2
Bank Locator: NODE 1

Locator: DIMM G1
Bank Locator: NODE 2
Locator: DIMM_G2
Bank Locator: NODE 2
Locator: DIMM_H1
Bank Locator: NODE 2
Locator: DIMM_H2
Bank Locator: NODE 2

EERRGE R E8 MEE, WA B a, BMEEEE2TDIMM -
IRBATLAEF dmidecode i E N ESTH:

dmidecode -t memory | grep Speed

Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
Configured Clock Speed: Unknown
Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown

Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
Configured Clock Speed: Unknown
Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
Configured Clock Speed: Unknown

iﬁ‘ﬁﬁﬁﬂ?zms MHz (DDR4) FIRF] (RFEFE) HBEE . X55ERTME L —5, RS MEERE —F
"

MR K

[

i/l DPDK supported <http://dpdk.org/doc/nics> iR EHNIC, UIntel XL710 40GbE -
TR EEA R 2 A BT BT AR AR FIN VMY [E 4

{# FIPCle Gen3 i, 1 Gen3 x8 Hi#% Gen3 x16 , FEI%yPCle Gen2 IR AERLE x 10GbERLH B 4 5 -
AT LU 1spei fird Rt B PCIHEIE 1 K

20 Chapter 1. Linux“F& LDPDKA[]$5H

dpdk, Release 0.11

lspci -s 03:00.1 -vv | grep LnkSta

LnkSta: Speed 8GT/s, Width x8, TrErr— Train- SlotClk+ DLActive- ...
LnkSta2: Current De-emphasis Level: -6dB, EqualizationComplete+ ...

2FNICHE APCIHEER), TESERREREL, W CPUO 8L CPUL, LUIFE/RIEHZAITETE -

Rl ROZERENUMA, AR AR MR A2 B8 Zhm 0, S RX LENICE R — N CPURRE L, N
WP IR T AT E X — A

BIOS K&

IR 2K TBIOSHE M —EEI - AEIFERRESAANRKAZT, B UHTS%:
1. A, EE R FTEBIOS E N ENIME

BT A BT, AR REMEREVEEE . CPU P-State, CPU C3 Report and CPU C6 Report -

1767 Performance 12 CPU LI M 1% HESRHE

2% F Turbo Boost LA CR 1 RELE T & PR AZ B B 3G b 3 b

R NFFAR R = 7] FHRU(E, NOT auto -

L MEANICH Y ERDIRERT, ZEH A BIREFMET, AR ZEHVEFIO, 15T vT-d if you wants to use
VFIO.

SAE I

Linux3| §:3%57

PAR 2 GRUB & Bhde 1 i — LE 3 i il & :
1. fFFERIARD grub ST E L 5
2. jEt grubfit & PR EE 1G ' hugepage - 40, FREES 1N 1GA /NPT :

’default_hugepageszzlG hugepagesz=1G hugepages=8

3. FEE¥ FHTDPDKHAICPU core. U

isolcpus=2,3,4,5,6,7,8

4. R ZEMFFHVFIO, 15 H LIRS EgrubZ4L:

iommu=pt intel_iommu=on

1.7.2 izfTDPDKH B &

1.t BAr3CHE, T hugepage - SR & Linux M55 Hugepages ik -
PUF i & h B 72

Build DPDK target.
cd dpdk_folder
make install T=x86_64-native-linuxapp-gcc —j

Get the hugepage size.
awk '/Hugepagesize/ {print $2}' /proc/meminfo

1.7. AR EIntel & & W+ BB AEERE 21

dpdk, Release 0.11

Get the total huge page numbers.
awk '/HugePages_Total/ {print $2} ' /proc/meminfo

Unmount the hugepages.
umount ‘awk '/hugetlbfs/ {print $2}' /proc/mounts’

Create the hugepage mount folder.
mkdir -p /mnt/huge

Mount to the specific folder.
mount -t hugetlbfs nodev /mnt/huge

2. @4 cpu_layout R ECPUF:

cd dpdk_folder

usertools/cpu_layout.py

HEIBIT 1s cpu Ko BE® T _EWcore -
3. KR ENIC IDAEEID:

FIHPTE M ERIpcT Il K& & ID.

lspci -nn | grep Eth

Bilan, BEIREEALT:

82:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
82:00.1 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.1 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]

FMIPCI% #5 FH R ERFINUMA T i

cat /sys/bus/pci/devices/0000\:xx\:00.x/numa_node

BEHEH, 0x:00.x F/REEIEO, M 8x:00.x F/RETIM. Note: N T iEEEMRE, HR
WEcore FINICHL F [A] —HE M/ « 7£ L AIH FH 85:00.0 ZETHETEL, DRI 00 9% 1 FE 1 L Acorefif
HA ek e s EERE -

4. ¥ O 40 5E FIDPDKH A KR sh A2 P, higb_uio - FIUN, B 13 1 45 5E 3§ 2 DPDK H) 3R 5 2
FHREEIRE:

WEMIE 82:00.0 A 85:00.0 FIDPDKIKEHN
./dpdk_folder/usertools/dpdk—-devbind.py -b igb_uio 82:00.0 85:00.0

RN OISR
./dpdk_folder/usertools/dpdk-devbind.py -—-status

BT dpdk-devbind.py —--help DIRECEZE R,
HXDPDKIX EFLinux W KINEZ(EE, 1§ #HIRIE % EDPDK HFR LT -

1.7.3 WK RAEMERESL B2 1

PUR &i217DPDK 13 fwd 2 H KRB EAEERERIF] T - 5 Intel ARSSF & Flintel XL710 NICs - EARA140G

22 Chapter 1. Linux“F& LDPDKA[]$5H

dpdk, Release 0.11

NICHL & 1E 2 [1i40e NICTS 4 -
A5y 5o i@ P 1 Intel XL710 40GbES N AREUERLIERE - 165 Fig. 1.1 TGRS E -

Traffic Generator

Flow 1

Dest MAC: Port O
Dest TP: 2.1.1.1

Src IP: Random 40C Ethernet

Intel XL 710 || 71p platform
(Socket 1)

Forwarding
Flow 2 Port 0 to Port 1
Dest MAC: Port 1 Port 1 to Port O

Elest IP: 1.1.1.1 Intel XL 710
Src IP: Random 406 Bthernet

Fig. 1.1: PEREMNAFE &

. B MIntel XL710 NICIIMEF &, HEREN R — 1o D oRR G RAEMRE - AW NICHIRE 2
T ARPCle Gen3fIFR A, BN EAGERMESOGH T8 o TP 140GHG 1, {EP N [EIPCle Gen3 x87
FERT L. 1E2% PR GINICH , SREFATAT L% 82:00.0 K& 85:00. 0 FER M-

82:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]

2. FROEEEHTIN, WTRENL, BITEERNTINLE .

. R MPCL% & Mnuma™i &, I R BGZ 36 fid - Hcore. FEARFIA, 82:00.0 Fl 85:00.0 #H AT
1L, #6181 L core id18-35 F1 54-71 - Note: INELLE [— 1 core LI 1~ B HZ (e.g core18 HH
B corel8 and core54), &1 H ARl core KR B HEAZ -

4. B 8 5E Elligh_uio -

- XFFXL710 40G ¥, Bl 177 Z =DM DS IR EIMEAEIERE, Bl E im0 fFZMW BRI, DB
R B R BICPUN R Bl 2 A B 6L -

6. {f FIDPDK/RFIFEF 13£wd MR REMI, W01 D A7 X B 4, A BOA Blpm g% 1% 13 fwa

sample o

7. BATI3fWdR A 2R PR

./13fwd -c¢ 0x3c0000 -n 4 -w 82:00.0 -w 85:00.0 \
-- -p 0x3 --config '(0,0,18),(0,1,19),(1,0,20),(1,1,21)"

1.7.

W R BIntel - & 1 P K i B A1 AE 23

dpdk, Release 0.11

A RN AT HEA (corel8, portd, PAFI0) ., (corel9, portd, PAFI1) , (core20, portl, PA
#10) , (corel8, portl, FAFI1) -

8. MEITHRILATAE
o QIR
o W ER LI HEthernet 1T type to 0x0800 «

24 Chapter 1. Linux*¥#& L DPDKA[1#5r

CHAPTER 2

Getting Started Guide for FreeBSD

2.1 Introduction

This document contains instructions for installing and configuring the Data Plane Development Kit (DPDK) software.
It is designed to get customers up and running quickly and describes how to compile and run a DPDK application in a
FreeBSD application (bsdapp) environment, without going deeply into detail.

For a comprehensive guide to installing and using FreeBSD, the following handbook is available from the FreeBSD
Documentation Project: FreeBSD Handbook.

Note: The DPDK is now available as part of the FreeBSD ports collection. Installing via the ports collection
infrastructure is now the recommended way to install the DPDK on FreeBSD, and is documented in the next chapter,
Installing DPDK from the Ports Collection.

2.1.1 Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

* Release Notes : Provides release-specific information, including supported features, limitations, fixed issues,
known issues and so on. Also, provides the answers to frequently asked questions in FAQ format.

* Getting Started Guide (this document): Describes how to install and configure the DPDK; designed to get
users up and running quickly with the software.

* Programmer’s Guide: Describes:

— The software architecture and how to use it (through examples), specifically in a Linux* application (lin-
uxapp) environment

— The content of the DPDK, the build system (including the commands that can be used in the root DPDK
Makefile to build the development kit and an application) and guidelines for porting an application

— Optimizations used in the software and those that should be considered for new development

25

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html

dpdk, Release 0.11

A glossary of terms is also provided.

¢ API Reference: Provides detailed information about DPDK functions, data structures and other programming
constructs.

» Sample Applications User Guide: Describes a set of sample applications. Each chapter describes a sample
application that showcases specific functionality and provides instructions on how to compile, run and use the
sample application.

2.2 Installing DPDK from the Ports Collection

The easiest way to get up and running with the DPDK on FreeBSD is to install it from the ports collection. Details of
getting and using the ports collection are documented in the FreeBSD Handbook.

Note: Testing has been performed using FreeBSD 10.0-RELEASE (x86_64) and requires the installation of the kernel
sources, which should be included during the installation of FreeBSD.

2.2.1 Installing the DPDK FreeBSD Port

On a system with the ports collection installed in /usr/ports, the DPDK can be installed using the commands:

cd /usr/ports/net/dpdk

make install

After the installation of the DPDK port, instructions will be printed on how to install the kernel modules required
to use the DPDK. A more complete version of these instructions can be found in the sections Loading the DPDK
contigmem Module and Loading the DPDK nic_uio Module. Normally, lines like those below would be added to the
file /boot/loader.conf.

Reserve 2 x 1G blocks of contiguous memory using contigmem driver:
hw.contigmem.num_buffers=2

hw.contigmem.buffer size=1073741824

contigmem_load="YES"

Identify NIC devices for DPDK apps to use and load nic_uio driver:
hw.nic_uio.bdfs="2:0:0,2:0:1"
nic_uio_load="YES"

2.2.2 Compiling and Running the Example Applications

When the DPDK has been installed from the ports collection it installs its example applications in /usr/local/
share/dpdk/examples - also accessible via symlink as /usr/local/share/examples/dpdk. These ex-
amples can be compiled and run as described in Compiling and Running Sample Applications. In this case, the required
environmental variables should be set as below:

* RTE_SDK=/usr/local/share/dpdk

* RTE_TARGET=x86_64-native-bsdapp-clang

26 Chapter 2. Getting Started Guide for FreeBSD

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html

dpdk, Release 0.11

Note: To install a copy of the DPDK compiled using gcc, please download the official DPDK package from http:
//dpdk.org/ and install manually using the instructions given in the next chapter, Compiling the DPDK Target from

Source

An example application can therefore be copied to a user’s home directory and compiled and run as below:

export RTE_SDK=/usr/local/share/dpdk

export RTE_TARGET=x86_64-native-bsdapp-clang

cp -r /usr/local/share/dpdk/examples/helloworld
cd helloworld/

gmake
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

sudo ./build/helloworld -1 0-3 -n 2

EAL: Contigmem driver has 2 buffers, each of size 1GB

EAL: Sysctl reports 8 cpus

EAL: Detected lcore 0

EAL: Detected lcore

EAL: Detected lcore

EAL: Detected lcore

EAL: Support maximum 64 logical core(s) by configuration.

EAL: Detected 4 lcore(s)

EAL: Setting up physically contiguous memory...

EAL: Mapped memory segment 1 @ 0x802400000: len 1073741824

EAL: Mapped memory segment 2 @ 0x842400000: len 1073741824

EAL: WARNING: clock_gettime cannot use CLOCK_MONOTONIC_RAW and HPET
is not available - clock timings may be less accurate.

EAL: TSC frequency is ~3569023 KHz

EAL: PCI scan found 24 devices

EAL: Master core 0 is ready (tid=0x802006400)

EAL: Core 1 is ready (tid=0x802006800)

EAL: Core 3 is ready (tid=0x802007000)

EAL: Core 2 is ready (tid=0x802006c00)

EAL: PCI device 0000:01:00.0 on NUMA socket 0

w N -

EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x80074a000
EAL: PCI memory mapped at 0x8007ca000
EAL: PCI device 0000:01:00.1 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x8007ce000
EAL: PCI memory mapped at 0x80084e000
EAL: PCI device 0000:02:00.0 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x800852000
EAL: PCI memory mapped at 0x8008d2000
EAL: PCI device 0000:02:00.1 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x801b3f000
EAL: PCI memory mapped at 0x8008d6000

2.2. Installing DPDK from the Ports Collection

27

http://dpdk.org/
http://dpdk.org/

dpdk, Release 0.11

hello from core
hello from core
hello from core
hello from core

O W N

Note: To run a DPDK process as a non-root user, adjust the permissions on the /dev/contigmemand /dev/uio
device nodes as described in section Running DPDK Applications Without Root Privileges

Note: For an explanation of the command-line parameters that can be passed to an DPDK application, see section
Running a Sample Application.

2.3 Compiling the DPDK Target from Source

2.3.1 System Requirements

The DPDK and its applications require the GNU make system (gmake) to build on FreeBSD. Optionally, gcc may also
be used in place of clang to build the DPDK, in which case it too must be installed prior to compiling the DPDK. The
installation of these tools is covered in this section.

Compiling the DPDK requires the FreeBSD kernel sources, which should be included during the installation of
FreeBSD on the development platform. The DPDK also requires the use of FreeBSD ports to compile and function.

To use the FreeBSD ports system, it is required to update and extract the FreeBSD ports tree by issuing the following
commands:

portsnap fetch
portsnap extract

If the environment requires proxies for external communication, these can be set using:

setenv http_proxy <my_proxy_host>:<port>
setenv ftp_proxy <my_proxy_host>:<port>

The FreeBSD ports below need to be installed prior to building the DPDK. In general these can be installed using the
following set of commands:

cd /usr/ports/<port_location>
make config-recursive
make install

make clean

Each port location can be found using:

whereis <port_name>

The ports required and their locations are as follows:

e dialogdports: /usr/ports/ports-mgmt/dialogdports

28 Chapter 2. Getting Started Guide for FreeBSD

dpdk, Release 0.11

* GNU make(gmake): /usr/ports/devel/gmake
e coreutils: /usr/ports/sysutils/coreutils
For compiling and using the DPDK with gcc, the compiler must be installed from the ports collection:

e gcc: version 4.9 is recommended /usr/ports/lang/gcc49. Ensure that CPU_OPTS is selected (default
is OFF).

When running the make config-recursive command, a dialog may be presented to the user. For the installation of the
DPDK, the default options were used.

Note: To avoid multiple dialogs being presented to the user during make install, it is advisable before running the
make install command to re-run the make config-recursive command until no more dialogs are seen.

2.3.2 Install the DPDK and Browse Sources

First, uncompress the archive and move to the DPDK source directory:

unzip DPDK-<version>.zip
cd DPDK-<version>

The DPDK is composed of several directories:
* lib: Source code of DPDK libraries
¢ app: Source code of DPDK applications (automatic tests)
» examples: Source code of DPDK applications

* config, buildtools, mk: Framework-related makefiles, scripts and configuration

2.3.3 Installation of the DPDK Target Environments

The format of a DPDK target is:

ARCH-MACHINE-EXECENV-TOOLCHAIN

Where:
e ARCHis: x86_64
e MACHINE is: native
* EXECENV is: bsdapp
e TOOLCHAINIS: gcclclang

The configuration files for the DPDK targets can be found in the DPDK/config directory in the form of:

defconfig ARCH-MACHINE-EXECENV-TOOLCHAIN

Note: Configuration files are provided with the RTE_MACHINE optimization level set. Within the configuration
files, the RTE_MACHINE configuration value is set to native, which means that the compiled software is tuned for the
platform on which it is built. For more information on this setting, and its possible values, see the DPDK Programmers
Guide.

2.3. Compiling the DPDK Target from Source 29

dpdk, Release 0.11

To make the target, use gmake install T=<target>.

For example to compile for FreeBSD use:

gmake install T=x86_64-native-bsdapp-clang

Note: If the compiler binary to be used does not correspond to that given in the TOOLCHAIN part of the target, the
compiler command may need to be explicitly specified. For example, if compiling for gcc, where the gcc binary is
called gcc4.9, the command would need to be gmake install T=<target> CC=gcc4d.9.

2.3.4 Browsing the Installed DPDK Environment Target

Once a target is created, it contains all the libraries and header files for the DPDK environment that are required to
build customer applications. In addition, the test and testpmd applications are built under the build/app directory,
which may be used for testing. A kmod directory is also present that contains the kernel modules to install.

2.3.5 Loading the DPDK contigmem Module

To run a DPDK application, physically contiguous memory is required. In the absence of non-transparent superpages,
the included sources for the contigmem kernel module provides the ability to present contiguous blocks of memory
for the DPDK to use. The contigmem module must be loaded into the running kernel before any DPDK is run. The
module is found in the kmod sub-directory of the DPDK target directory.

The amount of physically contiguous memory along with the number of physically contiguous blocks to be reserved
by the module can be set at runtime prior to module loading using:

kenv hw.contigmem.num_buffers=n
kenv hw.contigmem.buffer_size=m

The kernel environment variables can also be specified during boot by placing the following in /boot /loader.
conf:

’hw.contigmem.num_buffers:n hw.contigmem.buffer size=m

The variables can be inspected using the following command:

sysctl —-a hw.contigmem

Where n is the number of blocks and m is the size in bytes of each area of contiguous memory. A default of two buffers
of size 1073741824 bytes (1 Gigabyte) each is set during module load if they are not specified in the environment.

The module can then be loaded using kldload (assuming that the current directory is the DPDK target directory):

kldload ./kmod/contigmem.ko

It is advisable to include the loading of the contigmem module during the boot process to avoid issues with potential
memory fragmentation during later system up time. This can be achieved by copying the module to the /boot/
kernel/ directory and placing the following into /boot/loader.conf:

contigmem_load="YES"

30 Chapter 2. Getting Started Guide for FreeBSD

dpdk, Release 0.11

Note: The contigmem_load directive should be placed after any definitions of hw.contigmem.num_buffers
and hw.contigmem.buffer_size if the default values are not to be used.

An error such as:

kldload: can't load ./x86_64-native-bsdapp-gcc/kmod/contigmem.ko:
Exec format error

is generally attributed to not having enough contiguous memory available and can be verified via dmesg or /var/
log/messages:

kernel: contigmalloc failed for buffer <n>

To avoid this error, reduce the number of buffers or the buffer size.

2.3.6 Loading the DPDK nic_uio Module

After loading the contigmem module, the nic_uio module must also be loaded into the running kernel prior to
running any DPDK application. This module must be loaded using the kldload command as shown below (assuming
that the current directory is the DPDK target directory).

kldload ./kmod/nic_uio.ko

Note: If the ports to be used are currently bound to a existing kernel driver then the hw.nic_uio.bdfs sysctl
value will need to be set before loading the module. Setting this value is described in the next section below.

Currently loaded modules can be seen by using the k1dstat command and a module can be removed from the
running kernel by using kldunload <module_name>.

To load the module during boot, copy the nic_uio module to /boot/kernel and place the following into /
boot/loader.conf:

nic_uio_load="YES"

Note: nic_uio_load="YES" must appear after the contigmem_load directive, if it exists.

By default, the nic_uio module will take ownership of network ports if they are recognized DPDK devices and are
not owned by another module. However, since the FreeBSD kernel includes support, either built-in, or via a separate
driver module, for most network card devices, it is likely that the ports to be used are already bound to a driver other
than nic_uio. The following sub-section describe how to query and modify the device ownership of the ports to be
used by DPDK applications.

Binding Network Ports to the nic_uio Module

Device ownership can be viewed using the pciconf -1 command. The example below shows four Intel® 82599 network
ports under i f_ixgbe module ownership.

pciconf -1
ix00@pci0:1:0:0: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01l hdr=0x00
ix1@pciO:1:0:1: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01l hdr=0x00

2.3. Compiling the DPDK Target from Source 31

dpdk, Release 0.11

ix2@pci0:2:0:0: class=0x020000 card=0x00038086 chip=0x10£fb8086 rev=0x01] hdr=0x00
ix3@pci0:2:0:1: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01l hdr=0x00

The first column constitutes three components:
1. Device name: ixN
2. Unit name: pciO
3. Selector (Bus:Device:Function): 1:0:0
Where no driver is associated with a device, the device name will be none.

By default, the FreeBSD kernel will include built-in drivers for the most common devices; a kernel rebuild would
normally be required to either remove the drivers or configure them as loadable modules.

To avoid building a custom kernel, the nic_uio module can detach a network port from its current device driver. This
is achieved by setting the hw.nic_uio.bdfs kernel environment variable prior to loading nic_uio, as follows:

hw.nic_uio.bdfs="b:d:f,b:d:f, ..."

Where a comma separated list of selectors is set, the list must not contain any whitespace.

For example to re-bind ix2@pci0:2:0:0and 1x3@pci0:2:0:1 to the nic_uio module upon loading, use the
following command:

kenv hw.nic_uio.bdfs="2:0:0,2:0:1"

The variable can also be specified during boot by placing the following into /boot/loader.conf, before the
previously-described nic_uio_load line - as shown:

hw.nic_uio.bdfs="2:0:0,2:0:1"
nic_uio_load="YES"

Binding Network Ports Back to their Original Kernel Driver

If the original driver for a network port has been compiled into the kernel, it is necessary to reboot FreeBSD to restore
the original device binding. Before doing so, update or remove the hw.nic_uio.bdfsin /boot/loader.conf.

If rebinding to a driver that is a loadable module, the network port binding can be reset without rebooting. To do
s0, unload both the target kernel module and the nic_uio module, modify or clear the hw.nic_uio.bdfs kernel
environment (kenv) value, and reload the two drivers - first the original kernel driver, and thenthe nic_uio driver.
Note: the latter does not need to be reloaded unless there are ports that are still to be bound to it.

Example commands to perform these steps are shown below:

kldunload nic_uio
kldunload <original_driver>

To clear the value completely:
kenv -u hw.nic_uio.bdfs

To update the list of ports to bind:
kenv hw.nic_uio.bdfs="b:d:f,b:d:f,..."

kldload <original_driver>

kldload nic_uio # optional

32 Chapter 2. Getting Started Guide for FreeBSD

dpdk, Release 0.11

2.4 Compiling and Running Sample Applications

The chapter describes how to compile and run applications in a DPDK environment. It also provides a pointer to where
sample applications are stored.

2.4.1 Compiling a Sample Application

Once a DPDK target environment directory has been created (such as x86_64-native-bsdapp—-clang), it con-
tains all libraries and header files required to build an application.

When compiling an application in the FreeBSD environment on the DPDK, the following variables must be exported:
e RTE_SDK - Points to the DPDK installation directory.

* RTE_TARGET - Points to the DPDK target environment directory. For FreeBSD, this is the
x86_64-native-bsdapp-clang or x86_64—-native-bsdapp—gcc directory.

The following is an example of creating the helloworld application, which runs in the DPDK FreeBSD environ-
ment. While the example demonstrates compiling using gcc version 4.9, compiling with clang will be similar, except
that the CC= parameter can probably be omitted. The helloworld example may be found in the $ {RTE_SDK} /
examples directory.

The directory contains the main. c file. This file, when combined with the libraries in the DPDK target environment,
calls the various functions to initialize the DPDK environment, then launches an entry point (dispatch application) for
each core to be utilized. By default, the binary is generated in the build directory.

setenv RTE_SDK /home/user/DPDK

cd $ (RTE_SDK)

cd examples/helloworld/

setenv RTE_SDK S$HOME/DPDK

setenv RTE_TARGET x86_64-native-bsdapp-gcc

gmake CC=gcc49
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

1s build/app
helloworld helloworld.map

Note: In the above example, helloworld was in the directory structure of the DPDK. However, it could have been
located outside the directory structure to keep the DPDK structure intact. In the following case, the helloworld
application is copied to a new directory as a new starting point.

setenv RTE_SDK /home/user/DPDK

cp —r $(RTE_SDK) /examples/helloworld my_rte_app
cd my_rte_app/

setenv RTE_TARGET x86_64-native-bsdapp-gcc

gmake CC=gcc49
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

2.4. Compiling and Running Sample Applications 33

dpdk, Release 0.11

2.4.2 Running a Sample Application

1. The contigmem and nic_uio modules must be set up prior to running an application.

2. Any ports to be used by the application must be already bound to the nic_uio module, as described in section
Binding Network Ports to the nic_uio Module, prior to running the application. The application is linked with
the DPDK target environment’s Environment Abstraction Layer (EAL) library, which provides some options
that are generic to every DPDK application.

The following is the list of options that can be given to the EAL:

./rte—app -1 CORELIST [-n NUM] [-b <domain:bus:devid.func>] \
[-r NUM] [-v] [-—-proc-type <primary|secondary|auto>]

Note: EAL has a common interface between all operating systems and is based on the Linux notation for PCI devices.
For example, a FreeBSD device selector of pci0:2:0: 1 isreferredtoas 02:00. 1 in EAL.

The EAL options for FreeBSD are as follows:

* —c COREMASKor -1 CORELIST: A hexadecimal bit mask of the cores to run on. Note that core numbering
can change between platforms and should be determined beforehand. The corelist is a list of cores to use instead
of a core mask.

e —n NUM: Number of memory channels per processor socket.

* -b <domain:bus:devid. func>: Blacklisting of ports; prevent EAL from using specified PCI device
(multiple —b options are allowed).

* ——use-device: Use the specified Ethernet device(s) only. Use comma-separate [domain:]bus:devid.
func values. Cannot be used with —b option.

e —r NUM: Number of memory ranks.
» —v: Display version information on startup.
* ——proc-type: The type of process instance.
Other options, specific to Linux and are not supported under FreeBSD are as follows:
* socket-mem: Memory to allocate from hugepages on specific sockets.
e ——huge-dir: The directory where hugetlbfs is mounted.
e ——file-prefix: The prefix text used for hugepage filenames.

e —m MB: Memory to allocate from hugepages, regardless of processor socket. It is recommended that
——socket-mem be used instead of this option.

The —c or —1 option is mandatory; the others are optional.

Copy the DPDK application binary to your target, then run the application as follows (assuming the platform has four
memory channels, and that cores 0-3 are present and are to be used for running the application):

./helloworld -1 0-3 -n 4

Note: The ——proc-type and ——file-prefix EAL options are used for running multiple DPDK processes.
See the “Multi-process Sample Application” chapter in the DPDK Sample Applications User Guide and the DPDK
Programmers Guide for more details.

34 Chapter 2. Getting Started Guide for FreeBSD

dpdk, Release 0.11

2.4.3 Running DPDK Applications Without Root Privileges

Although applications using the DPDK use network ports and other hardware resources directly, with a number of
small permission adjustments, it is possible to run these applications as a user other than “root”. To do so, the
ownership, or permissions, on the following file system objects should be adjusted to ensure that the user account
being used to run the DPDK application has access to them:

» The userspace-io device files in /dev, for example, /dev/uio0, /dev/uiol, and so on

* The userspace contiguous memory device: /dev/contigmem

Note: Please refer to the DPDK Release Notes for supported applications.

2.4. Compiling and Running Sample Applications 35

dpdk, Release 0.11

36 Chapter 2. Getting Started Guide for FreeBSD

CHAPTER 3

Sample Applications User Guides

3.1 Introduction

This document describes the sample applications that are included in the Data Plane Development Kit (DPDK). Each
chapter describes a sample application that showcases specific functionality and provides instructions on how to com-
pile, run and use the sample application.

3.1.1 Documentation Roadmap

The following is a list of DPDK documents in suggested reading order:

* Release Notes : Provides release-specific information, including supported features, limitations, fixed issues,
known issues and so on. Also, provides the answers to frequently asked questions in FAQ format.

* Getting Started Guides : Describes how to install and configure the DPDK software for your operating system;
designed to get users up and running quickly with the software.

¢ Programmer’s Guide: Describes:

— The software architecture and how to use it (through examples), specifically in a Linux* application (lin-
uxapp) environment.

— The content of the DPDK, the build system (including the commands that can be used in the root DPDK
Makefile to build the development kit and an application) and guidelines for porting an application.

— Optimizations used in the software and those that should be considered for new development
A glossary of terms is also provided.

¢ API Reference : Provides detailed information about DPDK functions, data structures and other programming
constructs.

* Sample Applications User Guide : Describes a set of sample applications. Each chapter describes a sample
application that showcases specific functionality and provides instructions on how to compile, run and use the
sample application.

37

dpdk, Release 0.11

3.2 Command Line Sample Application

This chapter describes the Command Line sample application that is part of the Data Plane Development Kit (DPDK).

3.2.1 Overview

The Command Line sample application is a simple application that demonstrates the use of the command line interface
in the DPDK. This application is a readline-like interface that can be used to debug a DPDK application, in a Linux*
application environment.

Note: The rte_cmdline library should not be used in production code since it is not validated to the same standard as
other DPDK libraries. See also the “rte_cmdline library should not be used in production code due to limited testing”
item in the “Known Issues” section of the Release Notes.

The Command Line sample application supports some of the features of the GNU readline library such as, completion,
cut/paste and some other special bindings that make configuration and debug faster and easier.

The application shows how the rte_cmdline application can be extended to handle a list of objects. There are three
simple commands:

* add obj_name IP: Add a new object with an IP/IPv6 address associated to it.
¢ del obj_name: Delete the specified object.

» show obj_name: Show the IP associated with the specified object.

Note: To terminate the application, use Ctrl-d.

3.2.2 Compiling the Application

1. Go to example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/cmdline

2. Set the target (a default target is used if not specified). For example:

’export RTE_TARGET=x86_64-native-linuxapp-gcc

Refer to the DPDK Getting Started Guide for possible RTE_TARGET values.
3. Build the application:

’make

3.2.3 Running the Application

To run the application in linuxapp environment, issue the following command:

$./build/cmdline -1 0-3 -n 4

38 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-
straction Layer (EAL) options.

3.2.4 Explanation

The following sections provide some explanation of the code.

EAL Initialization and cmdline Start

The first task is the initialization of the Environment Abstraction Layer (EAL). This is achieved as follows:

int main(int argc, char *xargv)
{
ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_panic("Cannot init EAL\n");

Then, a new command line object is created and started to interact with the user through the console:

cl = cmdline_stdin_new (main_ctx, "example> ");
cmdline_interact (cl);
cmdline_stdin_exit (cl);

The cmd line_interact() function returns when the user types Ctrl-d and in this case, the application exits.

Defining a cmdline Context

A cmdline context is a list of commands that are listed in a NULL-terminated table, for example:

cmdline_parse_ctx_t main_ctx[] = {
(cmdline_parse_inst_t *) &cmd_obj_del_show,
(cmdline_parse_inst_t ») &cmd_obj_add,
(cmdline_parse_inst_t x) &cmd_help,
NULL,

}i

Each command (of type cmdline_parse_inst_t) is defined statically. It contains a pointer to a callback function that
is executed when the command is parsed, an opaque pointer, a help string and a list of tokens in a NULL-terminated
table.

The rte_cmdline application provides a list of pre-defined token types:
 String Token: Match a static string, a list of static strings or any string.
e Number Token: Match a number that can be signed or unsigned, from 8-bit to 32-bit.
[P Address Token: Match an IPv4 or IPv6 address or network.
* Ethernet* Address Token: Match a MAC address.
In this example, a new token type obj_list is defined and implemented in the parse_obj_list.c and parse_obj_list.h files.

For example, the cmd_obj_del_show command is defined as shown below:

struct cmd_obj_add_result {
cmdline_fixed_string_t action;
cmdline_fixed_string_t name;

3.2. Command Line Sample Application 39

dpdk, Release 0.11

struct object *obj;
}i

static void cmd_obj_del_ show_parsed(void *parsed_result, struct cmdline =xcl,
—attribute ((unused)) wvoid xdata)
{

V2 4

cmdline_parse_token_string t cmd_obj_action = TOKEN_STRING_INITIALIZER (struct cmd_obj_
—del_show_result, action, "show#del");

parse_token_obj_list_t cmd_obj_obj = TOKEN_OBJ_LIST_INITIALIZER(struct cmd_obj_del_
—show_result, obj, &global_obj_list);

cmdline_parse_inst_t cmd_obj_del_show = {
.f = cmd_obj_del_show_parsed, /* function to call */
.data = NULL, /+ 2nd arg of func */
.help_str = "Show/del an object",
.tokens = { /# token list, NULL terminated */
(void *)&cmd_obj_action,
(void *)&cmd_obj_obj,
NULL,
}I
}i

This command is composed of two tokens:
* The first token is a string token that can be show or del.
* The second token is an object that was previously added using the add command in the global_obj_list variable.

Once the command is parsed, the rte_cmdline application fills a cmd_obj_del_show_result structure. A pointer to this
structure is given as an argument to the callback function and can be used in the body of this function.

3.3 Ethtool Sample Application

The Ethtool sample application shows an implementation of an ethtool-like API and provides a console environment
that allows its use to query and change Ethernet card parameters. The sample is based upon a simple L2 frame reflector.

3.3.1 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd S${RTE_SDK}/examples/ethtool

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.
3. Build the application:

40 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

make

3.3.2 Running the Application

The application requires an available core for each port, plus one. The only available options are the standard ones for
the EAL:

./ethtool-app/ethtool-app/${RTE_TARGET}/ethtool [EAL options]

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-
straction Layer (EAL) options.

3.3.3 Using the application

The application is console-driven using the cmdline DPDK interface:

EthApp>

From this interface the available commands and descriptions of what they do as as follows:

drvinfo: Print driver info

eeprom: Dump EEPROM to file
link: Print port link states
macaddr: Gets/sets MAC address
mtu: Set NIC MTU

open: Open port

pause: Get/set port pause state
portstats: Print port statistics
regs: Dump port register(s) to file
ringparam: Get/set ring parameters
rxmode: Toggle port Rx mode
stop: Stop port

validate: Check that given MAC address is valid unicast address
vlan: Add/remove VLAN id

quit: Exit program

3.3.4 Explanation

The sample program has two parts: A background packet reflector that runs on a slave core, and a foreground Ethtool
Shell that runs on the master core. These are described below.

3.3. Ethtool Sample Application 41

dpdk, Release 0.11

Packet Reflector

The background packet reflector is intended to demonstrate basic packet processing on NIC ports controlled by the
Ethtool shim. Each incoming MAC frame is rewritten so that it is returned to the sender, using the port in question’s
own MAC address as the source address, and is then sent out on the same port.

Ethtool Shell

The foreground part of the Ethtool sample is a console-based interface that accepts commands as described in using
the application. Individual call-back functions handle the detail associated with each command, which make use of
the functions defined in the Ethrool interface to the DPDK functions.

3.3.5 Ethtool interface

The Ethtool interface is built as a separate library, and implements the following functions:

rte_ethtool_get_drvinfo ()
rte_ethtool_get_regs_len()
rte_ethtool_get_regs()
rte_ethtool_get_link ()
rte_ethtool_get_eeprom_len ()
rte_ethtool_get_eeprom/()
rte_ethtool_set_eeprom()
rte_ethtool_get_pauseparam/()
rte_ethtool_set_pauseparam()
rte_ethtool_net_open|()
rte_ethtool_net_stop()
rte_ethtool_net_get_mac_addr ()
rte_ethtool_net_set_mac_addr ()
rte_ethtool_net_validate_addr ()
rte_ethtool_net_change_mtu ()
rte_ethtool_net_get_stats64()
rte_ethtool _net_vlan_rx_add_vid()
rte_ethtool_net_vlan_rx_kill_vid()
rte_ethtool_net_set_rx mode ()
rte_ethtool_get_ringparam()

rte_ethtool_set_ringparam()

42

Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

3.4 Exception Path Sample Application

The Exception Path sample application is a simple example that demonstrates the use of the DPDK to set up an
exception path for packets to go through the Linux* kernel. This is done by using virtual TAP network interfaces.
These can be read from and written to by the DPDK application and appear to the kernel as a standard network
interface.

3.4.1 Overview

The application creates two threads for each NIC port being used. One thread reads from the port and writes the
data unmodified to a thread-specific TAP interface. The second thread reads from a TAP interface and writes the data
unmodified to the NIC port.

The packet flow through the exception path application is as shown in the following figure.
Fig. 3.1: Packet Flow
To make throughput measurements, kernel bridges must be setup to forward data between the bridges appropriately.

3.4.2 Compiling the Application

1. Go to example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/exception_path

2. Set the target (a default target will be used if not specified). For example:

export RTE_TARGET=x86_64-native—-linuxapp-gcc

This application is intended as a linuxapp only. See the DPDK Getting Started Guide for possible RTE_TARGET
values.

1. Build the application:

make

3.4.3 Running the Application

The application requires a number of command line options:

.build/exception_path [EAL options] —-- —p PORTMASK -i IN_CORES -o OUT_CORES

where:
e -p PORTMASK: A hex bitmask of ports to use
* -i IN_CORES: A hex bitmask of cores which read from NIC
¢ -0 OUT_CORES: A hex bitmask of cores which write to NIC

3.4. Exception Path Sample Application 43

dpdk, Release 0.11

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-
straction Layer (EAL) options.

The number of bits set in each bitmask must be the same. The coremask -c or the corelist -1 parameter of the EAL
options should include IN_CORES and OUT_CORES. The same bit must not be set in IN_CORES and OUT_CORES.
The affinities between ports and cores are set beginning with the least significant bit of each mask, that is, the port
represented by the lowest bit in PORTMASK is read from by the core represented by the lowest bit in IN_CORES,
and written to by the core represented by the lowest bit in OUT_CORES.

For example to run the application with two ports and four cores:

./build/exception_path -1 0-3 -n 4 —— -p 3 -1 3 -0 c

Getting Statistics

While the application is running, statistics on packets sent and received can be displayed by sending the SIGUSR1
signal to the application from another terminal:

killall -USR1 exception_path

The statistics can be reset by sending a SIGUSR?2 signal in a similar way.

3.4.4 Explanation

The following sections provide some explanation of the code.

Initialization

Setup of the mbuf pool, driver and queues is similar to the setup done in the L2 Forwarding Sample Application (in
Real and Virtualized Environments). In addition, the TAP interfaces must also be created. A TAP interface is created
for each Icore that is being used. The code for creating the TAP interface is as follows:

/%
* Create a tap network interface, or use existing one with same name.
* If name[0]="\0'"' then a name is automatically assigned and returned in name.
*/

static int tap_create (char xname)

{
struct ifreq ifr;
int fd, ret;

fd = open("/dev/net/tun", O_RDWR);
if (fd < 0)
return fd;
memset (&1fr, 0, sizeof (ifr));
/+* TAP device without packet information =*/
ifr.ifr_flags = IFF_TAP | IFF_NO_PTI;
if (name && *name)

rte_snprinf (ifr.ifr_name, IFNAMSIZ, name);

ret = ioctl (fd, TUNSETIFF, (void *) &ifr);

44 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

if (ret < 0) |
close (fd);
return ret;

if (name)
snprintf (name, IFNAMSIZ, ifr.ifr_name);

return fd;

The other step in the initialization process that is unique to this sample application is the association of each port with
two cores:

* One core to read from the port and write to a TAP interface
* A second core to read from a TAP interface and write to the port

This is done using an array called port_ids[], which is indexed by the Icore IDs. The population of this array is shown
below:

tx_port = 0;
rx_port = 0;

RTE_LCORE_FOREACH (1) {
if (input_cores_mask & (1ULL << i)) {
/+ Skip ports that are not enabled */
while ((ports_mask & (1 << rx_port)) == 0) {
rx_port++;
if (rx_port > (sizeof (ports_mask) * 8))
goto fail; /* not enough ports #*/
}
port_ids[i] = rx_port++;
} else if (output_cores_mask & (LULL << 1)) {
/+* Skip ports that are not enabled */
while ((ports_mask & (1 << tx_port)) == 0) {
tx_port++;
if (tx_port > (sizeof (ports_mask) * 8))
goto fail; /# not enough ports =/
}
port_ids[i] = tx_port++;

Packet Forwarding

After the initialization steps are complete, the main_loop() function is run on each Icore. This function first checks
the Icore_id against the user provided input_cores_mask and output_cores_mask to see if this core is reading from or
writing to a TAP interface.

For the case that reads from a NIC port, the packet reception is the same as in the L2 Forwarding sample application
(see Receive, Process and Transmit Packets). The packet transmission is done by calling write() with the file descriptor
of the appropriate TAP interface and then explicitly freeing the mbuf back to the pool.

3.4. Exception Path Sample Application 45

dpdk, Release 0.11

/* Loop forever reading from NIC and writing to tap */

for (;;) |
struct rte_mbuf xpkts_burst [PKT_BURST_SZ];
unsigned i;

const unsigned nb_rx = rte_eth_rx_burst (port_ids[lcore_id], 0, pkts_burst, PKT_
< BURST_SZ) ;

lcore_stats[lcore_id].rx += nb_rx;

for (i = 0; likely(i < nb_rx); i++) {
struct rte_mbuf *m = pkts_burst[i];
int ret = write(tap_fd, rte_pktmbuf_mtod(m, woidx),

rte_pktmbuf_data_len(m));
rte_pktmbuf_free(m);
if (unlikely(ret<0))
lcore_stats[lcore_id] .dropped++;
else
lcore_stats[lcore_id].tx++;

For the other case that reads from a TAP interface and writes to a NIC port, packets are retrieved by doing a read()
from the file descriptor of the appropriate TAP interface. This fills in the data into the mbuf, then other fields are set
manually. The packet can then be transmitted as normal.

/+ Loop forever reading from tap and writing to NIC x/

for (;;) {
int ret;
struct rte_mbuf sm = rte_pktmbuf_alloc (pktmbuf_pool);

if (m == NULL)
continue;

ret = read(tap_£fd, m->pkt.data, MAX_PACKET_SZ); lcore_stats[lcore_id].rx++;
if (unlikely(ret < 0)) {
FATAL_ERROR ("Reading from %s interface failed", tap_name);

m->pkt.nb_segs = 1;
m->pkt.next = NULL;
m->pkt.data_len = (uintl6é_t)ret;

ret = rte_eth_tx_burst (port_ids[lcore_id], 0, &m, 1);
if (unlikely(ret < 1)) {
rte_pktmuf_free(m);
lcore_stats[lcore_id] .dropped++;
}
else {
lcore_stats[lcore_id].tx++;

To set up loops for measuring throughput, TAP interfaces can be connected using bridging. The steps to do this are
described in the section that follows.

46 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Managing TAP Interfaces and Bridges

The Exception Path sample application creates TAP interfaces with names of the format tap_dpdk_nn, where nn is the
Icore ID. These TAP interfaces need to be configured for use:

ifconfig tap_dpdk_00 up

To set up a bridge between two interfaces so that packets sent to one interface can be read from another, use the brctl
tool:

brctl addbr "br0O"

brctl addif br0 tap_dpdk_00
brctl addif br0 tap_dpdk_03
ifconfig br0 up

The TAP interfaces created by this application exist only when the application is running, so the steps above need to
be repeated each time the application is run. To avoid this, persistent TAP interfaces can be created using openvpn:

openvpn —-mktun --dev tap_dpdk_00

If this method is used, then the steps above have to be done only once and the same TAP interfaces can be reused each
time the application is run. To remove bridges and persistent TAP interfaces, the following commands are used:

ifconfig br0 down
brctl delbr br0
openvpn —-rmtun —--dev tap_dpdk_00

3.5 Hello World Sample Application

The Hello World sample application is an example of the simplest DPDK application that can be written. The appli-
cation simply prints an “helloworld” message on every enabled Icore.

3.5.1 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/helloworld

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.
3. Build the application:

’make

3.5.2 Running the Application

To run the example in a linuxapp environment:

3.5. Hello World Sample Application 47

dpdk, Release 0.11

$./build/helloworld -1 0-3 -n 4

Refer to DPDK Getting Started Guide for general information on running applications and the Environment Abstrac-
tion Layer (EAL) options.

3.5.3 Explanation

The following sections provide some explanation of code.

EAL Initialization

The first task is to initialize the Environment Abstraction Layer (EAL). This is done in the main() function using the
following code:

int
main (int argc, char =xxargv)
{
ret = rte_eal_init (argc, argv);

if (ret < 0)
rte_panic("Cannot init EAL\n");

This call finishes the initialization process that was started before main() is called (in case of a Linuxapp environment).
The argc and argv arguments are provided to the rte_eal_init() function. The value returned is the number of parsed
arguments.

Starting Application Unit Lcores

Once the EAL is initialized, the application is ready to launch a function on an Icore. In this example, Icore_hello() is
called on every available Icore. The following is the definition of the function:

static int
lcore_hello(attribute ((unused)) wvoid *arg)
{

unsigned lcore_id;

lcore_id = rte_lcore_id();

printf ("hello from core %u\n", lcore_id);
return 0;

The code that launches the function on each Icore is as follows:

/% call lcore_hello() on every slave lcore */

RTE_LCORE_FOREACH_SLAVE (lcore_id) {
rte_eal_remote_launch (lcore_hello, NULL, lcore_id);

}
/% call it on master lcore too =/

lcore_hello (NULL) ;

48 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

The following code is equivalent and simpler:

’rte_eal_mp_remote_launch(lcore_hello, NULL, CALL_MASTER);

Refer to the DPDK API Reference for detailed information on the rte_eal_mp_remote_launch() function.

3.6 Basic Forwarding Sample Application

The Basic Forwarding sample application is a simple skelefon example of a forwarding application.

It is intended as a demonstration of the basic components of a DPDK forwarding application. For more detailed
implementations see the L2 and L3 forwarding sample applications.

3.6.1 Compiling the Application

To compile the application export the path to the DPDK source tree and go to the example directory:

export RTE_SDK=/path/to/rte_sdk

cd ${RTE_SDK}/examples/skeleton

Set the target, for example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_ TARGET values.

Build the application as follows:

’make

3.6.2 Running the Application

To run the example in a 1inuxapp environment:

./build/basicfwd -1 1 -n 4

Refer to DPDK Getting Started Guide for general information on running applications and the Environment Abstrac-
tion Layer (EAL) options.

3.6.3 Explanation

The following sections provide an explanation of the main components of the code.

All DPDK library functions used in the sample code are prefixed with rte_ and are explained in detail in the DPDK
API Documentation.

3.6. Basic Forwarding Sample Application 49

dpdk, Release 0.11

The Main Function

The main () function performs the initialization and calls the execution threads for each Icore.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv arguments are provided
tothe rte_eal_init () function. The value returned is the number of parsed arguments:

int ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Error with EAL initialization\n");

The main () also allocates a mempool to hold the mbufs (Message Buffers) used by the application:

mbuf_pool = rte_mempool_create ("MBUF_POOL",
NUM_MBUFS * nb_ports,
MBUF_SIZE,
MBUF_CACHE_SIZE,
sizeof (struct rte_pktmbuf_pool_private),
rte_pktmbuf_pool_init, NULL,

rte_pktmbuf_init, NULL,
rte_socket_id (),
0);

Mbufs are the packet buffer structure used by DPDK. They are explained in detail in the “Mbuf Library” section of
the DPDK Programmer’s Guide.

The main () function also initializes all the ports using the user defined port_init () function which is explained
in the next section:

for (portid = 0; portid < nb_ports; portid++) {
if (port_init (portid, mbuf_pool) != 0) {
rte_exit (EXIT_FAILURE,
"Cannot init port %" PRIu8 "\n", portid);

Once the initialization is complete, the application is ready to launch a function on an lcore. In this example
lcore_main () is called on a single Icore.

lcore_main () ;

The 1core_main () function is explained below.

The Port Initialization Function

The main functional part of the port initialization used in the Basic Forwarding application is shown below:

static inline int
port_init (uint8_t port, struct rte_mempool x»mbuf_pool)
{
struct rte_eth_conf port_conf = port_conf_default;
const uintlé6_t rx_rings = 1, tx_rings = 1;
struct ether_addr addr;
int retval;
uintlé_t g;

if (port >= rte_eth_dev_count())

50 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

return -1;

/#+ Configure the Ethernet device. */
retval = rte_eth_dev_configure (port, rx_rings, tx_rings, &port_conf);
if (retval != 0)

return retval;

/* Allocate and set up 1 RX queue per Ethernet port. */
for (g = 0; g < rx_rings; gt++) {
retval = rte_eth_rx_queue_setup(port, g, RX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL, mbuf_pool);
if (retval < 0)
return retval;

/* Allocate and set up 1 TX queue per Ethernet port. */
for (g = 0; g < tx_rings; gt++) {
retval = rte_eth_tx_queue_setup(port, g, TX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL);
if (retval < 0)
return retval;

/% Start the Ethernet port. */
retval = rte_eth_dev_start (port);
if (retval < 0)

return retval;

/% Enable RX in promiscuous mode for the Ethernet device. #*/
rte_eth_promiscuous_enable (port) ;

return 0;

The Ethernet ports are configured with default settings using the rte_eth_dev_configure () function and the
port_conf_default struct:

static const struct rte_eth_conf port_conf_default = {
.rxmode = { .max_rx_pkt_len = ETHER_MAX_LEN }

}i

For this example the ports are set up with 1 RX and 1 TX queue using the rte_eth_rx_queue_setup () and
rte_eth_tx_queue_setup () functions.

The Ethernet port is then started:

retval = rte_eth_dev_start (port); ‘

Finally the RX port is set in promiscuous mode:

rte_eth_promiscuous_enable (port) ; ‘

The Lcores Main

As we saw above the main () function calls an application function on the available Icores. For the Basic Forwarding
application the Icore function looks like the following:

3.6. Basic Forwarding Sample Application 51

dpdk, Release 0.11

static _ attribute_ ((noreturn)) wvoid

lcore_main (void)

{
const uint8_t nb_ports = rte_eth_dev_count();
uint8_t port;

/%
* Check that the port is on the same NUMA node as the polling thread
* for best performance.
*/
for (port = 0; port < nb_ports; port++)
if (rte_eth_dev_socket_id(port) > 0 &&
rte_eth_dev_socket_id(port) !=
(int) rte_socket_id())
printf ("WARNING, port %$u is on remote NUMA node to "
"polling thread.\n\tPerformance will "
"not be optimal.\n", port);

printf ("\nCore %u forwarding packets. [Ctrl+C to quit]\n",
rte_lcore_id());

/#* Run until the application is quit or killed. x/
for (;;) |
/%
* Receive packets on a port and forward them on the paired
* port. The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
*/
for (port = 0; port < nb_ports; port++) {

/+ Get burst of RX packets, from first port of pair. =*/
struct rte_mbuf *bufs[BURST_SIZE];
const uintlé6_t nb_rx = rte_eth_rx_burst (port, O,

bufs, BURST_SIZE);

if (unlikely(nb_rx == 0))
continue;

/+* Send burst of TX packets, to second port of pair. */
const uintlé6_t nb_tx = rte_eth_tx_burst (port ~ 1, 0,
bufs, nb_rx);

/+ Free any unsent packets. #*/
if (unlikely(nb_tx < nb_rx)) {
uintl6_t buf;
for (buf = nb_tx; buf < nb_rx; buf++)
rte_pktmbuf_free (bufs[buf]);

The main work of the application is done within the loop:

for (;;) {
for (port = 0; port < nb_ports; port++) {

/+ Get burst of RX packets, from first port of pair. */
struct rte_mbuf *bufs[BURST_SIZE];

52 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

const uintl6_t nb_rx = rte_eth_rx_burst (port, O,
bufs, BURST_SIZE);

if (unlikely(nb_rx == 0))
continue;

/* Send burst of TX packets, to second port of pair. */
const uintl6_t nb_tx = rte_eth_tx_burst (port ~ 1, 0,
bufs, nb_rx);

/* Free any unsent packets. #*/
if (unlikely(nb_tx < nb_rx)) {
uintlé6_t buf;
for (buf = nb_tx; buf < nb_rx; buf++)
rte_pktmbuf_free (bufs[buf]);

Packets are received in bursts on the RX ports and transmitted in bursts on the TX ports. The ports are grouped in
pairs with a simple mapping scheme using the an XOR on the port number:

0 -—>1
1 -> 0
2 -> 3
3 —> 2
etc.

The rte_eth_tx_burst () function frees the memory buffers of packets that are transmitted. If packets fail to
transmit, (nb_tx < nb_rx), then they must be freed explicitly using rte_pktmbuf_free ().

The forwarding loop can be interrupted and the application closed using Ct r1-C.

3.7 RX/TX Callbacks Sample Application

The RX/TX Callbacks sample application is a packet forwarding application that demonstrates the use of user defined
callbacks on received and transmitted packets. The application performs a simple latency check, using callbacks, to
determine the time packets spend within the application.

In the sample application a user defined callback is applied to all received packets to add a timestamp. A separate
callback is applied to all packets prior to transmission to calculate the elapsed time, in CPU cycles.

3.7.1 Compiling the Application

To compile the application export the path to the DPDK source tree and go to the example directory:

export RTE_SDK=/path/to/rte_sdk

cd ${RTE_SDK}/examples/rxtx_callbacks

Set the target, for example:

3.7. RX/TX Callbacks Sample Application 53

dpdk, Release 0.11

export RTE_TARGET=x86_64-native-linuxapp—-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

The callbacks feature requires that the CONFIG_RTE_ETHDEV_RXTX_CALLBACKS setting is on in the config/
common__ config file that applies to the target. This is generally on by default:

’CONFIGfRTEiETHDEViRXTX7CALLBACKS=y

Build the application as follows:

’make

3.7.2 Running the Application

To run the example in a 1 inuxapp environment:

./build/rxtx_callbacks -1 1 —-n 4

Refer to DPDK Getting Started Guide for general information on running applications and the Environment Abstrac-
tion Layer (EAL) options.

3.7.3 Explanation

The rxtx_callbacks application is mainly a simple forwarding application based on the Basic Forwarding Sample
Application. See that section of the documentation for more details of the forwarding part of the application.

The sections below explain the additional RX/TX callback code.

The Main Function

The main () function performs the application initialization and calls the execution threads for each lcore. This
function is effectively identical to the main () function explained in Basic Forwarding Sample Application.

The 1core_main () function is also identical.

The main difference is in the user defined port_init () function where the callbacks are added. This is explained
in the next section:

The Port Initialization Function

The main functional part of the port initialization is shown below with comments:

static inline int
port_init (uint8_t port, struct rte_mempool *mbuf_pool)
{
struct rte_eth_conf port_conf = port_conf_default;
const uintlé6_t rx_rings = 1, tx_rings = 1;
struct ether_addr addr;
int retval;
uintlé6_t g;

if (port >= rte_eth_dev_count())
return -1;

54 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

/* Configure the Ethernet device. x/
retval = rte_eth_dev_configure (port, rx_rings, tx_rings, &port_conf);
if (retval != 0)

return retval;

/* Allocate and set up 1 RX queue per Ethernet port. */
for (g = 0; g < rx_rings; gt++) {
retval = rte_eth_rx_queue_setup(port, g, RX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL, mbuf_pool);
if (retval < 0)
return retval;

/#+ Allocate and set up 1 TX queue per Ethernet port. #*/
for (g = 0; g < tx_rings; gt++) {
retval = rte_eth_tx_queue_setup (port, g, TX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL);
if (retval < 0)
return retval;

/#* Start the Ethernet port. */
retval = rte_eth_dev_start (port);
if (retval < 0)

return retval;

/#* Enable RX in promiscuous mode for the Ethernet device. x/

rte_eth_promiscuous_enable (port) ;

/+ Add the callbacks for RX and TX.x/
rte_eth_add_rx_callback (port, 0, add_timestamps, NULL);
rte_eth_add_tx_callback (port, 0, calc_latency, NULL);

return 0O;

The RX and TX callbacks are added to the ports/queues as function pointers:

rte_eth_add_rx_callback (port, 0, add_timestamps, NULL);
rte_eth_add_tx_callback (port, 0, calc_latency, NULL) ;

More than one callback can be added and additional information can be passed to callback function pointers as a
voidx. In the examples above NULL is used.

The add_timestamps () and calc_latency () functions are explained below.

The add_timestamps() Callback

The add_timestamps () callback is added to the RX port and is applied to all packets received:

static uintlé_t
add_timestamps (uint8_t port __ rte_unused, uintlé6_t gidx __ rte_unused,
struct rte_mbuf xxpkts, uintl6_t nb_pkts, wvoid »_ __rte_unused)

unsigned i;

3.7. RX/TX Callbacks Sample Application 55

dpdk, Release 0.11

uint64_t now = rte_rdtsc();

for (i = 0; i < nb_pkts; i++)
pkts[i]->udata64 = now;

return nb_pkts;

The DPDK function rte_rdtsc () is used to add a cycle count timestamp to each packet (see the cycles section of
the DPDK API Documentation for details).

The calc_latency() Callback

The calc_latency () callback is added to the TX port and is applied to all packets prior to transmission:

static uintlé_t
calc_latency (uint8_t port __ _rte_unused, uintlé6_t gidx __rte_unused,
struct rte_mbuf x+pkts, uintlé6_t nb_pkts, void +_ __ rte_unused)

uint64_t cycles = 0;
uint64_t now = rte_rdtsc();
unsigned i;

for (i = 0; i < nb_pkts; i++)
cycles += now - pkts[i]->udatab4;

latency_numbers.total_cycles += cycles;
latency_numbers.total_pkts += nb_pkts;

if (latency_numbers.total_pkts > (100 = 1000 = 1000ULL)) {
printf ("Latency = $"PRIu64" cycles\n",
latency_numbers.total_cycles / latency_numbers.total_pkts);

latency_numbers.total_cycles = latency_numbers.total_pkts = 0;

return nb_pkts;

The calc_latency () function accumulates the total number of packets and the total number of cycles used. Once
more than 100 million packets have been transmitted the average cycle count per packet is printed out and the counters
are reset.

3.8 IP Fragmentation Sample Application

The IPv4 Fragmentation application is a simple example of packet processing using the Data Plane Development Kit
(DPDK). The application does L3 forwarding with IPv4 and IPv6 packet fragmentation.

3.8.1 Overview

The application demonstrates the use of zero-copy buffers for packet fragmentation. The initialization and run-time
paths are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments). This
guide highlights the differences between the two applications.

56 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

There are three key differences from the L2 Forwarding sample application:
 The first difference is that the IP Fragmentation sample application makes use of indirect buffers.

* The second difference is that the forwarding decision is taken based on information read from the input packet’s
IP header.

* The third difference is that the application differentiates between IP and non-IP traffic by means of offload flags.

The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to store/lookup an outgoing port number,
associated with that IP address. Any unmatched packets are forwarded to the originating port.

By default, input frame sizes up to 9.5 KB are supported. Before forwarding, the input IP packet is fragmented to fit
into the “standard” Ethernet* v2 MTU (1500 bytes).

3.8.2 Building the Application

To build the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/ip_fragmentation

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.
1. Build the application:

’make

3.8.3 Running the Application

The LPM object is created and loaded with the pre-configured entries read from global 13fwd_ipv4_route_array and
13fwd_ipv6_route_array tables. For each input packet, the packet forwarding decision (that is, the identification of the
output interface for the packet) is taken as a result of LPM lookup. If the IP packet size is greater than default output
MTU, then the input packet is fragmented and several fragments are sent via the output interface.

Application usage:

./build/ip_fragmentation [EAL options] —-- —-p PORTMASK [-g NQ]

where:
* -p PORTMASK is a hexadecimal bitmask of ports to configure
* -q NQ is the number of queue (=ports) per Icore (the default is 1)

To run the example in linuxapp environment with 2 Icores (2,4) over 2 ports(0,2) with 1 RX queue per Icore:

./build/ip_fragmentation -1 2,4 -n 3 —— -p 5
EAL: coremask set to 14

EAL: Detected lcore
EAL: Detected lcore
EAL: Detected lcore
EAL: Detected lcore

on socket
on socket
on socket
on socket

w N = O
= O~ O

3.8. IP Fragmentation Sample Application 57

dpdk, Release 0.11

EAL: Detected lcore 4 on socket 0

Initializing port 0 on lcore 2... Address:00:1B:21:76:FA:2C, rxg=0 txg=2,0 txg=4,1
done: Link Up - speed 10000 Mbps - full-duplex

Skipping disabled port 1

Initializing port 2 on lcore 4... Address:00:1B:21:5C:FF:54, rxg=0 txg=2,0 txg=4,1
done: Link Up - speed 10000 Mbps - full-duplex

Skipping disabled port 3IP_FRAG: Socket 0: adding route 100.10.0.0/16 (port O0)
IP_FRAG: Socket 0: adding route 100.20.0.0/16 (port 1)

IP_FRAG: Socket 0: adding route 0101:0101:0101:0101:0101:0101:0101:0101/48 (port 0)
IP_FRAG: Socket 0: adding route 0201:0101:0101:0101:0101:0101:0101:0101/48 (port 1)

IP_FRAG: entering main loop on lcore 4

IP_FRAG: —— lcoreid=4 portid=2
IP_FRAG: entering main loop on lcore 2
IP_FRAG: —— lcoreid=2 portid=0

To run the example in linuxapp environment with 1 Icore (4) over 2 ports(0,2) with 2 RX queues per Icore:

./build/ip_fragmentation -1 4 -n 3 —— -p 5 —-q 2

To test the application, flows should be set up in the flow generator that match the values in the 13fwd_ipv4_route_array
and/or 13fwd_ipv6_route_array table.

The default 13fwd_ipv4_route_array table is:

struct 13fwd_ipv4_route 13fwd_ipv4_route_arrayl[] = {
{Ipv4 (100, 10, 0, 0), 16, 0},
{Ipv4 (100, 20, 0, 0), 16, 1},
{Ipv4 (100, 30, 0, 0), 16, 2},
{Ipv4 (100, 40, 0, 0), 16, 3},
{Ipv4 (100, 50, 0, 0), 16, 4},
{Ipv4 (100, 60, 0, 0), 16, 5%,
{Ipv4 (100, 70, 0, 0), 16, 6},
{Ipv4 (100, 80, 0, 0), 16, 7},

}i

The default 13fwd_ipv6_route_array table is:

struct 13fwd_ipv6_route 13fwd_ipv6_route_arrayl[] = {

{{, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0},
{{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},
{{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},
{{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},
{{%, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},
{{¢, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},
{{7, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},
{{¢, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},

}i

For example, for the input IPv4 packet with destination address: 100.10.1.1 and packet length 9198 bytes, seven [Pv4
packets will be sent out from port #0 to the destination address 100.10.1.1: six of those packets will have length 1500
bytes and one packet will have length 318 bytes. IP Fragmentation sample application provides basic NUMA support
in that all the memory structures are allocated on all sockets that have active Icores on them.

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-

58 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

straction Layer (EAL) options.

3.9 IPv4 Multicast Sample Application

The IPv4 Multicast application is a simple example of packet processing using the Data Plane Development Kit
(DPDK). The application performs L3 multicasting.

3.9.1 Overview

The application demonstrates the use of zero-copy buffers for packet forwarding. The initialization and run-time paths
are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments). This guide
highlights the differences between the two applications. There are two key differences from the L2 Forwarding sample
application:

* The IPv4 Multicast sample application makes use of indirect buffers.
* The forwarding decision is taken based on information read from the input packet’s IPv4 header.

The lookup method is the Four-byte Key (FBK) hash-based method. The lookup table is composed of pairs of desti-
nation IPv4 address (the FBK) and a port mask associated with that IPv4 address.

For convenience and simplicity, this sample application does not take [ANA-assigned multicast addresses into account,
but instead equates the last four bytes of the multicast group (that is, the last four bytes of the destination IP address)
with the mask of ports to multicast packets to. Also, the application does not consider the Ethernet addresses; it looks
only at the IPv4 destination address for any given packet.

3.9.2 Building the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/ipv4_multicast

2. Set the target (a default target is used if not specified). For example:

’export RTE_TARGET=x86_64-native—-linuxapp—-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

1. Build the application:

’make

Note: The compiled application is written to the build subdirectory. To have the application written to a different
location, the O=/path/to/build/directory option may be specified in the make command.

3.9.3 Running the Application

The application has a number of command line options:

3.9. IPv4 Multicast Sample Application 59

dpdk, Release 0.11

./build/ipv4_multicast [EAL options] —-- —-p PORTMASK [-g NQ]

where,
* -p PORTMASK: Hexadecimal bitmask of ports to configure

¢ -q NQ: determines the number of queues per Icore

Note: Unlike the basic L2/L.3 Forwarding sample applications, NUMA support is not provided in the IPv4 Multicast
sample application.

Typically, to run the IPv4 Multicast sample application, issue the following command (as root):

./build/ipv4_multicast -1 0-3 -n 3 —— -p 0x3 -g 1

In this command:
» The -c option enables cores 0, 1, 2 and 3
* The -n option specifies 3 memory channels
* The -p option enables ports 0 and 1
* The -q option assigns 1 queue to each Icore

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-
straction Layer (EAL) options.

3.9.4 Explanation

The following sections provide some explanation of the code. As mentioned in the overview section, the initializa-
tion and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and Virtualized
Environments). The following sections describe aspects that are specific to the [Pv4 Multicast sample application.

Memory Pool Initialization

The IPv4 Multicast sample application uses three memory pools. Two of the pools are for indirect buffers used for
packet duplication purposes. Memory pools for indirect buffers are initialized differently from the memory pool for
direct buffers:

packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32,
0, PKT_MBUF_DATA_SIZE, rte_socket_id());

header_pool = rte_pktmbuf_pool_create ("header_pool", NB_HDR_MBUF, 32,
0, HDR_MBUF_DATA_SIZE, rte_socket_id());

clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32,
0, 0, rte_socket_id());

The reason for this is because indirect buffers are not supposed to hold any packet data and therefore can be initialized
with lower amount of reserved memory for each buffer.

Hash Initialization

The hash object is created and loaded with the pre-configured entries read from a global array:

60 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

static int

init_mcast_hash (void)
{
uint32_t i;
mcast_hash_params.socket_id = rte_socket_id();

mcast_hash = rte_fbk_hash_create (émcast_hash_params);
if (mcast_hash == NULL) {
return -1;

for (i = 0; i < N_MCAST_GROUPS; i ++){
if (rte_fbk_hash_add_key (mcast_hash, mcast_group_table[i].ip, mcast_group_
—table[i] .port_mask) < 0) {
return -1;

return 0O;

Forwarding

All forwarding is done inside the mcast_forward() function. Firstly, the Ethernet* header is removed from the packet
and the IPv4 address is extracted from the IPv4 header:

/% Remove the Ethernet header from the input packet */

iphdr = (struct ipv4_hdr «)rte_pktmbuf_adj(m, sizeof (struct ether_hdr));
RTE_ASSERT (iphdr != NULL);
dest_addr = rte_be_to_cpu_32 (iphdr->dst_addr);

Then, the packet is checked to see if it has a multicast destination address and if the routing table has any ports assigned
to the destination address:

if (!IS_IPV4_MCAST (dest_addr) ||
(hash = rte_fbk_hash_lookup (mcast_hash, dest_addr)) <= 0 ||

(port_mask = hash & enabled_port_mask) == 0) {
rte_pktmbuf_free (m);
return;

Then, the number of ports in the destination portmask is calculated with the help of the bitent() function:

/% Get number of bits set. */

static inline uint32 t bitcnt (uint32_t v)

{
uint32_t n;

for (n = 0; v != 0; v &= v — 1, n++)

return n;

This is done to determine which forwarding algorithm to use. This is explained in more detail in the next section.

3.9. IPv4 Multicast Sample Application 61

dpdk, Release 0.11

Thereafter, a destination Ethernet address is constructed:

/% construct destination Ethernet address =/

dst_eth_addr = ETHER_ADDR_FOR_IPV4_MCAST (dest_addr) ;

Since Ethernet addresses are also part of the multicast process, each outgoing packet carries the same destination
Ethernet address. The destination Ethernet address is constructed from the lower 23 bits of the multicast group OR-ed
with the Ethernet address 01:00:5e:00:00:00, as per RFC 1112:

#define ETHER ADDR FOR_IPV4 MCAST (x) \
(rte_cpu_to_be 64 (0x01005e000000ULL | ((x) & Ox7fffff)) >> 16)

Then, packets are dispatched to the destination ports according to the portmask associated with a multicast group:

for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
/* Prepare output packet and send it out. */

if ((port_mask & 1) != 0) {
if (likely ((mc = mcast_out_pkt (m, use_clone)) != NULL))
mcast_send_pkt (mc, &dst_eth_addr.as_addr, gconf, port);
else if (use_clone == 0)

rte_pktmbuf_free (m);

The actual packet transmission is done in the mcast_send_pkt() function:

static inline void mcast_send_pkt (struct rte_mbuf *pkt, struct ether_addr +dest_addr,
—struct lcore_queue_conf xgconf, uint8_t port)
{

struct ether_hdr xethdr;

uintl6_t len;

/+ Construct Ethernet header. =/

ethdr = (struct ether_hdr «)rte_pktmbuf_prepend(pkt, (uintlé6_t) sizeof (xethdr));
RTE_ASSERT (ethdr != NULL);

ether_addr_copy (dest_addr, ðdr->d_addr);

ether_addr_copy (&éports_eth_addr[port], ðdr->s_addr);

ethdr—->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);

/#* Put new packet into the output queue x/

len = gconf->tx_mbufs[port].len;

gconf->tx_mbufs[port].m_table[len] = pkt;

gconf->tx_mbufs([port].len = ++len;

/#* Transmit packets =/

if (unlikely (MAX_PKT_BURST == len))
send_burst (gqconf, port);

62 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Buffer Cloning

This is the most important part of the application since it demonstrates the use of zero- copy buffer cloning. There
are two approaches for creating the outgoing packet and although both are based on the data zero-copy idea, there are
some differences in the detail.

The first approach creates a clone of the input packet, for example, walk though all segments of the input packet and
for each of segment, create a new buffer and attach that new buffer to the segment (refer to rte_pktmbuf_clone() in the
rte_mbuf library for more details). A new buffer is then allocated for the packet header and is prepended to the cloned
buffer.

The second approach does not make a clone, it just increments the reference counter for all input packet segment,
allocates a new buffer for the packet header and prepends it to the input packet.

Basically, the first approach reuses only the input packet’s data, but creates its own copy of packet’s metadata. The
second approach reuses both input packet’s data and metadata.

The advantage of first approach is that each outgoing packet has its own copy of the metadata, so we can safely modify
the data pointer of the input packet. That allows us to skip creation if the output packet is for the last destination
port and instead modify input packet’s header in place. For example, for N destination ports, we need to invoke
mcast_out_pkt() (N-1) times.

The advantage of the second approach is that there is less work to be done for each outgoing packet, that is, the “clone”
operation is skipped completely. However, there is a price to pay. The input packet’s metadata must remain intact, so
for N destination ports, we need to invoke mcast_out_pkt() (N) times.

Therefore, for a small number of outgoing ports (and segments in the input packet), first approach is faster. As the
number of outgoing ports (and/or input segments) grows, the second approach becomes more preferable.

Depending on the number of segments or the number of ports in the outgoing portmask, either the first (with cloning)
or the second (without cloning) approach is taken:

use_clone = (port_num <= MCAST_CLONE_PORTS && m—>pkt.nb_segs <= MCAST_CLONE_SEGS) ;

It is the mcast_out_pkt() function that performs the packet duplication (either with or without actually cloning the
buffers):

static inline struct rte_mbuf *mcast_out_pkt (struct rte_mbuf *pkt, int use_clone)
{
struct rte_mbuf +hdr;

/% Create new mbuf for the header. x/

if (unlikely ((hdr = rte_pktmbuf_alloc (header_pool)) == NULL))
return NULL;

/+ If requested, then make a new clone packet. =/

if (use_clone != 0 && unlikely ((pkt = rte_pktmbuf_clone (pkt, clone_pool))
NULL)) {
rte_pktmbuf_free (hdr);
return NULL;
}

/* prepend new header x*/
hdr->pkt.next = pkt;

/+ update header's fields x/

3.9. IPv4 Multicast Sample Application 63

dpdk, Release 0.11

hdr->pkt.pkt_len = (uintl6_t) (hdr->pkt.data_len + pkt->pkt.pkt_len);
hdr->pkt.nb_segs = (uint8_t) (pkt->pkt.nb_segs + 1);

/* copy metadata from source packet x*/

hdr->pkt.in_port = pkt->pkt.in_port;
hdr->pkt.vlan_macip = pkt->pkt.vlan_macip;
hdr->pkt.hash = pkt->pkt.hash;

hdr->o0l_flags = pkt->o0l_flags;
rte_mbuf_sanity_check (hdr, RTE_MBUF_PKT, 1);

return hdr;

3.10 IP Reassembly Sample Application

The L3 Forwarding application is a simple example of packet processing using the DPDK. The application performs
L3 forwarding with reassembly for fragmented IPv4 and IPv6 packets.

3.10.1 Overview

The application demonstrates the use of the DPDK libraries to implement packet forwarding with reassembly for IPv4
and IPv6 fragmented packets. The initialization and run- time paths are very similar to those of the 1.2 Forwarding
Sample Application (in Real and Virtualized Environments). The main difference from the L2 Forwarding sample
application is that it reassembles fragmented IPv4 and IPv6 packets before forwarding. The maximum allowed size of
reassembled packet is 9.5 KB.

There are two key differences from the L2 Forwarding sample application:

* The first difference is that the forwarding decision is taken based on information read from the input packet’s IP
header.

» The second difference is that the application differentiates between IP and non-IP traffic by means of offload
flags.

3.10.2 The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to
store/lookup an outgoing port humber, associated with that IPv4 address.
Any unmatched packets are forwarded to the originating port.Compiling the
Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/ip_reassembly

1. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

64 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

1. Build the application:

make

3.10.3 Running the Application

The application has a number of command line options:

./build/ip_reassembly [EAL options] —-- —-p PORTMASK [-g NQ] [--maxflows=FLOWS>] [--
—flowttl1l=TTL[(s|ms)]]

where:
¢ -p PORTMASK: Hexadecimal bitmask of ports to configure
* -q NQ: Number of RX queues per Icore
* —maxflows=FLOWS: determines maximum number of active fragmented flows (1-65535). Default value: 4096.

e —flowttl=TTL[(sIms)]: determines maximum Time To Live for fragmented packet. If all fragments of the packet
wouldn’t appear within given time-out, then they are considered as invalid and will be dropped. Valid range is
Ims - 3600s. Default value: Is.

To run the example in linuxapp environment with 2 Icores (2,4) over 2 ports(0,2) with 1 RX queue per Icore:

./build/ip_reassembly -1 2,4 -n 3 —— -p 5

EAL: coremask set to 14

EAL: Detected lcore 0 on socket O

EAL: Detected lcore 1 on socket 1

EAL: Detected lcore 2 on socket 0

EAL: Detected lcore 3 on socket 1

EAL: Detected lcore 4 on socket 0

Initializing port 0 on lcore 2... Address:00:1B:21:76:FA:2C, rxg=0 txg=2,0 txg=4,1

done: Link Up - speed 10000 Mbps - full-duplex

Skipping disabled port 1

Initializing port 2 on lcore 4... Address:00:1B:21:5C:FF:54, rxg=0 txg=2,0 txg=4,1
done: Link Up - speed 10000 Mbps - full-duplex

Skipping disabled port 3IP_FRAG: Socket 0: adding route 100.10.0.0/16 (port O0)
IP_RSMBL: Socket 0: adding route 100.20.0.0/16 (port 1)

IP_RSMBL: Socket 0: adding route 0101:0101:0101:0101:0101:0101:0101:0101/48 (port 0)
IP_RSMBL: Socket 0: adding route 0201:0101:0101:0101:0101:0101:0101:0101/48 (port 1)

IP_RSMBL: entering main loop on lcore 4

IP_RSMBL: ——- lcoreid=4 portid=2
IP_RSMBL: entering main loop on lcore 2
IP_RSMBL: —-- lcoreid=2 portid=0

To run the example in linuxapp environment with 1 Icore (4) over 2 ports(0,2) with 2 RX queues per lcore:

./build/ip_reassembly -1 4 -n 3 —— -p 5 —-q 2

To test the application, flows should be set up in the flow generator that match the values in the 13fwd_ipv4_route_array
and/or 13fwd_ipv6_route_array table.

3.10. IP Reassembly Sample Application 65

dpdk, Release 0.11

Please note that in order to test this application, the traffic generator should be generating valid fragmented IP packets.
For IPv6, the only supported case is when no other extension headers other than fragment extension header are present
in the packet.

The default 13fwd_ipv4_route_array table is:

struct 13fwd_ipv4_route 13fwd_ipv4_route_arrayl[] = {

{IPv4 (100, 10, 0, 0), 16, 0},
{IPv4 (100, 20, 0, 0), 16, 1},
{IPv4 (100, 30, 0, 0), 16, 2},
{IPv4 (100, 40, 0, 0), 16, 3},
{IPv4 (100, 50, 0, 0), 16, 4},
{IPv4 (100, 60, 0, 0), 16, 5},
{IPv4 (100, 70, 0, 0), 16, 6},
{IPv4 (100, 80, 0, 0), 16, 7},

}i

The default 13fwd_ipv6_route_array table is:

struct 13fwd_ipv6_route 13fwd_ipv6_route_array[] = {
{{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0},
{{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},
{{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},
{{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},
{{, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},
{{¢, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},
{{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},
{{¢, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},

}i

For example, for the fragmented input IPv4 packet with destination address: 100.10.1.1, a reassembled IPv4 packet
be sent out from port #0 to the destination address 100.10.1.1 once all the fragments are collected.

3.10.4 Explanation

The following sections provide some explanation of the sample application code. As mentioned in the overview
section, the initialization and run-time paths are very similar to those of the L2 Forwarding Sample Application (in
Real and Virtualized Environments). The following sections describe aspects that are specific to the IP reassemble
sample application.

IPv4 Fragment Table Initialization

This application uses the rte_ip_frag library. Please refer to Programmer’s Guide for more detailed explanation of
how to use this library. Fragment table maintains information about already received fragments of the packet. Each IP
packet is uniquely identified by triple <Source IP address>, <Destination IP address>, <ID>. To avoid lock contention,
each RX queue has its own Fragment Table, e.g. the application can’t handle the situation when different fragments of
the same packet arrive through different RX queues. Each table entry can hold information about packet consisting of
up to RTE_LIBRTE_IP_FRAG_MAX_FRAGS fragments.

frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S max_flow_ttl;
if ((gconf->frag_tbl[queue] = rte_ip_frag_tbl_create (max_flow_num, IPV4_FRAG_TBL_
—BUCKET_ENTRIES, max_flow_num, frag_cycles, socket)) == NULL)
{
RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_ create(%u) on " "lcore: %Su for queue: %u,

—failed\n", max_flow_num, lcore, queue);

66 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

return -1;

Mempools Initialization

The reassembly application demands a lot of mbuf’s to be allocated. At any given time up to (2 * max_flow_num *
RTE_LIBRTE_IP_FRAG_MAX_FRAGS * <maximum number of mbufs per packet>) can be stored inside Fragment
Table waiting for remaining fragments. To keep mempool size under reasonable limits and to avoid situation when
one RX queue can starve other queues, each RX queue uses its own mempool.

nb_mbuf = RTE_MAX (max_flow_num, 2UL MAX_PKT BURST) » RTE_LIBRTE_IP_FRAG_MAX_FRAGS;
nb_mbuf (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE;

nb_mbuf *= 2; /% ipv4 and ipvé #/

nb_mbuf += RTE_TEST RX_DESC_DEFAULT + RTE_TEST TX_DESC_DEFAULT;

nb_mbuf = RTE_MAX (nb_mbuf, (uint32_t)NB_MBUF) ;

*

n

snprintf (buf, sizeof (buf), "mbuf_pool_%u_%u", lcore, queue);

if ((rxg—>pool = rte_mempool_create (buf, nb_mbuf, MBUF_SIZE, 0, sizeof (struct rte_
—pktmbuf_pool_private), rte_pktmbuf_pool_init, NULL,
rte_pktmbuf_init, NULL, socket, MEMPOOL_F_SP_PUT | MEMPOOL_F_SC_GET)) == NULL) {

RTE_LOG (ERR, IP_RSMBL, "mempool_create (%s) failed", buf);
return -1;

Packet Reassembly and Forwarding

For each input packet, the packet forwarding operation is done by the 13fwd_simple_forward() function. If
the packet is an IPv4 or IPv6 fragment, then it calls rte_ipv4_reassemble_packet() for IPv4 packets, or
rte_ipv6_reassemble_packet() for IPv6 packets. These functions either return a pointer to valid mbuf that contains
reassembled packet, or NULL (if the packet can’t be reassembled for some reason). Then 13fwd_simple_forward()
continues with the code for the packet forwarding decision (that is, the identification of the output interface for the
packet) and actual transmit of the packet.

The rte_ipv4_reassemble_packet() or rte_ipv6_reassemble_packet() are responsible for:
1. Searching the Fragment Table for entry with packet’s <IP Source Address, IP Destination Address, Packet ID>

2. If the entry is found, then check if that entry already timed-out. If yes, then free all previously received frag-
ments, and remove information about them from the entry.

3. If no entry with such key is found, then try to create a new one by one of two ways:
(a) Use as empty entry

(b) Delete a timed-out entry, free mbufs associated with it mbufs and store a new entry with specified key in
it.

4. Update the entry with new fragment information and check if a packet can be reassembled (the packet’s entry
contains all fragments).

(a) If yes, then, reassemble the packet, mark table’s entry as empty and return the reassembled mbuf to the
caller.

(b) If no, then just return a NULL to the caller.

3.10. IP Reassembly Sample Application 67

dpdk, Release 0.11

If at any stage of packet processing a reassembly function encounters an error (can’t insert new entry into the Fragment
table, or invalid/timed-out fragment), then it will free all associated with the packet fragments, mark the table entry as
invalid and return NULL to the caller.

Debug logging and Statistics Collection

The RTE_LIBRTE_IP_FRAG_TBL_STAT controls statistics collection for the IP Fragment Table. This macro is
disabled by default. To make ip_reassembly print the statistics to the standard output, the user must send either an
USRI, INT or TERM signal to the process. For all of these signals, the ip_reassembly process prints Fragment table
statistics for each RX queue, plus the INT and TERM will cause process termination as usual.

3.11 Kernel NIC Interface Sample Application

The Kernel NIC Interface (KNI) is a DPDK control plane solution that allows userspace applications to exchange
packets with the kernel networking stack. To accomplish this, DPDK userspace applications use an IOCTL call to
request the creation of a KNI virtual device in the Linux* kernel. The IOCTL call provides interface information and
the DPDK'’s physical address space, which is re-mapped into the kernel address space by the KNI kernel loadable
module that saves the information to a virtual device context. The DPDK creates FIFO queues for packet ingress and
egress to the kernel module for each device allocated.

The KNI kernel loadable module is a standard net driver, which upon receiving the IOCTL call access the DPDK’s
FIFO queue to receive/transmit packets from/to the DPDK userspace application. The FIFO queues contain pointers
to data packets in the DPDK. This:

* Provides a faster mechanism to interface with the kernel net stack and eliminates system calls
* Facilitates the DPDK using standard Linux* userspace net tools (tcpdump, ftp, and so on)
 Eliminate the copy_to_user and copy_from_user operations on packets.

The Kernel NIC Interface sample application is a simple example that demonstrates the use of the DPDK to create a
path for packets to go through the Linux* kernel. This is done by creating one or more kernel net devices for each of
the DPDK ports. The application allows the use of standard Linux tools (ethtool, ifconfig, tcpdump) with the DPDK
ports and also the exchange of packets between the DPDK application and the Linux* kernel.

3.11.1 Overview

The Kernel NIC Interface sample application uses two threads in user space for each physical NIC port being used,
and allocates one or more KNI device for each physical NIC port with kernel module’s support. For a physical NIC
port, one thread reads from the port and writes to KNI devices, and another thread reads from KNI devices and writes
the data unmodified to the physical NIC port. It is recommended to configure one KNI device for each physical NIC
port. If configured with more than one KNI devices for a physical NIC port, it is just for performance testing, or it can
work together with VMDq support in future.

The packet flow through the Kernel NIC Interface application is as shown in the following figure.
3.11.2 Compiling the Application

Compile the application as follows:

1. Go to the example directory:

68 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

KMI Sample Application

Linux Kernel

f Core0 —\
Port0 vEth 0 i'
\ f | "
b CoreB0
Traffic -
Generator
[
f CoreAN "\' H
’
Port N vEth_N “«

Fig. 3.2: Kernel NIC Application Packet Flow

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/kni

2. Set the target (a default target is used if not specified)

Note: This application is intended as a linuxapp only.

’export RTE_TARGET=x86_64-native-linuxapp—-gcc

3. Build the application:

’make

3.11.3 Loading the Kernel Module

Loading the KNI kernel module without any parameter is the typical way a DPDK application gets packets into and
out of the kernel net stack. This way, only one kernel thread is created for all KNI devices for packet receiving in

kernel side:

’#insmod rte_kni.ko

Pinning the kernel thread to a specific core can be done using a taskset command such as following:

’#taskset -p 100000 "pgrep —-fl1 kni_thread | awk '{print S$1}'"

3.11. Kernel NIC Interface Sample Application

69

dpdk, Release 0.11

This command line tries to pin the specific kni_thread on the 20th lcore (Icore numbering starts at 0), which means
it needs to check if that Icore is available on the board. This command must be sent after the application has been
launched, as insmod does not start the kni thread.

For optimum performance, the Icore in the mask must be selected to be on the same socket as the lcores used in the
KNI application.

To provide flexibility of performance, the kernel module of the KNI, located in the kmod sub-directory of the DPDK
target directory, can be loaded with parameter of kthread_mode as follows:

* #insmod rte_kni.ko kthread_mode=single

This mode will create only one kernel thread for all KNI devices for packet receiving in kernel side. By default,
it is in this single kernel thread mode. It can set core affinity for this kernel thread by using Linux command
taskset.

* #insmod rte_kni.ko kthread_mode =multiple

This mode will create a kernel thread for each KNI device for packet receiving in kernel side. The core affinity
of each kernel thread is set when creating the KNI device. The Icore ID for each kernel thread is provided
in the command line of launching the application. Multiple kernel thread mode can provide scalable higher
performance.

To measure the throughput in a loopback mode, the kernel module of the KNI, located in the kmod sub-directory of
the DPDK target directory, can be loaded with parameters as follows:

¢ #insmod rte_kni.ko lo_mode=lo_mode_fifo
This loopback mode will involve ring enqueue/dequeue operations in kernel space.
¢ #insmod rte_kni.ko lo_mode=lo_mode_fifo_skb

This loopback mode will involve ring enqueue/dequeue operations and sk buffer copies in kernel space.

3.11.4 Running the Application

The application requires a number of command line options:

kni [EAL options] -- -P -p PORTMASK --config=" (port,lcore_rx,lcore_tx[,lcore_kthread, .
—..])[,port,lcore_rx,lcore_tx|[,lcore_kthread,...]]"

Where:

e -P: Set all ports to promiscuous mode so that packets are accepted regardless of the packet’s Ethernet MAC
destination address. Without this option, only packets with the Ethernet MAC destination address set to the
Ethernet address of the port are accepted.

* -p PORTMASK: Hexadecimal bitmask of ports to configure.

e —config="(port,lcore_rx, lcore_tx[,lcore_kthread, ...]) [, port,Icore_rx, lcore_tx[,Icore_kthread, ...]]”: Deter-
mines which Icores of RX, TX, kernel thread are mapped to which ports.

Refer to DPDK Getting Started Guide for general information on running applications and the Environment Abstrac-
tion Layer (EAL) options.

The -c coremask or -1 corelist parameter of the EAL options should include the Icores indicated by the lcore_rx and
Icore_tx, but does not need to include Icores indicated by Icore_kthread as they are used to pin the kernel thread on.
The -p PORTMASK parameter should include the ports indicated by the port in —config, neither more nor less.

The lcore_kthread in —config can be configured none, one or more Icore IDs. In multiple kernel thread mode, if
configured none, a KNI device will be allocated for each port, while no specific lcore affinity will be set for its kernel
thread. If configured one or more Icore IDs, one or more KNI devices will be allocated for each port, while specific

70 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Icore affinity will be set for its kernel thread. In single kernel thread mode, if configured none, a KNI device will be
allocated for each port. If configured one or more Icore IDs, one or more KNI devices will be allocated for each port
while no Icore affinity will be set as there is only one kernel thread for all KNI devices.

For example, to run the application with two ports served by six lcores, one Icore of RX, one Icore of TX, and one
Icore of kernel thread for each port:

./build/kni -1 4-7 -n 4 —— -P -p 0x3 -config="(0,4,6,8),(1,5,7,9)"

3.11.5 KNI Operations

Once the KNI application is started, one can use different Linux* commands to manage the net interfaces. If more
than one KNI devices configured for a physical port, only the first KNI device will be paired to the physical device.
Operations on other KNI devices will not affect the physical port handled in user space application.

Assigning an IP address:

’#ifconfig vEthO_0 192.168.0.1

Displaying the NIC registers:

’#ethtool -d vEthO0_0

Dumping the network traffic:

’#tcpdump -i vEthO0_O

When the DPDK userspace application is closed, all the KNI devices are deleted from Linux*.

3.11.6 Explanation

The following sections provide some explanation of code.

Initialization

Setup of mbuf pool, driver and queues is similar to the setup done in the L2 Forwarding Sample Application (in Real
and Virtualized Environments).. In addition, one or more kernel NIC interfaces are allocated for each of the configured
ports according to the command line parameters.

The code for allocating the kernel NIC interfaces for a specific port is as follows:

static int
kni_alloc (uint8_t port_id)
{
uint8_t 1i;
struct rte_kni xkni;
struct rte_kni_conf conf;
struct kni_port_params s*params = kni_port_params_array;

if (port_id >= RTE_MAX_ETHPORTS || !params[port_id])
return -1;

params [port_id]->nb_kni = params[port_id]->nb_lcore_k ? params|[port_id]->nb_
—lcore_k : 1;

3.11. Kernel NIC Interface Sample Application 71

dpdk, Release 0.11

for (i = 0; i < params[port_id]->nb_kni; i++) {
/% Clear conf at first =/

memset (&conf, 0, sizeof (conf));

if (params[port_id]->nb_lcore_k) {
snprintf (conf.name, RTE_KNI_NAMESIZE, "vEth%u_ %u", port_id, 1i);
conf.core_id = params|[port_id]->1lcore_k[i];
conf.force_bind = 1;

} else
snprintf (conf.name, RTE_KNI_NAMESIZE, "vEth%u", port_id);
conf.group_id = (uintl6_t)port_id;

conf.mbuf_size = MAX_PACKET_SZ;

J *
* The first KNI device associated to a port
* is the master, for multiple kernel thread
* environment.
*/

if (1 == 0) {

struct rte_kni_ops ops;
struct rte_eth_dev_info dev_info;

memset (&dev_info, 0, sizeof(dev_info)); rte_eth_dev_info_get (port_id,
— &dev_info);

conf.addr = dev_info.pci_dev->addr;
conf.id = dev_info.pci_dev->id;

memset (&ops, 0, sizeof (ops));

ops.port_id = port_id;
ops.change_mtu = kni_change_mtu;
ops.config_network_if = kni_config_network_interface;

kni = rte_kni_alloc (pktmbuf_pool, &conf, &ops);
} else
kni = rte_kni_alloc (pktmbuf_pool, &conf, NULL);

if (!'kni)
rte_exit (EXIT_FAILURE, "Fail to create kni for "
"port: %d\n", port_id);

params [port_id]->kni[i] = kni;
}

return O;

The other step in the initialization process that is unique to this sample application is the association of each port with
Icores for RX, TX and kernel threads.

* One Icore to read from the port and write to the associated one or more KNI devices
* Another Icore to read from one or more KNI devices and write to the port
* Other Icores for pinning the kernel threads on one by one

This is done by using the‘kni_port_params_array[]‘ array, which is indexed by the port ID. The code is as follows:

72 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

static int
parse_config(const char xarg)
{
const char *p, *p0 = arg;
char s[256], =xend;
unsigned size;
enum fieldnames {
FLD_PORT = O,
FLD_LCORE_RX,
FLD_LCORE_TX,
_NUM_FLD = KNI_MAX_KTHREAD + 3,
bi
int i, Jj, nb_token;
char xstr_fld[_NUM_FLD];
unsigned long int_f1d[_NUM_FLD];
uint8_t port_id, nb_kni_port_params = 0;

memset (&kni_port_params_array, 0, sizeof (kni_port_params_array));

while (((p = strchr(p0, '(')) != NULL) && nb_kni_port_params < RTE_MAX_ETHPORTS)
ptt;
if ((p0 = strchr(p, ')')) == NULL)
goto fail;

size = p0 - p;

if (size >= sizeof(s)) {
printf ("Invalid config parameters\n");
goto fail;

snprintf (s, sizeof(s), "%.xs", size, p);
nb_token = rte_strsplit(s, sizeof(s), str_fld, _NUM FLD, ',');

if (nb_token <= FLD_LCORE_TX) {
printf ("Invalid config parameters\n");

goto fail;
}
for (i = 0; i < nb_token; i++) {
errno = 0;
int_fld[i] = strtoul(str_£fld[i], &end, 0);

if (errno != 0 || end == str_fl1d[i]) {
printf ("Invalid config parameters\n");
goto fail;

i = 0;
port_id = (uint8_t)int_fld[i++];

if (port_id >= RTE_MAX_ ETHPORTS) {
printf ("Port ID %u could not exceed the maximum %u\n", port_id, RTE_MAX_
— ETHPORTS) ;
goto fail;

if (kni_port_params_array[port_id]) {

{

3.11. Kernel NIC Interface Sample Application

73

dpdk, Release 0.11

printf ("Port %u has been configured\n", port_id);
goto fail;

kni_port_params_array[port_id] = (struct kni_port_paramsx)rte_zmalloc ("KNI_
—port_params", sizeof (struct kni_port_params), RTE_CACHE_LINE_SIZE);
kni_port_params_array[port_id]->port_id = port_id;

kni_port_params_array[port_id]->lcore_rx = (uint8_t)int_fld[i++];
kni_port_params_array[port_id]->lcore_tx = (uint8_t)int_fld[i++];
if (kni_port_params_array[port_id]->1lcore_rx >= RTE_MAX_LCORE || kni_port_

—params_array[port_id]->lcore_tx >= RTE_MAX_LCORE) {
printf ("lcore_rx %u or lcore_tx %u ID could not "
"exceed the maximum %u\n",
kni_port_params_array[port_id]->lcore_rx, kni_port_params_
—array[port_id]->1lcore_tx, RTE_MAX_LCORE) ;
goto fail;

for (j = 0; i < nb_token && j < KNI_MAX_KTHREAD; i++, j++)
kni_port_params_array[port_id]->1lcore_k[]j] = (uint8_t)int_f£f1d[i];
kni_port_params_array[port_id]->nb_lcore_k = j;

print_config();

return 0;

fail:

for (i = 0; i < RTE_MAX_ ETHPORTS; i++) {

if (kni_port_params_array[i]) {

rte_free (kni_port_params_array[i]);
kni_port_params_array[i] = NULL;

return -1;

Packet Forwarding

After the initialization steps are completed, the main_loop() function is run on each Icore. This function first checks
the Icore_id against the user provided Icore_rx and Icore_tx to see if this lcore is reading from or writing to kernel NIC
interfaces.

For the case that reads from a NIC port and writes to the kernel NIC interfaces, the packet reception is the same as
in L2 Forwarding sample application (see Receive, Process and Transmit Packets). The packet transmission is done
by sending mbufs into the kernel NIC interfaces by rte_kni_tx_burst(). The KNI library automatically frees the mbufs
after the kernel successfully copied the mbufs.

J ok *
* Interface to burst rx and enqueue mbufs into rx_g

*/

74 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

static void
kni_ingress (struct kni_port_params *p)
{
uint8_t i, nb_kni, port_id;
unsigned nb_rx, num;
struct rte_mbuf xpkts_burst [PKT_BURST_SZ];

if (p == NULL)
return;

nb_kni = p->nb_kni;
port_id = p->port_id;

for (i = 0; 1 < nb_kni; i++) {
/* Burst rx from eth %/

nb_rx = rte_eth_rx_burst (port_id, 0, pkts_burst, PKT_BURST_SZ);

if (unlikely (nb_rx > PKT_BURST_SZ7)) {
RTE_LOG (ERR, APP, "Error receiving from eth\n");
return;

/* Burst tx to kni */

num = rte_kni_tx_burst (p—>kni[i], pkts_burst, nb_rx);
kni_stats[port_id].rx_packets += num;
rte_kni_handle_request (p—>kni[i]);

if (unlikely(num < nb_rx)) {
/% Free mbufs not tx to kni interface x*/
kni_burst_free_mbufs (&pkts_burst[num], nb_rx - num);

kni_stats[port_id] .rx_dropped += nb_rx - num;

For the other case that reads from kernel NIC interfaces and writes to a physical NIC port, packets are retrieved by
reading mbufs from kernel NIC interfaces by rte_kni_rx_burst(). The packet transmission is the same as in the L2

Forwarding sample application (see Receive, Process and Transmit Packets).

J ok k
* Interface to dequeue mbufs from tx_qg and burst tx

*/
static void

kni_egress (struct kni_port_params =*p)
{
uint8_t i, nb_kni, port_id;
unsigned nb_tx, num;
struct rte_mbuf xpkts_burst [PKT_BURST_SZ];

if (p == NULL)
return;

nb_kni = p->nb_kni;
port_id = p->port_id;

for (i = 0; i < nb_kni; i++) {
/* Burst rx from kni =/

3.11. Kernel NIC Interface Sample Application

75

dpdk, Release 0.11

num = rte_kni_rx_burst (p->kni[i], pkts_burst, PKT_BURST_SZ);
if (unlikely(num > PKT_BURST_SZ)) {

RTE_LOG (ERR, APP, "Error receiving from KNI\n");

return;

/* Burst tx to eth x/
nb_tx = rte_eth_tx_burst (port_id, 0, pkts_burst, (uintlé_t)num);
kni_stats[port_id].tx_packets += nb_tx;
if (unlikely(nb_tx < num)) {
/#* Free mbufs not tx to NIC */

kni_burst_free_mbufs (&pkts_burst[nb_tx], num - nb_tx);
kni_stats[port_id].tx_dropped += num - nb_tx;

Callbacks for Kernel Requests

To execute specific PMD operations in user space requested by some Linux* commands, callbacks must be imple-
mented and filled in the struct rte_kni_ops structure. Currently, setting a new MTU and configuring the network
interface (up/ down) are supported.

static struct rte_kni_ops kni_ops = {
.change_mtu = kni_change_mtu,
.config_network_if = kni_config_network_interface,

bi
/#* Callback for request of changing MTU */
static int

kni_change_mtu(uint8_t port_id, unsigned new_mtu)

{
int ret;
struct rte_eth_conf conf;
if (port_id >= rte_eth_dev_count()) {
RTE_LOG (ERR, APP, "Invalid port id %d\n", port_id);
return -EINVAL;
RTE_LOG (INFO, APP, "Change MTU of port %d to %u\n", port_id, new_mtu);
/+ Stop specific port =/
rte_eth_dev_stop (port_id);
memcpy (&conf, &port_conf, sizeof (conf));

/* Set new MTU */

if (new_mtu > ETHER_MAX_LEN)
conf.rxmode. jumbo_frame = 1;

76 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

else
conf.rxmode. jumbo_frame = 0;

/#* mtu + length of header + length of FCS = max pkt length x/
conf.rxmode.max_rx_pkt_len = new_mtu + KNI_ENET_HEADER_SIZE + KNI_ENET_FCS_SIZE;

ret = rte_eth_dev_configure (port_id, 1, 1, &conf);

if (ret < 0) {
RTE_LOG (ERR, APP, "Fail to reconfigure port %d\n", port_id);
return ret;

/+* Restart specific port =/

ret = rte_eth_dev_start (port_id);

if (ret < 0) {
RTE_LOG (ERR, APP, "Fail to restart port %d\n", port_id);
return ret;

return 0O;

/#* Callback for request of configuring network interface up/down #*/

static int
kni_config_network_interface (uint8_t port_id, uint8_t if_up)
{

int ret = 0;

if (port_id >= rte_eth_dev_count () || port_id >= RTE_MAX_ETHPORTS) {
RTE_LOG (ERR, APP, "Invalid port id %d\n", port_id);
return -EINVAL;

RTE_LOG (INFO, APP, "Configure network interface of %d %s\n",
port_id, if_up ? "up" : "down");

if (if_up '= 0) {
/+ Configure network interface up x/
rte_eth_dev_stop (port_id);
ret = rte_eth_dev_start (port_id);

} else /x Configure network interface down #*/
rte_eth_dev_stop (port_id);

if (ret < 0)
RTE_LOG (ERR, APP, "Failed to start port %d\n", port_id);
return ret;

3.11. Kernel NIC Interface Sample Application

77

dpdk, Release 0.11

3.12 Keep Alive Sample Application

The Keep Alive application is a simple example of a heartbeat/watchdog for packet processing cores. It demonstrates
how to detect ‘failed’ DPDK cores and notify a fault management entity of this failure. Its purpose is to ensure the
failure of the core does not result in a fault that is not detectable by a management entity.

3.12.1 Overview

The application demonstrates how to protect against ‘silent outages’ on packet processing cores. A Keep Alive Monitor
Agent Core (master) monitors the state of packet processing cores (worker cores) by dispatching pings at a regular
time interval (default is Sms) and monitoring the state of the cores. Cores states are: Alive, MIA, Dead or Buried.
MIA indicates a missed ping, and Dead indicates two missed pings within the specified time interval. When a core
is Dead, a callback function is invoked to restart the packet processing core; A real life application might use this
callback function to notify a higher level fault management entity of the core failure in order to take the appropriate
corrective action.

Note: Only the worker cores are monitored. A local (on the host) mechanism or agent to supervise the Keep Alive
Monitor Agent Core DPDK core is required to detect its failure.

Note: This application is based on the L2 Forwarding Sample Application (in Real and Virtualized Environments). As
such, the initialization and run-time paths are very similar to those of the L2 forwarding application.

3.12.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

’export RTE_SDK=/path/to/rte_sdk cd ${RTE_SDK}/examples/keep_alive

2. Set the target (a default target is used if not specified). For example:

’export RTE_TARGET=x86_64-native—-linuxapp—-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.
3. Build the application:

’make

3.12.3 Running the Application

The application has a number of command line options:

./build/12fwd-keepalive [EAL options] \
—— -p PORTMASK [-g NQ] [-K PERIOD] [-T PERIOD]

where,
* p PORTMASK: A hexadecimal bitmask of the ports to configure
* g NQ: A number of queues (=ports) per Icore (default is 1)

* K PERIOD: Heartbeat check period in ms(5ms default; 86400 max)

78 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

e T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default, 86400 maximum).

To run the application in linuxapp environment with 4 Icores, 16 ports 8 RX queues per Icore and a ping interval of
10ms, issue the command:

./build/12fwd-keepalive -1 0-3 -n 4 -—— -q 8 -p ffff -K 10

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-
straction Layer (EAL) options.

3.12.4 Explanation

The following sections provide some explanation of the The Keep-Alive/’Liveliness’ conceptual scheme. As men-
tioned in the overview section, the initialization and run-time paths are very similar to those of the L2 Forwarding
Sample Application (in Real and Virtualized Environments).

The Keep-Alive/’Liveliness’ conceptual scheme:
* A Keep- Alive Agent Runs every N Milliseconds.
* DPDK Cores respond to the keep-alive agent.
* If keep-alive agent detects time-outs, it notifies the fault management entity through a callback function.

The following sections provide some explanation of the code aspects that are specific to the Keep Alive sample appli-
cation.

The keepalive functionality is initialized with a struct rte_keepalive and the callback function to invoke in the case of
a timeout.

rte_global_keepalive_info = rte_keepalive_create (&dead_core, NULL);
if (rte_global_keepalive_info == NULL)
rte_exit (EXIT_FAILURE, "keepalive_create() failed");

The function that issues the pings keepalive_dispatch_pings() is configured to run every check_period milliseconds.

if (rte_timer_reset (&¢hb_timer,
(check_period = rte_get_timer_hz()) / 1000,
PERIODICAL,
rte_lcore_id(),
&rte_keepalive_dispatch_pings,
rte_global_keepalive_info
) = 0)

rte_exit (EXIT_FAILURE, "Keepalive setup failure.\n");

The rest of the initialization and run-time path follows the same paths as the the L2 forwarding application. The only
addition to the main processing loop is the mark alive functionality and the example random failures.

rte_keepalive_mark_alive (&rte_global_keepalive_info);

cur_tsc = rte_rdtsc();

/% Die randomly within 7 secs for demo purposes.. */
if (cur_tsc - tsc_initial > tsc_lifetime)

break;

The rte_keepalive_mark_alive function simply sets the core state to alive.

3.12. Keep Alive Sample Application 79

dpdk, Release 0.11

static inline void
rte_keepalive_mark_alive (struct rte_keepalive xkeepcfq)
{
keepcfg->state_flags[rte_lcore_id()] = ALIVE;
}

3.13 L2 Forwarding with Crypto Sample Application

The L2 Forwarding with Crypto (12fwd-crypto) sample application is a simple example of packet processing using the
Data Plane Development Kit (DPDK), in conjunction with the Cryptodev library.

3.13.1 Overview

The L2 Forwarding with Crypto sample application performs a crypto operation (cipher/hash) specified by the user
from command line (or using the default values), with a crypto device capable of doing that operation, for each packet
that is received on a RX_PORT and performs L2 forwarding. The destination port is the adjacent port from the enabled
portmask, that is, if the first four ports are enabled (portmask Oxf), ports 0 and 1 forward into each other, and ports 2
and 3 forward into each other. Also, the MAC addresses are affected as follows:

* The source MAC address is replaced by the TX_PORT MAC address
* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

3.13.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/1l2fwd-crypto

2. Set the target (a default target is used if not specified). For example:

’export RTE_TARGET=x86_64-native—-linuxapp—-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.
3. Build the application:

’make

3.13.3 Running the Application

The application requires a number of command line options:

./build/12fwd-crypto [EAL options] -- [-p PORTMASK] [-g NQ] [-s] [-T PERIOD] /
[--cdev_type HW/SW/ANY] [--chain HASH_CIPHER/CIPHER_HASH/CIPHER_ONLY/HASH_ONLY] /
[-—cipher_algo ALGO] [--cipher_op ENCRYPT/DECRYPT] [--cipher_key KEY] /
[-—cipher_key_random_size SIZE] [-—-iv IV] [-—-iv_random_size SIZE] /

[-—auth_algo ALGO] [—-—-auth_op GENERATE/VERIFY] [-—-auth_key KEY] /
[-—auth_key_random_size SIZE] [-—-aad AAD] [--aad_random_size SIZE] /

[--digest size SIZE] [-—-sessionless]

80 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

where,

e p PORTMASK: A hexadecimal bitmask of the ports to configure (default is all the ports)

* q NQ: A number of queues (=ports) per lcore (default is 1)

* s: manage all ports from single core

* T PERIOD: statistics will be refreshed each PERIOD seconds
(0 to disable, 10 default, 86400 maximum)

¢ cdev_type: select preferred crypto device type: HW, SW or anything (ANY)
(default is ANY)

* chain: select the operation chaining to perform: Cipher->Hash (CIPHER_HASH),
Hash->Cipher (HASH_CIPHER), Cipher (CIPHER_ONLY), Hash(HASH_ONLY)
(default is Cipher->Hash)

* cipher_algo: select the ciphering algorithm (default is aes-cbc)

* cipher_op: select the ciphering operation to perform: ENCRYPT or DECRYPT
(default is ENCRYPT)

* cipher_key: set the ciphering key to be used. Bytes has to be separated with ”:”

* cipher_key_random_size: set the size of the ciphering key,
which will be generated randomly.

Note that if —cipher_key is used, this will be ignored.

* iv: set the IV to be used. Bytes has to be separated with ”:”

* iv_random_size: set the size of the IV, which will be generated randomly.
Note that if —iv is used, this will be ignored.

* auth_algo: select the authentication algorithm (default is shal-hmac)

e cipher_op: select the authentication operation to perform: GENERATE or VERIFY
(default is GENERATE)

 auth_key: set the authentication key to be used. Bytes has to be separated with ”:”

* auth_key_random_size: set the size of the authentication key,
which will be generated randomly.

Note that if —auth_key is used, this will be ignored.

* aad: set the AAD to be used. Bytes has to be separated with *:”

* aad_random_size: set the size of the AAD, which will be generated randomly.
Note that if —aad is used, this will be ignored.

* digest_size: set the size of the digest to be generated/verified.

* sessionless: no crypto session will be created.

The application requires that crypto devices capable of performing the specified crypto operation are available on
application initialization. This means that HW crypto device/s must be bound to a DPDK driver or a SW crypto
device/s (virtual crypto PMD) must be created (using —vdev).

To run the application in linuxapp environment with 2 lcores, 2 ports and 2 crypto devices, issue the command:

3.13. L2 Forwarding with Crypto Sample Application 81

dpdk, Release 0.11

$./build/l12fwd-crypto -1 0-1 -n 4 —--vdev "cryptodev_aesni_mb_pmd" \
--vdev "cryptodev_aesni_mb_pmd" -- -p 0x3 —--chain CIPHER_HASH \
——cipher_op ENCRYPT --cipher_algo aes-cbc \

——cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f \
——auth_op GENERATE --auth_algo aes-xcbc-mac \

——auth_key 10:11:12:13:14:15:16:17:18:19:1a:1b:1c:1d:1le:1f

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-
straction Layer (EAL) options.

3.13.4 Explanation
The L2 forward with Crypto application demonstrates the performance of a crypto operation on a packet received on
a RX PORT before forwarding it to a TX PORT.

The following figure illustrates a sample flow of a packet in the application, from reception until transmission.

Fig. 3.3: Encryption flow Through the L2 Forwarding with Crypto Application

The following sections provide some explanation of the application.

Crypto operation specification

All the packets received in all the ports get transformed by the crypto device/s (ciphering and/or authentication). The
crypto operation to be performed on the packet is parsed from the command line (go to “Running the Application
section for all the options).

If no parameter is passed, the default crypto operation is:
* Encryption with AES-CBC with 128 bit key.
* Authentication with SHA1-HMAC (generation).
* Keys, IV and AAD are generated randomly.
There are two methods to pass keys, IV and ADD from the command line:

99,99,

* Passing the full key, separated bytes by ”:

’**Cipher_key 00:11:22:33:44

* Passing the size, so key is generated randomly:

’ffcipher_key_random_size 16

Note: If full key is passed (first method) and the size is passed as well (second method), the latter will be ignored.

Size of these keys are checked (regardless the method), before starting the app, to make sure that it is supported by the
crypto devices.

Crypto device initialization

Once the encryption operation is defined, crypto devices are initialized. The crypto devices must be either bound to a
DPDK driver (if they are physical devices) or created using the EAL option —vdev (if they are virtual devices), when
running the application.

82 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

The initialize_cryptodevs() function performs the device initialization. It iterates through the list of the available crypto
devices and check which ones are capable of performing the operation. Each device has a set of capabilities associated
with it, which are stored in the device info structure, so the function checks if the operation is within the structure of
each device.

The following code checks if the device supports the specified cipher algorithm (similar for the authentication algo-
rithm):

/% Check if device supports cipher algo */

i = 0;

opt_cipher_algo = options—->cipher_xform.cipher.algo;
cap = &dev_info.capabilities[i];

while (cap->op !'= RTE_CRYPTO_OP_TYPE_UNDEFINED) {

cap_cipher_algo = cap->sym.cipher.algo;
if (cap->sym.xform_ type ==
RTE_CRYPTO_SYM_XFORM_CIPHER) {

if (cap_cipher_algo == opt_cipher_algo) {
if (check_type (options, &dev_info) == 0)
break;
}
}
cap = &dev_info.capabilities[++1i];

If a capable crypto device is found, key sizes are checked to see if they are supported (cipher key and IV for the
ciphering):

J/ *
* Check i1f length of provided cipher key 1is supported
* by the algorithm chosen.
*/
if (options->ckey_param) {
if (check_supported_size(
options—>cipher_xform.cipher.key.length,
cap->sym.cipher.key_size.min,
cap->sym.cipher.key_size.max,
cap->sym.cipher.key_size.increment)
= 0) |
printf ("Unsupported cipher key length\n");
return -1;

/%
* Check if length of the cipher key to be randomly generated
* 1s supported by the algorithm chosen.
*/
} else if (options—->ckey_random_size != -1) {
if (check_supported_size (options—>ckey_random_size,
cap->sym.cipher.key_size.min,
cap->sym.cipher.key_size.max,
cap->sym.cipher.key_size.increment)
= 0) |
printf ("Unsupported cipher key length\n");
return -1;
}
options—>cipher_xform.cipher.key.length =
options—>ckey_random_size;
/* No size provided, use minimum size. #*/
} else

options—>cipher_xform.cipher.key.length =

3.13. L2 Forwarding with Crypto Sample Application 83

dpdk, Release 0.11

cap->sym.cipher.key_size.min;

After all the checks, the device is configured and it is added to the crypto device list.

Note: The number of crypto devices that supports the specified crypto operation must be at least the number of ports
to be used.

Session creation

The crypto operation has a crypto session associated to it, which contains information such as the transform chain to
perform (e.g. ciphering then hashing), pointers to the keys, lengths... etc.

This session is created and is later attached to the crypto operation:

static struct rte_cryptodev_sym_session =
initialize_crypto_session(struct 12fwd_crypto_options *options,
uint8 t cdev_id)

struct rte_crypto_sym_xform xfirst_xform;

if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
first_xform = &options->cipher_xform;
first_xform->next = &options->auth_xform;

} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
first_xform = &options->auth_xform;
first_xform->next = &options->cipher_xform;

} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
first_xform = &options->cipher_xform;

} else {

first_xform = &options->auth_xform;
/+ Setup Cipher Parameters x*/

return rte_cryptodev_sym_session_create (cdev_id, first_xform);

port_cparams([i].session = initialize_crypto_session (options,
port_cparams[i].dev_id);

Crypto operation creation

Given N packets received from a RX PORT, N crypto operations are allocated and filled:

if (nb_rx) {
J/ *
* If we can't allocate a crypto_ops, then drop
* the rest of the burst and dequeue and
* process the packets to free offload structs
*/
if (rte_crypto_op_bulk_alloc(
12fwd_crypto_op_pool,
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
ops_burst, nb_rx) !
nb_rx) {

84 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

for (j = 0; j < nb_rx; j++)
rte_pktmbuf_free (pkts_burst[i]);

nb_rx = 0;

After filling the crypto operation (including session attachment), the mbuf which will be transformed is attached to it:

op—>sym->m_src = m;

Since no destination mbuf is set, the source mbuf will be overwritten after the operation is done (in-place).

Crypto operation enqueuing/dequeuing

Once the operation has been created, it has to be enqueued in one of the crypto devices. Before doing so, for perfor-
mance reasons, the operation stays in a buffer. When the buffer has enough operations (MAX_PKT_BURST), they
are enqueued in the device, which will perform the operation at that moment:

static int
12fwd_crypto_enqueue (struct rte_crypto_op *op,
struct 12fwd_crypto_params xcparams)

unsigned lcore_id, len;
struct lcore_qgueue_conf xgconf;

lcore_id = rte_lcore_id();

gconf = &lcore_queue_conf[lcore_id];

len = gconf->op_buf[cparams->dev_id].len;
gconf->op_buf [cparams—->dev_id] .buffer[len] = op;
lent+;

/+ enough ops to be sent #*/

if (len == MAX_PKT_BURST) {
12fwd_crypto_send_burst (gconf, MAX_ PKT_BURST, cparams);
len = 0;

}

gconf->op_buf [cparams—->dev_id] .len = len;

return 0O;

static int
12fwd_crypto_send_burst (struct lcore_queue_conf *qconf, unsigned n,
struct 12fwd_crypto_params =xcparams)

struct rte_crypto_op **op_buffer;
unsigned ret;

op_buffer = (struct rte_crypto_op *x*)
gconf->op_buf [cparams->dev_id] .buffer;

ret = rte_cryptodev_enqueue_burst (cparams—>dev_id,
cparams—->qgp_id, op_buffer, (uintl6_t) n);

3.13. L2 Forwarding with Crypto Sample Application 85

dpdk, Release 0.11

crypto_statistics[cparams—>dev_id].enqueued += ret;

if (unlikely(ret < n)) {
crypto_statistics[cparams—->dev_id] .errors += (n - ret);
do {

rte_pktmbuf_free (op_buffer[ret]->sym->m_src);
rte_crypto_op_free (op_buffer(ret]);
} while (++ret < n);

}

return 0O;

After this, the operations are dequeued from the device, and the transformed mbuf is extracted from the operation.
Then, the operation is freed and the mbuf is forwarded as it is done in the L2 forwarding application.

/+ Dequeue packets from Crypto device */

do {
nb_rx = rte_cryptodev_dequeue_burst (
cparams—>dev_id, cparams->gp_id,
ops_burst, MAX_PKT_BURST) ;
crypto_statistics|[cparams—>dev_id] .dequeued +=
nb_rx;
/* Forward crypto'd packets =*/
for (j = 0; j < nb_rx; j++) {
m = ops_burst[j]->sym->m_src;
rte_crypto_op_~free (ops_burst[j]);
12fwd_simple_forward(m, portid);
}
} while (nb_rx == MAX_PKT_BURST) ;

3.14 L2 Forwarding Sample Application (in Real and Virtualized En-
vironments) with core load statistics.

The L2 Forwarding sample application is a simple example of packet processing using the Data Plane Development Kit
(DPDK) which also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment.

Note: This application is a variation of L2 Forwarding sample application. It demonstrate possible scheme of job
stats library usage therefore some parts of this document is identical with original L2 forwarding application.

3.14.1 Overview

The L2 Forwarding sample application, which can operate in real and virtualized environments, performs L2 forward-
ing for each packet that is received. The destination port is the adjacent port from the enabled portmask, that is, if the
first four ports are enabled (portmask 0xf), ports 1 and 2 forward into each other, and ports 3 and 4 forward into each
other. Also, the MAC addresses are affected as follows:

¢ The source MAC address is replaced by the TX port MAC address
* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

86 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

This application can be used to benchmark performance using a traffic-generator, as shown in the Fig. 3.4.
The application can also be used in a virtualized environment as shown in Fig. 3.5.

The L2 Forwarding application can also be used as a starting point for developing a new application based on the
DPDK.

Fig. 3.4: Performance Benchmark Setup (Basic Environment)

Flow 0 —ipesessses

[]
—r"r— o 1 =
p— 1

l I
[" Flow2—»

1_"_"_}

(5]

~ (el |,

Traffic MUT (RTE)
Generator Virtual
Machine

Host Machine/
Hypervisor

Legend

Note: Port 0-3 initialized from PCI Virtual Function 0-3 | Physical Function
enabled in the Host Machine using "ixgbe max_wfs=22" ‘

U Virtual Function

Fig. 3.5: Performance Benchmark Setup (Virtualized Environment)

Virtual Function Setup Instructions

This application can use the virtual function available in the system and therefore can be used in a virtual machine
without passing through the whole Network Device into a guest machine in a virtualized scenario. The virtual functions
can be enabled in the host machine or the hypervisor with the respective physical function driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using the following command:

modprobe ixgbe max_vfs=2,2

This command enables two Virtual Functions on each of Physical Function of the NIC, with two physical ports in
the PCI configuration space. It is important to note that enabled Virtual Function 0 and 2 would belong to Physical

3.14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load 87
statistics.

dpdk, Release 0.11

Function 0 and Virtual Function 1 and 3 would belong to Physical Function 1, in this case enabling a total of four
Virtual Functions.

3.14.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l2fwd-jobstats

2. Set the target (a default target is used if not specified). For example:

’export RTE_TARGET=x86_64-native—-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.
3. Build the application:

’make

3.14.3 Running the Application

The application requires a number of command line options:

./build/12fwd-jobstats [EAL options] —-- —-p PORTMASK [-g NQ] [-1]

where,
* p PORTMASK: A hexadecimal bitmask of the ports to configure
* q NQ: A number of queues (=ports) per Icore (default is 1)
¢ I: Use locale thousands separator when formatting big numbers.

To run the application in linuxapp environment with 4 Icores, 16 ports, 8 RX queues per Icore and thousands separator
printing, issue the command:

$./build/12fwd-jobstats -1 0-3 -n 4 -—- —-q 8 -p ffff -1

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-
straction Layer (EAL) options.

3.14.4 Explanation

The following sections provide some explanation of the code.

Command Line Arguments

The L2 Forwarding sample application takes specific parameters, in addition to Environment Abstraction Layer (EAL)
arguments (see Running the Application). The preferred way to parse parameters is to use the getopt() function, since
it is part of a well-defined and portable library.

The parsing of arguments is done in the 12fwd_parse_args() function. The method of argument parsing is not described
here. Refer to the glibc getopt(3) man page for details.

88 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

EAL arguments are parsed first, then application-specific arguments. This is done at the beginning of the main()
function:

/% init EAL */

ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Invalid EAL arguments\n");

argc —= ret;
argv += ret;

/% parse application arguments (after the EAL ones) #*/
ret = 12fwd_parse_args(argc, argv);

if (ret < 0)
rte_exit (EXIT_FAILURE, "Invalid L2FWD arguments\n");

Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created. The mbuf pool contains a set of mbuf objects that will be
used by the driver and the application to store network packet data:

/% create the mbuf pool x/

12fwd_pktmbuf_pool = rte_pktmbuf_pool_create ("mbuf_pool", NB_MBUF,
MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE,
rte_socket_1id());

if (12fwd_pktmbuf_pool == NULL)
rte_exit (EXIT_FAILURE, "Cannot init mbuf pool\n");

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is necessary to create a
pool that will be used by the driver. The number of allocated pkt mbufs is NB_MBUF, with a data room size of
RTE_MBUF_DEFAULT_BUF_SIZE each. A per-lcore cache of MEMPOOL_CACHE_SIZE mbufs is kept. The
memory is allocated in rte_socket_id() socket, but it is possible to extend this code to allocate one mbuf pool per
socket.

The rte_pktmbuf pool_create() function uses the default mbuf pool and mbuf initializers, respectively
rte_pktmbuf_pool_init() and rte_pktmbuf_init(). An advanced application may want to use the mempool API to create
the mbuf pool with more control.

Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully understand this code,
it is recommended to study the chapters that related to the Poll Mode Driver in the DPDK Programmer’s Guide and
the DPDK API Reference.

nb_ports = rte_eth_dev_count();

if (nb_ports == 0)
rte_exit (EXIT_FAILURE, "No Ethernet ports — bye\n");

/+ reset 12fwd _dst_ports =*/

for (portid = 0; portid < RTE_MAX_ ETHPORTS; portid++)

3.14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load 89
statistics.

dpdk, Release 0.11

12fwd_dst_ports[portid] = 0;
last_port = 0;

J/ *
* Each logical core 1is assigned a dedicated TX queue on each port.
*/
for (portid = 0; portid < nb_ports; portid++) {
/* skip ports that are not enabled */
if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
continue;
if (nb_ports_in_mask % 2) {
12fwd_dst_ports[portid] = last_port;
12fwd_dst_ports[last_port] = portid;
}
else
last_port = portid;

nb_ports_in_mask++;

rte_eth_dev_info_get ((uint8_t) portid, &dev_info);

The next step is to configure the RX and TX queues. For each port, there is only one RX queue (only one Icore is able to
poll a given port). The number of TX queues depends on the number of available Icores. The rte_eth_dev_configure()
function is used to configure the number of queues for a port:

ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Cannot configure device: "
"err=%d, port=%u\n",
ret, portid);

The global configuration is stored in a static structure:

static const struct rte_eth_conf port_conf = {
.rxmode = {
.split_hdr_size = 0,
.header_split = 0, /*%< Header Split disabled */
.hw_ip_checksum = 0, /##< IP checksum offload disabled =/
.hw_vlan_filter = 0, /#%< VLAN filtering disabled x/

. jumbo_frame = 0, /**< Jumbo Frame Support disabled */
.hw_strip_crec= 0, /+#+< CRC stripped by hardware x/

by

.txmode = {

.mg_mode = ETH_DCB_NONE
b
bi

RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option, which specifies the number of
queues per lcore.

920 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

For example, if the user specifies -q 4, the application is able to poll four ports with one Icore. If there are 16 ports on
the target (and if the portmask argument is -p ffff), the application will need four lcores to poll all the ports.

ret = rte_eth_rx_queue_setup (portid, 0, nb_rxd,
rte_eth_dev_socket_id(portid),
NULL,

12fwd_pktmbuf_pool);

if (ret < 0)
rte_exit (EXIT_FAILURE, "rte_eth_ rx_ queue_setup:err=%d, port=%u\n",
ret, (unsigned) portid);

The list of queues that must be polled for a given Icore is stored in a private structure called struct lcore_queue_conf.

struct lcore_queue_conf {
unsigned n_rx_port;
unsigned rx_port_list [MAX_RX_QUEUE_PER_LCORE];
truct mbuf_table tx _mbufs[RTE_MAX_ETHPORTS];

struct rte_timer rx_timers[MAX_RX_QUEUE_PER_LCORE];
struct rte_jobstats port_fwd_jobs[MAX_RX_ QUEUE_PER_LCORE];

struct rte_timer flush_timer;

struct rte_jobstats flush_job;

struct rte_jobstats idle_job;

struct rte_jobstats_context jobs_context;

rte_atomicl6_t stats_read_pending;
rte_spinlock_t lock;
} __rte_cache_aligned;

Values of struct Icore_queue_conf:

e n_rx_port and rx_port_list[] are used in the main packet processing loop (see Section Receive, Process and
Transmit Packets later in this chapter).

* rx_timers and flush_timer are used to ensure forced TX on low packet rate.
* flush_job, idle_job and jobs_context are librte_jobstats objects used for managing 12fwd jobs.

* stats_read_pending and lock are used during job stats read phase.

TX Queue Initialization

Each Icore should be able to transmit on any port. For every port, a single TX queue is initialized.

/#* 1init one TX queue on each port #*/

fflush (stdout) ;
ret = rte_eth_tx_queue_setup(portid, 0, nb_txd,
rte_eth_dev_socket_id(portid),
NULL) ;
if (ret < 0)
rte_exit (EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n",
ret, (unsigned) portid);

3.14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load 91
statistics.

dpdk, Release 0.11

Jobs statistics initialization

There are several statistics objects available:

¢ Flush job statistics

rte_jobstats_init (&¢gconf->flush_job, "flush", drain_tsc, drain_tsc,
drain_tsc, 0);

rte_timer_init (&gconf->flush_timer);
ret = rte_timer_reset (&gqconf->flush_timer, drain_tsc, PERIODICAL,
lcore_id, &12fwd_flush_job, NULL);

if (ret < 0) {
rte_exit (1, "Failed to reset flush job timer for lcore %u: %s",
lcore_id, rte_strerror(-ret));

* Statistics per RX port

rte_jobstats_init (job, name, 0, drain_tsc, 0, MAX_PKT_BURST);
rte_jobstats_set_update_period_function (job, 12fwd_job_update_cb);

rte_timer_init (&gconf->rx_timers[i]);
ret = rte_timer_reset (&gqconf->rx_timers[i], 0, PERIODICAL, lcore_id,
12fwd_fwd_job, (void «) (uintptr_t)i);

if (ret < 0) {
rte_exit (1, "Failed to reset lcore %u port %u job timer: %s",
lcore_id, gconf->rx_port_list[i], rte_strerror(-ret));

Following parameters are passed to rte_jobstats_init():
* 0 as minimal poll period
e drain_tsc as maximum poll period

* MAX_PKT_BURST as desired target value (RX burst size)

Main loop

The forwarding path is reworked comparing to original L2 Forwarding application. In the 12fwd_main_loop() function
three loops are placed.

for (;;) |
rte_spinlock_lock (&gconf->1lock);

do {
rte_Jjobstats_context_start (&gqconf->jobs_context);

/% Do the Idle job:
* — Read stats_read_pending flag
* — check 1f some real job need to be executed
*/
rte_Jjobstats_start (¢gconf->jobs_context, &gconf->idle_job);

do {
uint8_t 1i;

92 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

uint64_t now = rte_get_timer_cycles();

need_manage = qgconf->flush_timer.expire < now;

/% Check if we was esked to give a stats. */

stats_read_pending =
rte_atomicl6_read(&gconf->stats_read_pending);

need_manage |= stats_read_pending;
for (i = 0; 1 < gconf->n_rx_port && !need_manage; i++)
need_manage = qgconf->rx_timers[i].expire < now;

} while (!need_manage);
rte_jobstats_finish (&gqconf->idle_job, gconf->idle_job.target);

rte_timer_manage () ;
rte_jobstats_context_finish (&gconf->jobs_context);
} while (likely(stats_read_pending == 0));

rte_spinlock_unlock (&gconf->1lock) ;
rte_pause () ;

First infinite for loop is to minimize impact of stats reading. Lock is only locked/unlocked when asked.

Second inner while loop do the whole jobs management. When any job is ready, the use rte_timer_manage() is used
to call the job handler. In this place functions 12fwd_fwd_job() and 12fwd_flush_job() are called when needed. Then
rte_jobstats_context_finish() is called to mark loop end - no other jobs are ready to execute. By this time stats are
ready to be read and if stats_read_pending is set, loop breaks allowing stats to be read.

Third do-while loop is the idle job (idle stats counter). Its only purpose is monitoring if any job is ready or stats job
read is pending for this lcore. Statistics from this part of code is considered as the headroom available for additional
processing.

Receive, Process and Transmit Packets

The main task of 12fwd_fwd_job() function is to read ingress packets from the RX queue of particular port and forward
it. This is done using the following code:

total_nb_rx = rte_eth_rx_burst ((uint8_t) portid, 0, pkts_burst,
MAX_PKT_BURST) ;

for (j = 0; j < total_nb_rx; j++) {
m = pkts_burst[j];
rte_prefetchO (rte_pktmbuf_mtod(m, wvoid =*));
12fwd_simple_forward(m, portid);

Packets are read in a burst of size MAX_PKT_BURST. Then, each mbuf in the table is processed by the
12fwd_simple_forward() function. The processing is very simple: process the TX port from the RX port, then re-
place the source and destination MAC addresses.

The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in
the table.

After first read second try is issued.

3.14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load 93
statistics.

dpdk, Release 0.11

if (total_nb_rx == MAX_PKT_BURST) {
const uintl6_t nb_rx = rte_eth_rx_burst ((uint8_t) portid, 0, pkts_burst,
MAX_PKT_BURST) ;

total_nb_rx += nb_rx;

for (j = 0; j < nb_rx; j++) |
m = pkts_burst[j];
rte_prefetchO (rte_pktmbuf_mtod(m, wvoid =*));
12fwd_simple_forward(m, portid);

This second read is important to give job stats library a feedback how many packets was processed.

/* Adjust period time in which we are running here. x/
if (rte_jobstats_finish(job, total_nb_rx) != 0) {
rte_timer_reset (&gconf->rx_timers|[port_idx], Jjob->period, PERIODICAL,
lcore_id, 12fwd_fwd_job, arqg);

To maximize performance exactly MAX_PKT BURST is expected (the target value) to be read for each
12fwd_fwd_job() call. If total_nb_rx is smaller than target value job->period will be increased. If it is greater the
period will be decreased.

Note: In the following code, one line for getting the output port requires some explanation.

During the initialization process, a static array of destination ports (12fwd_dst_ports[]) is filled such that for each
source port, a destination port is assigned that is either the next or previous enabled port from the portmask. Naturally,
the number of ports in the portmask must be even, otherwise, the application exits.

static void
12fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
{
struct ether_hdr xeth;
void xtmp;
unsigned dst_port;
dst_port = 12fwd_dst_ports|[portid];
eth = rte_pktmbuf_mtod(m, struct ether_hdr «);
/* 02:00:00:00:00:xx */
tmp = ð->d_addr.addr_bytes[0];
% ((uint64_t +)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);
/* src addr */

ether_addr_copy (&12fwd_ports_eth_addr[dst_port], ð->s_addr);

12fwd_send_packet (m, (uint8_t) dst_port);

Then, the packet is sent using the 12fwd_send_packet (m, dst_port) function. For this test application, the processing
is exactly the same for all packets arriving on the same RX port. Therefore, it would have been possible to call the

94 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

12fwd_send_burst() function directly from the main loop to send all the received packets on the same TX port, using
the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded on the same port as
packet N-1. The application is implemented to illustrate that, so the same approach can be reused in a more complex
application.

The 12fwd_send_packet() function stores the packet in a per-Icore and per-txport table. If the table is full, the whole
packets table is transmitted using the 12fwd_send_burst() function:

/#* Send the packet on an output interface */

static int
12fwd_send_packet (struct rte_mbuf *m, uint8_t port)
{

unsigned lcore_id, len;

struct lcore_queue_conf =*gconf;

lcore_id = rte_lcore_id();

gconf = &lcore_queue_conf[lcore_id];
len = gconf->tx_mbufs|[port].len;
gconf->tx_mbufs([port].m_table[len] = m;
len++;

/* enough pkts to be sent */

if (unlikely(len == MAX_PKT_BURST)) {
12fwd_send_burst (gconf, MAX_PKT_BURST, port);
len = 0;

}

gconf->tx_mbufs[port].len = len; return 0;

To ensure that no packets remain in the tables, the flush job exists. The 12fwd_flush_job() is called periodically to for
each Icore draining TX queue of each port. This technique introduces some latency when there are not many packets
to send, however it improves performance:

static void
12fwd_flush_job(__rte_unused struct rte_timer *timer, __ rte_unused void xarg)
{

uint64_t now;

unsigned lcore_id;

struct lcore_queue_conf =*gconf;

struct mbuf_table *m_table;

uint8_t portid;

lcore_id = rte_lcore_id();
gconf = &lcore_queue_conf[lcore_id];

rte_jobstats_start (¢gconf->jobs_context, &gconf->flush_job);

now = rte_get_timer_cycles();
lcore_id = rte_lcore_id();
gconf = &lcore_queue_conf[lcore_id];
for (portid = 0; portid < RTE_MAX_ ETHPORTS; portid++) {
m_table = &gconf->tx_mbufs[portid];
if (m_table->len == || m_table->next_flush_time <= now)
continue;

3.14. L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load 95
statistics.

dpdk, Release 0.11

12fwd_send_burst (gconf, portid);

/+ Pass target to indicate that this job is happy of time interval
* in which it was called. #*/
rte_jobstats_finish (&gconf->flush_job, gconf->flush_job.target);

3.15 L2 Forwarding Sample Application (in Real and Virtualized En-
vironments)

The L2 Forwarding sample application is a simple example of packet processing using the Data Plane Development Kit
(DPDK) which also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment.

Note: Please note that previously a separate L2 Forwarding in Virtualized Environments sample application was used,
however, in later DPDK versions these sample applications have been merged.

3.15.1 Overview

The L2 Forwarding sample application, which can operate in real and virtualized environments, performs L2 for-
warding for each packet that is received on an RX_PORT. The destination port is the adjacent port from the enabled
portmask, that is, if the first four ports are enabled (portmask Oxf), ports 1 and 2 forward into each other, and ports
3 and 4 forward into each other. Also, if MAC addresses updating is enabled, the MAC addresses are affected as
follows:

* The source MAC address is replaced by the TX_PORT MAC address
* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to benchmark performance using a traffic-generator, as shown in the Fig. 3.6, or in a
virtualized environment as shown in Fig. 3.7.

Fig. 3.6: Performance Benchmark Setup (Basic Environment)

This application may be used for basic VM to VM communication as shown in Fig. 3.8, when MAC addresses updating
is disabled.

The L2 Forwarding application can also be used as a starting point for developing a new application based on the
DPDK.

Virtual Function Setup Instructions

This application can use the virtual function available in the system and therefore can be used in a virtual machine
without passing through the whole Network Device into a guest machine in a virtualized scenario. The virtual functions
can be enabled in the host machine or the hypervisor with the respective physical function driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using the following command:

96 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

w
X
3
[

1 N
»—#Fm3—¢-
N * . 3

Traffic NUT (RTE
Generator Virual el
Machine
Host Machine/
Hypervisor
Legend:
Note: Port 0-3 initialized from PCI Virtual Function 0-3 [] Physical Function

enabiled in the Host Machine using "ixgbe max_vfs=22"
() virtual Function

Fig. 3.7: Performance Benchmark Setup (Virtualized Environment)

Fig. 3.8: Virtual Machine to Virtual Machine communication.

3.15. L2 Forwarding Sample Application (in Real and Virtualized Environments) 97

dpdk, Release 0.11

modprobe ixgbe max_vfs=2,2

This command enables two Virtual Functions on each of Physical Function of the NIC, with two physical ports in
the PCI configuration space. It is important to note that enabled Virtual Function 0 and 2 would belong to Physical
Function 0 and Virtual Function 1 and 3 would belong to Physical Function 1, in this case enabling a total of four
Virtual Functions.

3.15.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/12fwd

2. Set the target (a default target is used if not specified). For example:

’export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.
3. Build the application:

’make

3.15.3 Running the Application

The application requires a number of command line options:

./build/12fwd [EAL options] —-- —-p PORTMASK [-g NQ] --[no-]mac-updating

where,
e p PORTMASK: A hexadecimal bitmask of the ports to configure
¢ q NQ: A number of queues (=ports) per lcore (default is 1)
* —[no-]Jmac-updating: Enable or disable MAC addresses updating (enabled by default).

To run the application in linuxapp environment with 4 lcores, 16 ports and 8 RX queues per lcore and MAC address
updating enabled, issue the command:

$./build/12fwd -1 0-3 -n 4 —- -q 8 -p ffff

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-
straction Layer (EAL) options.

3.15.4 Explanation

The following sections provide some explanation of the code.

98 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Command Line Arguments

The L2 Forwarding sample application takes specific parameters, in addition to Environment Abstraction Layer (EAL)
arguments. The preferred way to parse parameters is to use the getopt() function, since it is part of a well-defined and
portable library.

The parsing of arguments is done in the 12fwd_parse_args() function. The method of argument parsing is not described
here. Refer to the glibc getopt(3) man page for details.

EAL arguments are parsed first, then application-specific arguments. This is done at the beginning of the main()
function:

/# init EAL #*/

ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Invalid EAL arguments\n");

argc —= ret;
argv += ret;

/% parse application arguments (after the EAL ones) */
ret = 12fwd_parse_args(argc, argv);

if (ret < 0)
rte_exit (EXIT_FAILURE, "Invalid L2FWD arguments\n");

Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created. The mbuf pool contains a set of mbuf objects that will be
used by the driver and the application to store network packet data:

/% create the mbuf pool */

12fwd_pktmbuf_pool = rte_pktmbuf_pool_create ("mbuf_pool", NB_MBUF,
MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_ BUF_SIZE,
rte_socket_id ()) ;

if (12fwd_pktmbuf_pool == NULL)
rte_panic("Cannot init mbuf pool\n");

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is necessary to create a
pool that will be used by the driver. The number of allocated pkt mbufs is NB_MBUF, with a data room size of
RTE_MBUF_DEFAULT_BUF_SIZE each. A per-Icore cache of 32 mbufs is kept. The memory is allocated in NUMA
socket 0, but it is possible to extend this code to allocate one mbuf pool per socket.

The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf initializers, respectively
rte_pktmbuf_pool_init() and rte_pktmbuf_init(). An advanced application may want to use the mempool API to create
the mbuf pool with more control.

Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully understand this code,
it is recommended to study the chapters that related to the Poll Mode Driver in the DPDK Programmer’s Guide - Rel
1.4 EAR and the DPDK API Reference.

3.15. L2 Forwarding Sample Application (in Real and Virtualized Environments) 99

dpdk, Release 0.11

if (rte_eal_pci_probe() < 0)
rte_exit (EXIT_FAILURE, "Cannot probe PCI\n");

nb_ports = rte_eth_dev_count();

if (nb_ports == 0)
rte_exit (EXIT_FAILURE, "No Ethernet ports — bye\n");

/+ reset 12fwd_dst_ports =*/

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
12fwd_dst_ports[portid] = 0;

last_port = 0;

J *
* Each logical core is assigned a dedicated TX queue on each port.

*/

for (portid = 0; portid < nb_ports; portid++) {
/* skip ports that are not enabled */

if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
continue;

if (nb_ports_in_mask % 2) {
12fwd_dst_ports[portid] = last_port;
12fwd_dst_ports[last_port] = portid;
}
else
last_port = portid;

nb_ports_in_mask++;

rte_eth_dev_info_get ((uint8_t) portid, &dev_info);

Observe that:
* rte_igb_pmd_init_all() simultaneously registers the driver as a PCI driver and as an Ethernet* Poll Mode Driver.
* rte_eal_pci_probe() parses the devices on the PCI bus and initializes recognized devices.

The next step is to configure the RX and TX queues. For each port, there is only one RX queue (only one Icore is able to
poll a given port). The number of TX queues depends on the number of available Icores. The rte_eth_dev_configure()
function is used to configure the number of queues for a port:

ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Cannot configure device: "
"err=%d, port=%u\n",
ret, portid);

The global configuration is stored in a static structure:

static const struct rte_eth_conf port_conf = {
.rxmode = {
.split_hdr_size = 0,
.header_split = 0, /*%< Header Split disabled */

100 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

.hw_ip_checksum = 0, /#%< IP checksum offload disabled */
.hw_vlan_filter = 0, /#*#< VLAN filtering disabled =/

. jumbo_frame = O, /*#+< Jumbo Frame Support disabled x/
.hw_strip_crc= 0, /*%< CRC stripped by hardware =/

by

.txmode = {

.mg_mode = ETH_DCB_NONE
}s
bi

RX Queue Initialization
The application uses one Icore to poll one or several ports, depending on the -q option, which specifies the number of
queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one Icore. If there are 16 ports on
the target (and if the portmask argument is -p ffff), the application will need four lcores to poll all the ports.

ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKETO0, &rx_conf, 12fwd_
—pktmbuf_pool);
if (ret < 0)

rte_exit (EXIT_FAILURE, "rte_eth_rx_queue_setup: "
"err=%d, port=%u\n",
ret, portid);

The list of queues that must be polled for a given Icore is stored in a private structure called struct lcore_queue_conf.

struct lcore_gueue_conf {
unsigned n_rx_port;
unsigned rx_port_list [MAX_RX_QUEUE_PER_LCORE];
struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS];

} rte_cache_aligned;

struct lcore_queue_conf lcore_qgqueue_conf [RTE_MAX_LCORE];

The values n_rx_port and rx_port_list[] are used in the main packet processing loop (see Receive, Process and Transmit
Packets).

The global configuration for the RX queues is stored in a static structure:

static const struct rte_eth_rxconf rx_conf = {
.rx_thresh = {
.pthresh = RX_PTHRESH,
.hthresh = RX_HTHRESH,
.wthresh RX_WTHRESH,

},
}i

TX Queue Initialization

Each Icore should be able to transmit on any port. For every port, a single TX queue is initialized.

3.15. L2 Forwarding Sample Application (in Real and Virtualized Environments) 101

dpdk, Release 0.11

/+ init one TX queue on each port x/
fflush (stdout) ;

ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd, rte_eth_dev_socket_
—id(portid), &tx_conf);
if (ret < 0)

rte_exit (EXIT_FAILURE, "rte_eth_tx_ queue_setup:err=%d, port=%u\n", ret
— (unsigned) portid);

e

The global configuration for TX queues is stored in a static structure:

static const struct rte_eth_txconf tx_conf = {
.tx_thresh = {
.pthresh = TX_PTHRESH,
.hthresh TX_HTHRESH,
.wthresh = TX_WTHRESH,

b
.tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /#* disable feature +*/
}i

Receive, Process and Transmit Packets

In the 12fwd_main_loop() function, the main task is to read ingress packets from the RX queues. This is done using
the following code:

/ *
* Read packet from RX queues
*/
for (i = 0; 1 < gconf->n_rx_port; i++) |

portid = gconf->rx_port_list[i];

nb_rx rte_eth_rx_burst ((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST) ;
for (3 = 0; J < nb_rx; j++) {
m pkts_burst[j];

rte_prefetchO[rte_pktmbuf_mtod(m, void «)); l1l2fwd_simple_forward(m, portid);

Packets are read in a burst of size MAX_PKT_BURST. The rte_eth_rx_burst() function writes the mbuf pointers in a
local table and returns the number of available mbufs in the table.

Then, each mbuf in the table is processed by the 12fwd_simple_forward() function. The processing is very simple:
process the TX port from the RX port, then replace the source and destination MAC addresses if MAC addresses
updating is enabled.

Note: In the following code, one line for getting the output port requires some explanation.

During the initialization process, a static array of destination ports (12fwd_dst_ports[]) is filled such that for each
source port, a destination port is assigned that is either the next or previous enabled port from the portmask. Naturally,
the number of ports in the portmask must be even, otherwise, the application exits.

static void
12fwd_simple_forward(struct rte_mbuf *m, unsigned portid)

102 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

struct ether_hdr xeth;

void xtmp;

unsigned dst_port;

dst_port = 12fwd_dst_ports[portid];

eth = rte_pktmbuf_mtod(m, struct ether_hdr «);

/#* 02:00:00:00:00:xx */

tmp = ð->d_addr.addr_bytes[0];

*((uint64_t »)tmp) = 0x000000000002 + ((uinté4_t) dst_port << 40);
/% src addr x/

ether_addr_copy (&12fwd_ports_eth_addr[dst_port], ð->s_addr);

12fwd_send_packet (m, (uint8_t) dst_port);

Then, the packet is sent using the 12fwd_send_packet (m, dst_port) function. For this test application, the processing
is exactly the same for all packets arriving on the same RX port. Therefore, it would have been possible to call the
12fwd_send_burst() function directly from the main loop to send all the received packets on the same TX port, using
the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded on the same port as
packet N-1. The application is implemented to illustrate that, so the same approach can be reused in a more complex
application.

The 12fwd_send_packet() function stores the packet in a per-lcore and per-txport table. If the table is full, the whole
packets table is transmitted using the 12fwd_send_burst() function:

/+* Send the packet on an output interface */

static int
12fwd_send_packet (struct rte_mbuf *m, uint8_t port)
{

unsigned lcore_id, len;

struct lcore_queue_conf xgconf;

lcore_id = rte_lcore_id();

gconf = &lcore_queue_conf[lcore_id];
len = gconf->tx_mbufs[port].len;
gconf->tx_mbufs([port].m_table[len] = m;
len++;

/* enough pkts to be sent */

if (unlikely(len == MAX_PKT_BURST)) {
12fwd_send_burst (gconf, MAX_PKT_BURST, port);
len = 0;

}

gconf->tx_mbufs[port].len = len; return 0;

3.15. L2 Forwarding Sample Application (in Real and Virtualized Environments) 103

dpdk, Release 0.11

To ensure that no packets remain in the tables, each Icore does a draining of TX queue in its main loop. This technique
introduces some latency when there are not many packets to send, however it improves performance:

cur_tsc = rte_rdtsc();
/%
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;

if (unlikely(diff_tsc > drain_tsc)) {
for (portid = 0; portid < RTE_MAX_ ETHPORTS; portid++) {
if (gconf->tx_mbufs[portid].len == 0)
continue;

12fwd_send_burst (&lcore_queue_conf[lcore_id], gconf->tx_mbufs[portid].len,
— (uint8_t) portid);

gconf->tx_mbufs[portid].len = 0;
}

/* 1f timer 1s enabled */

if (timer_period > 0) {
/* advance the timer #*/

timer_tsc += diff_tsc;
/% 1f timer has reached its timeout =*/

if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
/+ do this only on master core */

if (lcore_id == rte_get_master_lcore()) {
print_stats();

/+ reset the timer x/
timer_tsc = 0;

prev_tsc = cur_tsc;

3.16 L2 Forwarding Sample Application with Cache Allocation Tech-
nology (CAT)

Basic Forwarding sample application is a simple skeleton example of a forwarding application. It has been extended
to make use of CAT via extended command line options and linking against the libpqos library.

It is intended as a demonstration of the basic components of a DPDK forwarding application and use of the libpqos
library to program CAT. For more detailed implementations see the L2 and L3 forwarding sample applications.

CAT and Code Data Prioritization (CDP) features allow management of the CPU’s last level cache. CAT introduces

104 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

classes of service (COS) that are essentially bitmasks. In current CAT implementations, a bit in a COS bitmask
corresponds to one cache way in last level cache. A CPU core is always assigned to one of the CAT classes. By
programming CPU core assignment and COS bitmasks, applications can be given exclusive, shared, or mixed access
to the CPU’s last level cache. CDP extends CAT so that there are two bitmasks per COS, one for data and one for
code. The number of classes and number of valid bits in a COS bitmask is CPU model specific and COS bitmasks
need to be contiguous. Sample code calls this bitmask cbm or capacity bitmask. By default, after reset, all CPU cores
are assigned to COS 0 and all classes are programmed to allow fill into all cache ways. CDP is off by default.

For more information about CAT please see:
* https://github.com/01org/intel-cmt-cat
White paper demonstrating example use case:

¢ Increasing Platform Determinism with Platform Quality of Service for the Data Plane Development Kit

3.16.1 Compiling the Application
Requires 1ibpgos from Intel’s intel-cmt-cat software package hosted on GitHub repository. For installation notes,
please see README file.
GIT:
* https://github.com/01org/intel-cmt-cat

To compile the application export the path to PQoS lib and the DPDK source tree and go to the example directory:

export PQOS_INSTALL_PATH=/path/to/libpgos
export RTE_SDK=/path/to/rte_sdk

cd ${RTE_SDK}/examples/l2fwd-cat

Set the target, for example:

’export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_ TARGET values.

Build the application as follows:

’make

3.16.2 Running the Application

To run the example in a 1 inuxapp environment and enable CAT on cpus 0-2:

’./build/lwadfcat -1 1 -nd4 —— —-13ca="0x3Q@(0-2)"

or to enable CAT and CDP on cpus 1,3:

’./build/l2fwdfcat -1 1 nd4 —— —--13ca="(0x00C00,0x00300)@(1,3)"

If CDP is not supported it will fail with following error message:

PQOS: CDP requested but not supported.
PQOS: Requested CAT configuration is not valid!
PQOS: Shutting down PQoS library...

3.16. L2 Forwarding Sample Application with Cache Allocation Technology (CAT) 105

https://github.com/01org/intel-cmt-cat
http://www.intel.com/content/www/us/en/communications/increasing-platform-determinism-pqos-dpdk-white-paper.html
https://github.com/01org/intel-cmt-cat
https://github.com/01org/intel-cmt-cat

dpdk, Release 0.11

EAL: Error - exiting with code: 1
Cause: PQOS: L3CA init failed!

The option to enable CAT is:
e ——13ca="<common_cbm@cpus>[, < (code_cbm,data_cbm)@cpus>...]":
where clbm stands for capacity bitmask and must be expressed in hexadecimal form.

common_ chbm is a single mask, for a CDP enabled system, a group of two masks (code_cbm and data_cbm)
is used.

(‘and) are necessary if it’s a group.
cpus could be a single digit/range or a group and must be expressed in decimal form.
(and) are necessary if it’s a group.
e.g. ——13ca='0x00F00@Q (1, 3), OxOFF00@ (4-6) ,0xF0000@7"
— cpus 1 and 3 share its 4 ways with cpus 4, 5 and 6;
— cpus 4, 5 and 6 share half (4 out of 8 ways) of its L3 with cpus 1 and 3;
— cpus 4, 5 and 6 have exclusive access to 4 out of 8 ways;
— cpu 7 has exclusive access to all of its 4 ways;
e.g. ——13ca="' (0x00C00, 0x00300) @ (1, 3) ' for CDP enabled system
— cpus 1 and 3 have access to 2 ways for code and 2 ways for data, code and data ways are not overlapping.

Refer to DPDK Getting Started Guide for general information on running applications and the Environment Abstrac-
tion Layer (EAL) options.

To reset or list CAT configuration and control CDP please use pgos tool from Intel’s intel-cmt-cat software package.

To enabled or disable CDP:

sudo ./pgos —-S cdp-on

sudo ./pgos —-S cdp-off

to reset CAT configuration:

sudo ./pgos —-R

to list CAT config:

sudo ./pgos -s

For more info about pgos tool please see its man page or intel-cmt-cat wiki.

3.16.3 Explanation

The following sections provide an explanation of the main components of the code.

All DPDK library functions used in the sample code are prefixed with rte_ and are explained in detail in the DPDK
API Documentation.

106 Chapter 3. Sample Applications User Guides

https://github.com/01org/intel-cmt-cat
https://github.com/01org/intel-cmt-cat/wiki

dpdk, Release 0.11

The Main Function

The main () function performs the initialization and calls the execution threads for each Icore.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv arguments are provided
tothe rte_eal_init () function. The value returned is the number of parsed arguments:

int ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Error with EAL initialization\n");

The next task is to initialize the PQoS library and configure CAT. The argc and argv arguments are provided to the
cat_init () function. The value returned is the number of parsed arguments:

int ret = cat_init (argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "PQOS: L3CA init failed!\n");

cat_init () is a wrapper function which parses the command, validates the requested parameters and configures
CAT accordingly.

Parsing of command line arguments is done in parse_args(...). libpqos is then initialized with the
pgos_init (...) call. Next, libpgos is queried for system CPU information and L3CA capabilities via
pgos_cap_get (...) and pqos_cap_get_type (..., PQOS_CAP_TYPE_L3CA, ...) calls. When all

capability and topology information is collected, the requested CAT configuration is validated. A check is then per-
formed (on per socket basis) for a sufficient number of un-associated COS. COS are selected and configured via the

pgos_l3ca_set (...) call. Finally, COS are associated to relevant CPUs via pgos_13ca_assoc_set (...)
calls.
atexit (...) is used to register cat_exit (...) to be called on a clean exit. cat_exit (...) performs a

simple CAT clean-up, by associating COS 0 to all involved CPUs via pgos_13ca_assoc_set (...) calls.

3.17 L3 Forwarding Sample Application

The L3 Forwarding application is a simple example of packet processing using the DPDK. The application performs
L3 forwarding.

3.17.1 Overview

The application demonstrates the use of the hash and LPM libraries in the DPDK to implement packet forwarding.
The initialization and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and
Virtualized Environments). The main difference from the L2 Forwarding sample application is that the forwarding
decision is made based on information read from the input packet.

The lookup method is either hash-based or LPM-based and is selected at run time. When the selected lookup method
is hash-based, a hash object is used to emulate the flow classification stage. The hash object is used in correlation with
a flow table to map each input packet to its flow at runtime.

The hash lookup key is represented by a DiffServ 5-tuple composed of the following fields read from the input packet:
Source IP Address, Destination IP Address, Protocol, Source Port and Destination Port. The ID of the output interface
for the input packet is read from the identified flow table entry. The set of flows used by the application is statically
configured and loaded into the hash at initialization time. When the selected lookup method is LPM based, an LPM
object is used to emulate the forwarding stage for IPv4 packets. The LPM object is used as the routing table to identify
the next hop for each input packet at runtime.

3.17. L3 Forwarding Sample Application 107

dpdk, Release 0.11

The LPM lookup key is represented by the Destination IP Address field read from the input packet. The ID of the
output interface for the input packet is the next hop returned by the LPM lookup. The set of LPM rules used by the
application is statically configured and loaded into the LPM object at initialization time.

In the sample application, hash-based forwarding supports IPv4 and IPv6. LPM-based forwarding supports IPv4 only.

3.17.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/13fwd

2. Set the target (a default target is used if not specified). For example:

’export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.
3. Build the application:

’make

3.17.3 Running the Application

The application has a number of command line options:

./13fwd [EAL options] —- —p PORTMASK
[-P]
[-E]
[-L]
-—-config(port, queue, lcore) [, (port, queue, lcore)]

[-—eth-dest=X,MM:MM:MM:MM: MM: MM]
[-—enable-jumbo [--max-pkt-len PKTLEN]]
[-—no—-numa]

[--hash-entry-num]

[-—ipv6]

[

——parse-ptype]

Where,
* —p PORTMASK: Hexadecimal bitmask of ports to configure

e —P: Optional, sets all ports to promiscuous mode so that packets are accepted regardless of the packet’s Ethernet
MAC destination address. Without this option, only packets with the Ethernet MAC destination address set to
the Ethernet address of the port are accepted.

e —E: Optional, enable exact match.

e —L: Optional, enable longest prefix match.

e ——config (port,queue, lcore) [, (port, queue, lcore)]: Determines which queues from
which ports are mapped to which cores.

e ——eth-dest=X,MM:MM:MM:MM:MM:MM: Optional, ethernet destination for port X.

* ——enable—-jumbo: Optional, enables jumbo frames.

108 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

e ——max-pkt-len: Optional, under the premise of enabling jumbo, maximum packet length in decimal (64-
9600).

* ——no-numa: Optional, disables numa awareness.
¢ ——hash-entry—-num: Optional, specifies the hash entry number in hexadecimal to be setup.
e ——ipv6: Optional, set if running ipv6 packets.

e ——parse-ptype: Optional, set to use software to analyze packet type. Without this option, hardware will
check the packet type.

For example, consider a dual processor socket platform with 8 physical cores, where cores 0-7 and 16-23 appear on
socket 0, while cores 8-15 and 24-31 appear on socket 1.

To enable L3 forwarding between two ports, assuming that both ports are in the same socket, using two cores, cores 1
and 2, (which are in the same socket too), use the following command:

./build/13fwd -1 1,2 -n 4 -- -p 0x3 --config="(0,0,1), (1,0,2)"

In this command:
¢ The -1 option enables cores 1, 2
* The -p option enables ports 0 and 1

* The —config option enables one queue on each port and maps each (port,queue) pair to a specific core. The
following table shows the mapping in this example:

Port | Queue | Icore | Description
0 0 1 Map queue O from port O to Icore 1.
1 0 2 Map queue 0 from port 1 to Icore 2.

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-
straction Layer (EAL) options.

3.17.4 Explanation

The following sections provide some explanation of the sample application code. As mentioned in the overview
section, the initialization and run-time paths are very similar to those of the L2 Forwarding Sample Application (in
Real and Virtualized Environments). The following sections describe aspects that are specific to the L3 Forwarding
sample application.

Hash Initialization

The hash object is created and loaded with the pre-configured entries read from a global array, and then generate the
expected 5-tuple as key to keep consistence with those of real flow for the convenience to execute hash performance
test on 4M/8M/16M flows.

Note: The Hash initialization will setup both ipv4 and ipv6 hash table, and populate the either table depending on the
value of variable ipv6. To support the hash performance test with up to 8M single direction flows/16M bi-direction
flows, populate_ipv4_many_flow_into_table() function will populate the hash table with specified hash table entry
number(default 4M).

3.17. L3 Forwarding Sample Application 109

dpdk, Release 0.11

Note: Value of global variable ipv6 can be specified with —ipv6 in the command line. Value of global variable
hash_entry_number, which is used to specify the total hash entry number for all used ports in hash performance test,
can be specified with —hash-entry-num VALUE in command line, being its default value 4.

#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT _MATCH)

static void
setup_hash (int socketid)
{

//

if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) ({

if (ipvée == 0) {
/% populate the ipv4 hash */
populate_ipv4_many_flow_into_table (ipv4_13fwd_lookup_struct [socketid],

— hash_entry_number) ;

} else {
/* populate the ipvé hash #*/
populate_ipv6_many_flow_into_table(ipv6_13fwd_lookup_

—struct [socketid], hash_entry_number);
}
} else
if (ipve == 0) {

/* populate the ipv4 hash #*/

populate_ipv4d_few_flow_into_table (ipv4_13fwd_lookup_struct[socketid]);
} else {

/* populate the ipvé hash #*/

populate_ipve_few_flow_into_table (ipv6e_13fwd_lookup_struct[socketid]);

}
#endif

LPM Initialization

The LPM object is created and loaded with the pre-configured entries read from a global array.

#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)

static void
setup_lpm (int socketid)
{

unsigned i;

int ret;

char s[64];

/* create the LPM table x*/
snprintf (s, sizeof(s), "IPV4_L3FWD_LPM_ %d", socketid);

ipv4_13fwd_lookup_struct [socketid] = rte_lpm create(s, socketid, IPV4_L3FWD_LPM_
< MAX_RULES, 0);

if (ipv4_13fwd_lookup_struct[socketid] == NULL)
rte_exit (EXIT_FAILURE, "Unable to create the 13fwd LPM table"

110 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

" on socket %d\n", socketid);
/* populate the LPM table */

for (i = 0; i < IPV4 _L3FWD_NUM ROUTES; i++) {
/+ skip unused ports #*/

if ((1 << ipv4_13fwd_route_arrayl[i].if_out & enabled_port_mask) == 0)
continue;

ret = rte_lpm_add(ipv4_13fwd_lookup_struct[socketid], ipv4_13fwd_route_
—arrayl[i].ip,
ipv4_13fwd_route_array[i].depth, ipv4_13fwd_route_
—arrayl[i].if_out);

if (ret < 0) {
rte_exit (EXIT_FAILURE, "Unable to add entry %u to the "
"13fwd LPM table on socket %d\n", i, socketid);

printf ("LPM: Adding route 0x%08x / %d (%d)\n",
(unsigned) ipv4_13fwd_route_array([i].ip, ipv4_13fwd_route_array[i].depth,
—ipv4_13fwd_route_array[i].if_out);
}
}
#endif

Packet Forwarding for Hash-based Lookups

For each input packet, the packet forwarding operation is done by the 13fwd_simple_forward() or sim-
ple_ipv4_fwd_4pkts() function for IPv4 packets or the simple_ipv6_fwd_4pkts() function for IPv6 packets. The
13fwd_simple_forward() function provides the basic functionality for both IPv4 and IPv6 packet forwarding for any
number of burst packets received, and the packet forwarding decision (that is, the identification of the output inter-
face for the packet) for hash-based lookups is done by the get_ipv4_dst_port() or get_ipv6_dst_port() function. The
get_ipv4_dst_port() function is shown below:

static inline uint8 t
get_ipv4_dst_port (void xipv4_hdr, uint8_t portid, lookup_struct_t =»ipv4_13fwd_lookup_
—struct)
{
int ret = 0;
union ipv4_5tuple_host key;
ipv4_hdr = (uint8_t «)ipv4_hdr + offsetof (struct ipv4_hdr, time_to_live);
ml28i data = _mm_loadu_sil28((ml28ix) (ipv4_hdr));
/* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol x/
key.xmm = _mm_and_sil28 (data, maskO0);
/% Find destination port =/

ret = rte_hash_lookup (ipv4_13fwd_lookup_struct, (const wvoid «)&key);

return (uint8_t) ((ret < 0)? portid : ipv4_13fwd_out_if([ret]);

3.17. L3 Forwarding Sample Application 111

dpdk, Release 0.11

The get_ipv6_dst_port() function is similar to the get_ipv4_dst_port() function.

The simple_ipv4_fwd_4pkts() and simple_ipv6_fwd_4pkts() function are optimized for continuous 4 valid ipv4 and
ipv6 packets, they leverage the multiple buffer optimization to boost the performance of forwarding packets with the
exact match on hash table. The key code snippet of simple_ipv4_fwd_4pkts() is shown below:

static inline void
simple_ipv4_fwd_4pkts (struct rte_mbuf+ m[4], uint8_t portid, struct lcore_conf xgconf)
{

//

datal[0] = _mm_loadu_sil28((ml28ix) (rte_pktmbuf_mtod(m[0], unsigned char «) +_
—sizeof (struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));

datal[l] = _mm_loadu_sil28((ml28ix) (rte_pktmbuf_mtod(m[l], unsigned char «) +_
—sizeof (struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));

datal[2] = _mm_loadu_sil28((ml28ix) (rte_pktmbuf_mtod(m[2], unsigned char) +_
—sizeof (struct ether_hdr) + offsetof (struct ipv4_hdr, time_to_live)));

datal[3] = _mm_loadu_sil28((ml28ix) (rte_pktmbuf_mtod(m[3], unsigned char) +_

(s

—sizeof (struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));

key[0] .xmm = _mm_and_sil28(data[0], mask0);
key[1l].xmm = _mm_and_sil28(data[l], mask0);
key[2] .xmm = _mm_and_sil28(datal[2], maskO);
key[3].xmm = _mm_and_sil28(data[3], mask0);
const void xkey_array[4] = {&key[0], &key[l], &key[2],&key[3]};

rte_hash_lookup_bulk (gconf->ipv4_lookup_struct, &key_array[0], 4, ret);

dst_port[0] = (ret[0] < 0)? portid:ipv4_13fwd _out_1if[ret[0]];
dst_port[1l] = (ret[l] < 0)? portid:ipv4_13fwd _out_if[ret[1l]];
dst_port[2] = (ret[2] < 0)? portid:ipv4_13fwd_out_if[ret[2]];
dst_port[3] = (ret[3] < 0)? portid:ipv4_13fwd_out_1if[ret[3]];
//

The simple_ipv6_fwd_4pkts() function is similar to the simple_ipv4_fwd_4pkts() function.

Known issue: IP packets with extensions or IP packets which are not TCP/UDP cannot work well at this mode.

Packet Forwarding for LPM-based Lookups

For each input packet, the packet forwarding operation is done by the 13fwd_simple_forward() function, but the packet
forwarding decision (that is, the identification of the output interface for the packet) for LPM-based lookups is done
by the get_ipv4_dst_port() function below:

static inline uint8 t
get_ipv4_dst_port (struct ipv4_hdr +ipv4_hdr, uint8_t portid, lookup_struct_t xipvé4_
—13fwd_lookup_struct)
{
uint8_t next_hop;

return (uint8_t) ((rte_lpm_ lookup (ipv4_13fwd_lookup_struct, rte_be_to_cpu_32 (ipvéi_
—hdr->dst_addr), é&next_hop) == 0)? next_hop : portid);

112 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

E

3.18 L3 Forwarding with Power Management Sample Application

3.18.1 Introduction

The L3 Forwarding with Power Management application is an example of power-aware packet processing using the
DPDK. The application is based on existing L3 Forwarding sample application, with the power management algo-
rithms to control the P-states and C-states of the Intel processor via a power management library.

3.18.2 Overview

The application demonstrates the use of the Power libraries in the DPDK to implement packet forwarding. The ini-
tialization and run-time paths are very similar to those of the L3 Forwarding Sample Application. The main difference
from the L3 Forwarding sample application is that this application introduces power-aware optimization algorithms
by leveraging the Power library to control P-state and C-state of processor based on packet load.

The DPDK includes poll-mode drivers to configure Intel NIC devices and their receive (Rx) and transmit (Tx) queues.
The design principle of this PMD is to access the Rx and Tx descriptors directly without any interrupts to quickly
receive, process and deliver packets in the user space.

In general, the DPDK executes an endless packet processing loop on dedicated IA cores that include the following
steps:

* Retrieve input packets through the PMD to poll Rx queue
* Process each received packet or provide received packets to other processing cores through software queues
* Send pending output packets to Tx queue through the PMD

In this way, the PMD achieves better performance than a traditional interrupt-mode driver, at the cost of keeping cores
active and running at the highest frequency, hence consuming the maximum power all the time. However, during the
period of processing light network traffic, which happens regularly in communication infrastructure systems due to
well-known “tidal effect”, the PMD is still busy waiting for network packets, which wastes a lot of power.

Processor performance states (P-states) are the capability of an Intel processor to switch between different supported
operating frequencies and voltages. If configured correctly, according to system workload, this feature provides power
savings. CPUFreq is the infrastructure provided by the Linux* kernel to control the processor performance state
capability. CPUFreq supports a user space governor that enables setting frequency via manipulating the virtual file
device from a user space application. The Power library in the DPDK provides a set of APIs for manipulating a virtual
file device to allow user space application to set the CPUFreq governor and set the frequency of specific cores.

This application includes a P-state power management algorithm to generate a frequency hint to be sent to CPUFreq.
The algorithm uses the number of received and available Rx packets on recent polls to make a heuristic decision to
scale frequency up/down. Specifically, some thresholds are checked to see whether a specific core running an DPDK
polling thread needs to increase frequency a step up based on the near to full trend of polled Rx queues. Also, it
decreases frequency a step if packet processed per loop is far less than the expected threshold or the thread’s sleeping
time exceeds a threshold.

C-States are also known as sleep states. They allow software to put an Intel core into a low power idle state from which
it is possible to exit via an event, such as an interrupt. However, there is a tradeoff between the power consumed in the
idle state and the time required to wake up from the idle state (exit latency). Therefore, as you go into deeper C-states,
the power consumed is lower but the exit latency is increased. Each C-state has a target residency. It is essential that
when entering into a C-state, the core remains in this C-state for at least as long as the target residency in order to fully
realize the benefits of entering the C-state. CPUIdIe is the infrastructure provide by the Linux kernel to control the

3.18. L3 Forwarding with Power Management Sample Application 113

dpdk, Release 0.11

processor C-state capability. Unlike CPUFreq, CPUlIdle does not provide a mechanism that allows the application to
change C-state. It actually has its own heuristic algorithms in kernel space to select target C-state to enter by executing
privileged instructions like HLT and MWAIT, based on the speculative sleep duration of the core. In this application,
we introduce a heuristic algorithm that allows packet processing cores to sleep for a short period if there is no Rx
packet received on recent polls. In this way, CPUIdle automatically forces the corresponding cores to enter deeper
C-states instead of always running to the CO state waiting for packets.

Note: To fully demonstrate the power saving capability of using C-states, it is recommended to enable deeper C3 and
C6 states in the BIOS during system boot up.

3.18.3 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l3fwd-power

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.
3. Build the application:

’make

3.18.4 Running the Application

The application has a number of command line options:

./build/13fwd_power [EAL options] -- -p PORTMASK [-P] --config(port, queue, lcore) [,
— (port, queue, lcore)] [—-—enable-jumbo [--max-pkt-len PKTLEN]] [-—-no-numa]
where,

* -p PORTMASK: Hexadecimal bitmask of ports to configure

e -P: Sets all ports to promiscuous mode so that packets are accepted regardless of the packet’s Ethernet MAC
destination address. Without this option, only packets with the Ethernet MAC destination address set to the
Ethernet address of the port are accepted.

* —config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which ports are mapped to which
cores.

* —enable-jumbo: optional, enables jumbo frames
» —max-pkt-len: optional, maximum packet length in decimal (64-9600)
e —no-numa: optional, disables numa awareness

See L3 Forwarding Sample Application for details. The L3fwd-power example reuses the L3fwd command line
options.

114 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

3.18.5 Explanation

The following sections provide some explanation of the sample application code. As mentioned in the overview
section, the initialization and run-time paths are identical to those of the L3 forwarding application. The following
sections describe aspects that are specific to the L3 Forwarding with Power Management sample application.

Power Library Initialization

The Power library is initialized in the main routine. It changes the P-state governor to userspace for specific cores that
are under control. The Timer library is also initialized and several timers are created later on, responsible for checking
if it needs to scale down frequency at run time by checking CPU utilization statistics.

Note: Only the power management related initialization is shown.

int main(int argc, char xxargv)
{
struct lcore_conf xqgconf;
int ret;
unsigned nb_ports;
uintl6_t queueid;
unsigned lcore_id;
uint64_t hz;
uint32_t n_tx_queue, nb_lcores;
uint8_t portid, nb_rx_queue, queue, socketid;

//
/#+ init RTE timer library to be used to initialize per—core timers */
rte_timer_subsystem_init ();

/7

/#* per—core initialization */
for (lcore_id = 0; lcore_id < RTE_MAX_ LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
/* init power management library for a specified core #*/
ret = rte_power_init (lcore_id);
if (ret)
rte_exit (EXIT_FAILURE, "Power management library "
"initialization failed on core%d\n", lcore_id);
/* 1init timer structures for each enabled lcore #*/
rte_timer_init (&power_timers[lcore_id]);

hz = rte_get_hpet_hz();

rte_timer_reset (¢power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND, SINGLE,
—lcore_id, power_timer_cb, NULL);

3.18. L3 Forwarding with Power Management Sample Application 115

dpdk, Release 0.11

/7

/7

Monitoring Loads of Rx Queues

In general, the polling nature of the DPDK prevents the OS power management subsystem from knowing if the
network load is actually heavy or light. In this sample, sampling network load work is done by monitoring received and
available descriptors on NIC Rx queues in recent polls. Based on the number of returned and available Rx descriptors,
this example implements algorithms to generate frequency scaling hints and speculative sleep duration, and use them
to control P-state and C-state of processors via the power management library. Frequency (P-state) control and sleep
state (C-state) control work individually for each logical core, and the combination of them contributes to a power
efficient packet processing solution when serving light network loads.

The rte_eth_rx_burst() function and the newly-added rte_eth_rx_queue_count() function are used in the endless packet
processing loop to return the number of received and available Rx descriptors. And those numbers of specific queue
are passed to P-state and C-state heuristic algorithms to generate hints based on recent network load trends.

Note: Only power control related code is shown.

static
attribute ((noreturn)) int main_loop(attribute ((unused)) void xdummy)

{
//

while (1) {
//

J ok k
* Read packet from RX queues
*/

lcore_scaleup_hint = FREQ_CURRENT;

lcore_rx_idle_count = 0;
for (i = 0; 1 < gconf->n_rx_qgueue; ++1)
{
rx_queue = & (gconf->rx_queue_list[i]);
rx_qgueue->idle_hint = 0;
portid = rx_gqueue->port_id;
queueid = rx_qgqueue->queue_id;

nb_rx = rte_eth_rx_burst (portid, queueid, pkts_burst, MAX_ PKT_BURST) ;
stats[lcore_id] .nb_rx_processed += nb_rx;

if (unlikely(nb_rx == 0)) {
J ok k
* no packet received from rx queue, try to
* sleep for a while forcing CPU enter deeper
* C states.

*/

116 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

rx_queue—->zero_rx_packet_count++;

if (rx_queue->zero_rx_packet_count <= MIN_ZERO_POLL_COUNT)
continue;

rx_queue->idle_hint = power_idle_heuristic (rx_gqueue->zero_rx_packet_
—count) ;
lcore_rx_idle_count++;
} else {
rx_ring_length = rte_eth_rx_qgueue_count (portid, queueid);

rx_qgqueue—>zero_rx_packet_count = 0;

J ok *
* do not scale up frequency immediately as
* user to kernel space communication is costly
+ which might impact packet I/0 for received
* packets.

*/
rx_queue->freq up_hint = power_freq scaleup_heuristic(lcore_id, rx_ring_
—length);
}

/+ Prefetch and forward packets #*/

//
}
if (likely(lcore_rx_idle_count != gconf->n_rx_queue)) {
for (i = 1, lcore_scaleup_hint = gconf->rx_queue_list[0].freq up_hint; i <,

—gconf->n_rx_queue; ++1i) {
x_queue = & (gqconf->rx_queue_list[i]);

if (rx_gqueue->freq up_hint > lcore_scaleup_hint)

lcore_scaleup_hint = rx_queue->freq_up_hint;

if (lcore_scaleup_hint == FREQ_HIGHEST)

rte_power_freq max(lcore_id);

else if (lcore_scaleup_hint == FREQ_HIGHER)
rte_power_freq up(lcore_id);

} else {
/%

* All Rx queues empty in recent consecutive polls,
* sleep 1in a conservative manner, meaning sleep as
* less as possible.

*/

for (i = 1, lcore_idle_hint = gconf->rx_queue_list[0].idle_hint; i <,
—qgconf->n_rx_queue; ++i) {
rx_queue = & (gqconf->rx_queue_list[i]);
if (rx_gqueue->idle_hint < lcore_idle_hint)
lcore_idle_hint = rx_queue->idle_hint;

3.18. L3 Forwarding with Power Management Sample Application 117

dpdk, Release 0.11

if (lcore_idle_hint < SLEEP_GEAR1_THRESHOLD)

J %k
* execute "pause" instruction to avoid context
* switch for short sleep.
*/
rte_delay_us (lcore_idle_hint);
else

/#* long sleep force ruining thread to suspend #*/
usleep (lcore_idle_hint);

stats[lcore_id].sleep_time += lcore_idle_hint;

P-State Heuristic Algorithm

The power_freq_scaleup_heuristic() function is responsible for generating a frequency hint for the specified logical
core according to available descriptor number returned from rte_eth_rx_queue_count(). On every poll for new packets,
the length of available descriptor on an Rx queue is evaluated, and the algorithm used for frequency hinting is as
follows:

« If the size of available descriptors exceeds 96, the maximum frequency is hinted.
* If the size of available descriptors exceeds 64, a trend counter is incremented by 100.
* If the length of the ring exceeds 32, the trend counter is incremented by 1.

* When the trend counter reached 10000 the frequency hint is changed to the next higher frequency.

Note: The assumption is that the Rx queue size is 128 and the thresholds specified above must be adjusted accordingly
based on actual hardware Rx queue size, which are configured via the rte_eth_rx_queue_setup() function.

In general, a thread needs to poll packets from multiple Rx queues. Most likely, different queue have different load, so
they would return different frequency hints. The algorithm evaluates all the hints and then scales up frequency in an
aggressive manner by scaling up to highest frequency as long as one Rx queue requires. In this way, we can minimize
any negative performance impact.

On the other hand, frequency scaling down is controlled in the timer callback function. Specifically, if the sleep times
of alogical core indicate that it is sleeping more than 25% of the sampling period, or if the average packet per iteration
is less than expectation, the frequency is decreased by one step.

C-State Heuristic Algorithm

Whenever recent rte_eth_rx_burst() polls return 5 consecutive zero packets, an idle counter begins incrementing for
each successive zero poll. At the same time, the function power_idle_heuristic() is called to generate speculative sleep
duration in order to force logical to enter deeper sleeping C-state. There is no way to control C- state directly, and the
CPUIdle subsystem in OS is intelligent enough to select C-state to enter based on actual sleep period time of giving
logical core. The algorithm has the following sleeping behavior depending on the idle counter:

« Ifidle count less than 100, the counter value is used as a microsecond sleep value through rte_delay_us() which
execute pause instructions to avoid costly context switch but saving power at the same time.

118 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

« If idle count is between 100 and 999, a fixed sleep interval of 100 us is used. A 100 us sleep interval allows the
core to enter the C1 state while keeping a fast response time in case new traffic arrives.

» Ifidle count is greater than 1000, a fixed sleep value of 1 ms is used until the next timer expiration is used. This
allows the core to enter the C3/C6 states.

Note: The thresholds specified above need to be adjusted for different Intel processors and traffic profiles.

If a thread polls multiple Rx queues and different queue returns different sleep duration values, the algorithm controls
the sleep time in a conservative manner by sleeping for the least possible time in order to avoid a potential performance
impact.

3.19 L3 Forwarding with Access Control Sample Application

The L3 Forwarding with Access Control application is a simple example of packet processing using the DPDK. The
application performs a security check on received packets. Packets that are in the Access Control List (ACL), which
is loaded during initialization, are dropped. Others are forwarded to the correct port.

3.19.1 Overview

The application demonstrates the use of the ACL library in the DPDK to implement access control and packet L3
forwarding. The application loads two types of rules at initialization:

* Route information rules, which are used for L3 forwarding
* Access Control List (ACL) rules that blacklist (or block) packets with a specific characteristic

When packets are received from a port, the application extracts the necessary information from the TCP/IP header of
the received packet and performs a lookup in the rule database to figure out whether the packets should be dropped
(in the ACL range) or forwarded to desired ports. The initialization and run-time paths are similar to those of the L3
Forwarding Sample Application. However, there are significant differences in the two applications. For example, the
original L3 forwarding application uses either LPM or an exact match algorithm to perform forwarding port lookup,
while this application uses the ACL library to perform both ACL and route entry lookup. The following sections
provide more detail.

Classification for both IPv4 and IPv6 packets is supported in this application. The application also assumes that all the
packets it processes are TCP/UDP packets and always extracts source/destination port information from the packets.

Tuple Packet Syntax

The application implements packet classification for the IPv4/IPv6 5-tuple syntax specifically. The 5-tuple syntax
consist of a source IP address, a destination IP address, a source port, a destination port and a protocol identifier. The
fields in the 5-tuple syntax have the following formats:

¢ Source IP address and destination IP address : Each is either a 32-bit field (for IPv4), or a set of 4 32-
bit fields (for IPv6) represented by a value and a mask length. For example, an IPv4 range of 192.168.1.0 to
192.168.1.255 could be represented by a value = [192, 168, 1, 0] and a mask length = 24.

¢ Source port and destination port : Each is a 16-bit field, represented by a lower start and a higher end. For
example, a range of ports 0 to 8192 could be represented by lower = 0 and higher = 8192.

* Protocol identifier : An 8-bit field, represented by a value and a mask, that covers a range of values. To verify
that a value is in the range, use the following expression: “(VAL & mask) == value”

3.19. L3 Forwarding with Access Control Sample Application 119

dpdk, Release 0.11

The trick in how to represent a range with a mask and value is as follows. A range can be enumerated in binary numbers
with some bits that are never changed and some bits that are dynamically changed. Set those bits that dynamically
changed in mask and value with 0. Set those bits that never changed in the mask with 1, in value with number expected.
For example, a range of 6 to 7 is enumerated as Ob110 and Ob111. Bit 1-7 are bits never changed and bit O is the bit
dynamically changed. Therefore, set bit O in mask and value with 0, set bits 1-7 in mask with 1, and bits 1-7 in value
with number Ob11. So, mask is Oxfe, value is 0x6.

Note: The library assumes that each field in the rule is in LSB or Little Endian order when creating the database. It
internally converts them to MSB or Big Endian order. When performing a lookup, the library assumes the input is in
MSB or Big Endian order.

Access Rule Syntax

In this sample application, each rule is a combination of the following:
* 5-tuple field: This field has a format described in Section.

* priority field: A weight to measure the priority of the rules. The rule with the higher priority will ALWAYS be
returned if the specific input has multiple matches in the rule database. Rules with lower priority will NEVER
be returned in any cases.

* userdata field: A user-defined field that could be any value. It can be the forwarding port number if the rule is a
route table entry or it can be a pointer to a mapping address if the rule is used for address mapping in the NAT
application. The key point is that it is a useful reserved field for user convenience.

ACL and Route Rules

The application needs to acquire ACL and route rules before it runs. Route rules are mandatory, while ACL rules are
optional. To simplify the complexity of the priority field for each rule, all ACL and route entries are assumed to be in
the same file. To read data from the specified file successfully, the application assumes the following:

* Each rule occupies a single line.

* Only the following four rule line types are valid in this application:
¢ ACL rule line, which starts with a leading character ‘@’

* Route rule line, which starts with a leading character ‘R’

¢ Comment line, which starts with a leading character ‘#’

* Empty line, which consists of a space, form-feed (‘f), newline (‘n’), carriage return (‘r’), horizontal tab (‘t’), or
vertical tab (‘v’).

Other lines types are considered invalid.

* Rules are organized in descending order of priority, which means rules at the head of the file always have a
higher priority than those further down in the file.

* A typical IPv4 ACL rule line should have a format as shown below:

Source Address Destination Address Source Port Dest Port Protocol
- = Rl = 5 . N
@192.168.0.34/32 192.168.0.36/32 0: 65535 20: 20 6/0xfe

Fig. 3.9: A typical IPv4 ACL rule

120 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

IPv4 addresses are specified in CIDR format as specified in RFC 4632. They consist of the dot notation for the address
and a prefix length separated by ‘/°. For example, 192.168.0.34/32, where the address is 192.168.0.34 and the prefix
length is 32.

Ports are specified as a range of 16-bit numbers in the format MIN:MAX, where MIN and MAX are the inclusive
minimum and maximum values of the range. The range 0:65535 represents all possible ports in a range. When MIN
and MAX are the same value, a single port is represented, for example, 20:20.

The protocol identifier is an 8-bit value and a mask separated by ‘/’. For example: 6/0xfe matches protocol values 6
and 7.

* Route rules start with a leading character ‘R’ and have the same format as ACL rules except an extra field at the
tail that indicates the forwarding port number.

Rules File Example

Source Address Destination Address Source Port Dest Port Protocol Fwed

e e A A A
- S ™ N A b -')"'l

@1.2.3.0/24 192.168.0.36/32 0:655350: 65535 6/0xfe
RO.0.0.0/0 192.168.0.36/320:655350: 65535 6/0xfe 1
R0.0.0.0/0 0.0.0.0/0 0:655350:655350x0/0x0 O

Fig. 3.10: Rules example

Each rule is explained as follows:

* Rule 1 (the first line) tells the application to drop those packets with source IP address = [1.2.3.*], destination
IP address = [192.168.0.36], protocol = [6]/[7]

* Rule 2 (the second line) is similar to Rule 1, except the source IP address is ignored. It tells the application to
forward packets with destination IP address = [192.168.0.36], protocol = [6]/[7], destined to port 1.

* Rule 3 (the third line) tells the application to forward all packets to port 0. This is something like a default route
entry.

As described earlier, the application assume rules are listed in descending order of priority, therefore Rule 1 has the
highest priority, then Rule 2, and finally, Rule 3 has the lowest priority.

Consider the arrival of the following three packets:
 Packet 1 has source IP address = [1.2.3.4], destination IP address = [192.168.0.36], and protocol = [6]
* Packet 2 has source IP address = [1.2.4.4], destination IP address = [192.168.0.36], and protocol = [6]
» Packet 3 has source IP address = [1.2.3.4], destination IP address = [192.168.0.36], and protocol = [8]
Observe that:
 Packet 1 matches all of the rules
* Packet 2 matches Rule 2 and Rule 3
 Packet 3 only matches Rule 3

For priority reasons, Packet 1 matches Rule 1 and is dropped. Packet 2 matches Rule 2 and is forwarded to port 1.
Packet 3 matches Rule 3 and is forwarded to port 0.

For more details on the rule file format, please refer to rule_ipv4.db and rule_ipv6.db files (inside
<RTE_SDK>/examples/13fwd-acl/).

3.19. L3 Forwarding with Access Control Sample Application 121

dpdk, Release 0.11

Application Phases

Once the application starts, it transitions through three phases:
* Initialization Phase - Perform the following tasks:

e Parse command parameters. Check the validity of rule file(s) name(s), number of logical cores, receive and
transmit queues. Bind ports, queues and logical cores. Check ACL search options, and so on.

 Call Environmental Abstraction Layer (EAL) and Poll Mode Driver (PMD) functions to initialize the environ-
ment and detect possible NICs. The EAL creates several threads and sets affinity to a specific hardware thread
CPU based on the configuration specified by the command line arguments.

* Read the rule files and format the rules into the representation that the ACL library can recognize. Call the ACL
library function to add the rules into the database and compile them as a trie of pattern sets. Note that application
maintains a separate AC contexts for IPv4 and IPv6 rules.

* Runtime Phase - Process the incoming packets from a port. Packets are processed in three steps:

— Retrieval: Gets a packet from the receive queue. Each logical core may process several queues for different
ports. This depends on the configuration specified by command line arguments.

— Lookup: Checks that the packet type is supported (IPv4/IPv6) and performs a 5-tuple lookup over corre-
sponding AC context. If an ACL rule is matched, the packets will be dropped and return back to step 1. If
a route rule is matched, it indicates the packet is not in the ACL list and should be forwarded. If there is
no matches for the packet, then the packet is dropped.

— Forwarding: Forwards the packet to the corresponding port.
* Final Phase - Perform the following tasks:

Calls the EAL, PMD driver and ACL library to free resource, then quits.

3.19.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/13fwd-acl

2. Set the target (a default target is used if not specified). For example:

’export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK IPL Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

’make

3.19.3 Running the Application

The application has a number of command line options:

./build/13fwd-acl [EAL options] —-- —-p PORTMASK [-P] --config(port,queue,lcore) [, (port,
—queue, lcore)] —--rule_ipv4 FILENAME rule_ipv6 FILENAME [--scalar] [--enable-jumbo [--
—max—-pkt—-len PKTLEN]] [—-—no—numa]

122 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

where,

-p PORTMASK: Hexadecimal bitmask of ports to configure

-P: Sets all ports to promiscuous mode so that packets are accepted regardless of the packet’s Ethernet MAC
destination address. Without this option, only packets with the Ethernet MAC destination address set to the
Ethernet address of the port are accepted.

—config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which ports are mapped to which

cores

—rule_ipv4 FILENAME: Specifies the IPv4 ACL and route rules file
—rule_ipv6 FILENAME: Specifies the IPv6 ACL and route rules file

—scalar: Use a scalar function to perform rule lookup

—enable-jumbo: optional, enables jumbo frames

—max-pkt-len: optional, maximum packet length in decimal (64-9600)

—no-numa: optional, disables numa awareness

For example, consider a dual processor socket platform with 8 physical cores, where cores 0-7 and 16-23 appear on
socket 0, while cores 8-15 and 24-31 appear on socket 1.

To enable L3 forwarding between two ports, assuming that both ports are in the same socket, using two cores, cores 1
and 2, (which are in the same socket too), use the following command:

./build/13fwd-acl -1 1,2 -n 4 -- -p 0x3 --config="(0,0,1),(1,0,2)" —--rule_ipvid="./

—rule_ipv4d.db" -- rule_ipv6="./rule_ipv6.db" --scalar

In this command:

* The -1 option enables cores 1, 2

3.19.4 Explanation

The -p option enables ports 0 and 1

The —config option enables one queue on each port and maps each (port,queue) pair to a specific core. The
following table shows the mapping in this example:

Port | Queue | Icore | Description
0 0 1 Map queue 0 from port O to Icore 1.
1 0 2 Map queue O from port 1 to Icore 2.

The —rule_ipv4 option specifies the reading of IPv4 rules sets from the ./ rule_ipv4.db file.

The —rule_ipv6 option specifies the reading of IPv6 rules sets from the ./ rule_ipv6.db file.

The —scalar option specifies the performing of rule lookup with a scalar function.

The following sections provide some explanation of the sample application code. The aspects of port, device and CPU
configuration are similar to those of the L3 Forwarding Sample Application. The following sections describe aspects
that are specific to L3 forwarding with access control.

Parse Rules from File

As described earlier, both ACL and route rules are assumed to be saved in the same file. The application parses the
rules from the file and adds them to the database by calling the ACL library function. It ignores empty and comment

3.19. L3 Forwarding with Access Control Sample Application

123

dpdk, Release 0.11

lines, and parses and validates the rules it reads. If errors are detected, the application exits with messages to identify
the errors encountered.

The application needs to consider the userdata and priority fields. The ACL rules save the index to the specific rules in
the userdata field, while route rules save the forwarding port number. In order to differentiate the two types of rules,
ACL rules add a signature in the userdata field. As for the priority field, the application assumes rules are organized
in descending order of priority. Therefore, the code only decreases the priority number with each rule it parses.

Setting Up the ACL Context

For each supported AC rule format (IPv4 5-tuple, IPv6 6-tuple) application creates a separate context handler from the
ACL library for each CPU socket on the board and adds parsed rules into that context.

Note, that for each supported rule type, application needs to calculate the expected offset of the fields from the start of
the packet. That’s why only packets with fixed [Pv4/ IPv6 header are supported. That allows to perform ACL classify
straight over incoming packet buffer - no extra protocol field retrieval need to be performed.

Subsequently, the application checks whether NUMA is enabled. If it is, the application records the socket IDs of the
CPU cores involved in the task.

Finally, the application creates contexts handler from the ACL library, adds rules parsed from the file into the database
and build an ACL trie. It is important to note that the application creates an independent copy of each database for
each socket CPU involved in the task to reduce the time for remote memory access.

3.20 L3 Forwarding in a Virtualization Environment Sample Applica-
tion

The L3 Forwarding in a Virtualization Environment sample application is a simple example of packet processing using
the DPDK. The application performs L3 forwarding that takes advantage of Single Root I/O Virtualization (SR-IOV)
features in a virtualized environment.

3.20.1 Overview

The application demonstrates the use of the hash and LPM libraries in the DPDK to implement packet forwarding. The
initialization and run-time paths are very similar to those of the L3 Forwarding Sample Application. The forwarding
decision is taken based on information read from the input packet.

The lookup method is either hash-based or LPM-based and is selected at compile time. When the selected lookup
method is hash-based, a hash object is used to emulate the flow classification stage. The hash object is used in
correlation with the flow table to map each input packet to its flow at runtime.

The hash lookup key is represented by the DiffServ 5-tuple composed of the following fields read from the input
packet: Source IP Address, Destination IP Address, Protocol, Source Port and Destination Port. The ID of the output
interface for the input packet is read from the identified flow table entry. The set of flows used by the application is
statically configured and loaded into the hash at initialization time. When the selected lookup method is LPM based,
an LPM object is used to emulate the forwarding stage for [Pv4 packets. The LPM object is used as the routing table
to identify the next hop for each input packet at runtime.

The LPM lookup key is represented by the Destination IP Address field read from the input packet. The ID of the
output interface for the input packet is the next hop returned by the LPM lookup. The set of LPM rules used by the
application is statically configured and loaded into the LPM object at the initialization time.

124 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Note: Please refer to Virtual Function Setup Instructions for virtualized test case setup.

3.20.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/13fwd-vf

2. Set the target (a default target is used if not specified). For example:

’export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

’make

Note: The compiled application is written to the build subdirectory. To have the application written to a different
location, the O=/path/to/build/directory option may be specified in the make command.

3.20.3 Running the Application

The application has a number of command line options:

./build/13fwd-vf [EAL options] -- —-p PORTMASK --config(port, queue, lcore) [, (port,
—queue, lcore)] [——no—numal]
where,

* —p PORTMASK: Hexadecimal bitmask of ports to configure

¢ —config (port,queue,lcore)[,(port,queue,lcore]: determines which queues from which ports are mapped to which
cores

e —no-numa: optional, disables numa awareness

For example, consider a dual processor socket platform with 8 physical cores, where cores 0-7 and 16-23 appear on
socket 0, while cores 8-15 and 24-31 appear on socket 1.

To enable L3 forwarding between two ports, assuming that both ports are in the same socket, using two cores, cores 1
and 2, (which are in the same socket too), use the following command:

./build/13fwd-vf -1 1,2 -n 4 —— -p 0x3 --config="(0,0,1),(1,0,2)"

In this command:
* The -1 option enables cores 1 and 2

* The -p option enables ports 0 and 1

3.20. L3 Forwarding in a Virtualization Environment Sample Application 125

dpdk, Release 0.11

* The —config option enables one queue on each port and maps each (port,queue) pair to a specific core. The
following table shows the mapping in this example:

Port | Queue | Icore | Description
0 0 1 Map queue 0 from port O to Icore 1
1 0 2 Map queue O from port 1 to Icore 2

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-
straction Layer (EAL) options.

3.20.4 Explanation

The operation of this application is similar to that of the basic L3 Forwarding Sample Application. See Explanation
for more information.

3.21 Link Status Interrupt Sample Application

The Link Status Interrupt sample application is a simple example of packet processing using the Data Plane Develop-
ment Kit (DPDK) that demonstrates how network link status changes for a network port can be captured and used by
a DPDK application.

3.21.1 Overview
The Link Status Interrupt sample application registers a user space callback for the link status interrupt of each port
and performs L2 forwarding for each packet that is received on an RX_PORT. The following operations are performed:
* RX_PORT and TX_PORT are paired with available ports one-by-one according to the core mask
* The source MAC address is replaced by the TX_PORT MAC address
* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to demonstrate the usage of link status interrupt and its user space callbacks and the
behavior of L2 forwarding each time the link status changes.

3.21.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/link_status_interrupt

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.
3. Build the application:

’make

126 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Note: The compiled application is written to the build subdirectory. To have the application written to a different
location, the O=/path/to/build/directory option may be specified on the make command line.

3.21.3 Running the Application

The application requires a number of command line options:

./build/link_status_interrupt [EAL options] —-- —p PORTMASK [-g NQ][-T PERIOD]

where,
* -p PORTMASK: A hexadecimal bitmask of the ports to configure
* -q NQ: A number of queues (=ports) per Icore (default is 1)
¢ -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default)

To run the application in a linuxapp environment with 4 Icores, 4 memory channels, 16 ports and 8 RX queues per
Icore, issue the command:

$./build/link_status_interrupt -1 0-3 -n 4-- -q 8 -p ffff

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-
straction Layer (EAL) options.

3.21.4 Explanation

The following sections provide some explanation of the code.

Command Line Arguments

The Link Status Interrupt sample application takes specific parameters, in addition to Environment Abstraction Layer
(EAL) arguments (see Section Running the Application).

Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application. See Command
Line Arguments for more information.

Mbuf Pool Initialization

Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application. See Mbuf
Pool Initialization for more information.

Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully understand this code,
it is recommended to study the chapters that related to the Poll Mode Driver in the DPDK Programmer’s Guide and
the DPDK API Reference.

3.21. Link Status Interrupt Sample Application 127

dpdk, Release 0.11

if (rte_eal_pci_probe() < 0)
rte_exit (EXIT_FAILURE, "Cannot probe PCI\n");

nb_ports = rte_eth_dev_count();
if (nb_ports == 0)
rte_exit (EXIT_FAILURE, "No Ethernet ports — bye\n");

J/ *
* Each logical core is assigned a dedicated TX queue on each port.

*/

for (portid = 0; portid < nb_ports; portid++) {
/* skip ports that are not enabled */

if ((lsi_enabled_port_mask & (1 << portid)) == 0)
continue;

/#* save the destination port id =/

if (nb_ports_in_mask % 2) {
lsi_dst_ports[portid] = portid_last;
1si_dst_ports|[portid_last] = portid;

}

else
portid_last = portid;

nb_ports_in_mask++;

rte_eth_dev_info_get ((uint8_t) portid, &dev_info);

Observe that:
* rte_eal_pci_probe() parses the devices on the PCI bus and initializes recognized devices.

The next step is to configure the RX and TX queues. For each port, there is only one RX queue (only one Icore is able to
poll a given port). The number of TX queues depends on the number of available Icores. The rte_eth_dev_configure()
function is used to configure the number of queues for a port:

ret = rte_eth_dev_configure((uint8_t) portid, 1, 1, &port_conf);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid);

The global configuration is stored in a static structure:

static const struct rte_eth_conf port_conf = {
.rxmode = {
.split_hdr_size = 0,
.header_split = 0, /*%< Header Split disabled */
.hw_ip_checksum = 0, /#%< IP checksum offload disabled */
.hw_vlan_filter = 0, /#%< VLAN filtering disabled =/

.hw_strip_crc= 0, /*%< CRC stripped by hardware */
}I
.txmode = {},
.intr_conf = {

.1sc = 1, /##< link status interrupt feature enabled */

by
}i

128 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Configuring Isc to 0 (the default) disables the generation of any link status change interrupts in kernel space and no
user space interrupt event is received. The public interface rte_eth_link_get() accesses the NIC registers directly to
update the link status. Configuring Isc to non-zero enables the generation of link status change interrupts in kernel
space when a link status change is present and calls the user space callbacks registered by the application. The public
interface rte_eth_link_get() just reads the link status in a global structure that would be updated in the interrupt host
thread only.

Interrupt Callback Registration

The application can register one or more callbacks to a specific port and interrupt event. An example callback function
that has been written as indicated below.

static void
1si_event_callback (uint8_t port_id, enum rte_eth_event_type type, void xparam)
{

struct rte_eth_link link;

RTE_SET_USED (param) ;
printf ("\n\nIn registered callback...\n");

printf ("Event type: %$s\n", type == RTE_ETH_EVENT_INTR_LSC ? "LSC interrupt"
—"unknown event");

rte_eth_link_get_nowait (port_id, &link);

if (link.link_status) {
printf ("Port %d Link Up - speed %u Mbps - %$s\n\n", port_id, (unsigned)link.
—1link_speed,
(link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-
—duplex"));
} else
printf ("Port %d Link Down\n\n", port_id);

This function is called when a link status interrupt is present for the right port. The port_id indicates which
port the interrupt applies to. The type parameter identifies the interrupt event type, which currently can be
RTE_ETH_EVENT_INTR_LSC only, but other types can be added in the future. The param parameter is the ad-
dress of the parameter for the callback. This function should be implemented with care since it will be called in the
interrupt host thread, which is different from the main thread of its caller.

The application registers the 1si_event_callback and a NULL parameter to the link status interrupt event on each port:

rte_eth_dev_callback_register ((uint8_t)portid, RTE_ETH_EVENT_INTR_LSC, lsi_event_
—callback, NULL);

This registration can be done only after calling the rte_eth_dev_configure() function and before calling any other
function. If Isc is initialized with 0, the callback is never called since no interrupt event would ever be present.

RX Queue Initialization
The application uses one Icore to poll one or several ports, depending on the -q option, which specifies the number of
queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one Icore. If there are 16 ports on
the target (and if the portmask argument is -p ffff), the application will need four Icores to poll all the ports.

3.21. Link Status Interrupt Sample Application 129

dpdk, Release 0.11

ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKETO0, &rx_conf, 1lsi
—pktmbuf_pool);
if (ret < 0)

rte_exit (EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, port=%u\n", ret, portid);

The list of queues that must be polled for a given Icore is stored in a private structure called struct lcore_queue_conf.

struct lcore_gueue_conf {
unsigned n_rx_port;
unsigned rx_port_list[MAX RX_ QUEUE_PER_LCORE]; unsigned tx_queue_id;
struct mbuf_table tx_mbufs[LSI_MAX_ PORTS];

} rte_cache_aligned;

struct lcore_qgueue_conf lcore_queue_conf [RTE_MAX_LCORE];

The n_rx_port and rx_port_list[] fields are used in the main packet processing loop (see Receive, Process and Transmit
Packets).

The global configuration for the RX queues is stored in a static structure:

static const struct rte_eth_rxconf rx_conf = {
.rXx_thresh = {
.pthresh = RX_PTHRESH,
.hthresh = RX_HTHRESH,
.wthresh = RX_WTHRESH,
}I
bi

TX Queue Initialization

Each Icore should be able to transmit on any port. For every port, a single TX queue is initialized.

/% init one TX queue logical core on each port #*/
fflush(stdout);

ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_
—conf);
if (ret < 0)

rte_exit (EXIT_FAILURE, "rte_eth_tx_ queue_setup: err=%d,port=%u\n", ret
— (unsigned) portid);

e

The global configuration for TX queues is stored in a static structure:

static const struct rte_eth_txconf tx_conf = {
.tx_thresh = {
.pthresh = TX_PTHRESH,
.hthresh TX_HTHRESH,
.wthresh = TX_WTHRESH,

b
.tx_free_thresh = RTE_TEST_TX DESC_DEFAULT + 1, /x disable feature =/

}i

130 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Receive, Process and Transmit Packets

In the Isi_main_loop() function, the main task is to read ingress packets from the RX queues. This is done using the
following code:

/*
* Read packet from RX queues
*/
for (i = 0; 1 < gconf->n_rx_port; i++) {

portid = gconf->rx_port_list[i];
nb_rx = rte_eth_rx_burst ((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);
port_statistics[portid].rx += nb_rx;

for (j = 0; J < nb_rx; j++) {
m = pkts_burst[jl;
rte_prefetchO (rte_pktmbuf_mtod(m, wvoid «));
1si_simple_forward(m, portid);

Packets are read in a burst of size MAX_PKT_BURST. The rte_eth_rx_burst() function writes the mbuf pointers in a
local table and returns the number of available mbufs in the table.

Then, each mbuf in the table is processed by the Isi_simple_forward() function. The processing is very simple:
processes the TX port from the RX port and then replaces the source and destination MAC addresses.

Note: In the following code, the two lines for calculating the output port require some explanation. If portld is even,
the first line does nothing (as portid & 1 will be 0), and the second line adds 1. If portld is odd, the first line subtracts
one and the second line does nothing. Therefore, 0 goes to 1, and 1 to 0, 2 goes to 3 and 3 to 2, and so on.

static void
1si_simple_forward(struct rte_mbuf »m, unsigned portid)

{
struct ether_hdr xeth;
void xtmp;
unsigned dst_port = 1lsi_dst_ports|[portid];
eth = rte_pktmbuf_mtod(m, struct ether_hdr «);
/% 02:00:00:00:00:xx */
tmp = ð->d_addr.addr_bytes[0];

*((uint64_t «)tmp) = 0x000000000002 + (dst_port << 40);

/% src addr =/
ether_addr_copy (&lsi_ports_eth_addr[dst_port], ð->s_addr);

1si_send_packet (m, dst_port);

Then, the packet is sent using the 1si_send_packet(m, dst_port) function. For this test application, the processing is
exactly the same for all packets arriving on the same RX port. Therefore, it would have been possible to call the
Isi_send_burst() function directly from the main loop to send all the received packets on the same TX port using the
burst-oriented send function, which is more efficient.

3.21. Link Status Interrupt Sample Application 131

dpdk, Release 0.11

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded on the same port as
packet N-1. The application is implemented to illustrate that so the same approach can be reused in a more complex
application.

The 1si_send_packet() function stores the packet in a per-lcore and per-txport table. If the table is full, the whole
packets table is transmitted using the 1Isi_send_burst() function:

/+ Send the packet on an output interface */

static int
1si_send_packet (struct rte_mbuf *m, uint8_t port)
{

unsigned lcore_id, len;

struct lcore_queue_conf xgconf;

lcore_id = rte_lcore_id();

gconf = &lcore_queue_conf[lcore_id];
len = gconf->tx_mbufs[port].len;
gconf->tx_mbufs[port] .m_table[len] = m;
len++;

/+ enough pkts to be sent x/

if (unlikely(len == MAX_PKT_BURST)) {
1si_send_burst (gconf, MAX_PKT_BURST, port);
len = 0;

}

gconf->tx_mbufs|[port].len = len;

return 0;

To ensure that no packets remain in the tables, each Icore does a draining of the TX queue in its main loop. This
technique introduces some latency when there are not many packets to send. However, it improves performance:

cur_tsc = rte_rdtsc();

/%
* TX burst queue drain
*/

diff_tsc = cur_tsc - prev_tsc;

if (unlikely(diff_tsc > drain_tsc)) {

/% this could be optimized (use queueid instead of #* portid), but it is not,
—called so often x/

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
if (gconf->tx_mbufs[portid].len == 0)
continue;
1si_send_burst (&lcore_queue_conf[lcore_id],
gconf->tx_mbufs[portid].len, (uint8_t) portid);
gconf->tx_mbufs|[portid].len = 0;

/% 1f timer 1is enabled =/

if (timer_period > 0) {

132 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

/% advance the timer x/
timer_tsc += diff_tsc;
/* 1f timer has reached its timeout =/

if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
/% do this only on master core x/

if (lcore_id == rte_get_master_lcore()) {
print_stats();

/+ reset the timer x/
timer_tsc = 0;

prev_tsc = cur_tsc;

3.22 Load Balancer Sample Application

The Load Balancer sample application demonstrates the concept of isolating the packet I/O task from the application-
specific workload. Depending on the performance target, a number of logical cores (Icores) are dedicated to handle
the interaction with the NIC ports (I/O Icores), while the rest of the Icores are dedicated to performing the application
processing (worker Icores). The worker Icores are totally oblivious to the intricacies of the packet I/O activity and use
the NIC-agnostic interface provided by software rings to exchange packets with the I/O cores.

3.22.1 Overview

The architecture of the Load Balance application is presented in the following figure.

For the sake of simplicity, the diagram illustrates a specific case of two I/O RX and two I/O TX Icores off loading the
packet I/O overhead incurred by four NIC ports from four worker cores, with each I/O Icore handling RX/TX for two
NIC ports.

1/0 RX Logical Cores

Each I/0O RX Icore performs packet RX from its assigned NIC RX rings and then distributes the received packets to the
worker threads. The application allows each I/O RX Icore to communicate with any of the worker threads, therefore
each (I/O RX Icore, worker Icore) pair is connected through a dedicated single producer - single consumer software
ring.

The worker Icore to handle the current packet is determined by reading a predefined 1-byte field from the input packet:
worker_id = packet[load_balancing_field] % n_workers

Since all the packets that are part of the same traffic flow are expected to have the same value for the load balancing
field, this scheme also ensures that all the packets that are part of the same traffic flow are directed to the same worker
Icore (flow affinity) in the same order they enter the system (packet ordering).

3.22. Load Balancer Sample Application 133

dpdk, Release 0.11

NIC
RX1 [

NIC
RX3 [

1O RX
Leore0

1O RIX
Leoret

I/0 TX Logical Cores

Worker
LeoreO

Worker
Lcore

79 g9 §§

Worker
Leore?

\=

Worker
Lcore3

NIC
1> 1o
o TX /
Lcore 0
NIC
\Iﬂ-’ X 1
NIC
1> 1x2
o TX /
Lcore 1
\ e

g

Fig. 3.11: Load Balancer Application Architecture

Each I/O Icore owns the packet TX for a predefined set of NIC ports. To enable each worker thread to send packets to
any NIC TX port, the application creates a software ring for each (worker Icore, NIC TX port) pair, with each I/O TX
core handling those software rings that are associated with NIC ports that it handles.

Worker Logical Cores

Each worker Icore reads packets from its set of input software rings and routes them to the NIC ports for transmission
by dispatching them to output software rings. The routing logic is LPM based, with all the worker threads sharing the

same LPM rules.

3.22.2 Compiling the Application

The sequence of steps used to build the application is:

1. Export the required environment variables:

export RTE_SDK=<Path to the DPDK installation folder>
export RTE_TARGET=x86_64-native-linuxapp-gcc

2. Build the application executable file:

make

cd ${RTE_SDK}/examples/load_balancer

For more details on how to build the DPDK libraries and sample applications, please refer to the DPDK Getting

Started Guide.

134

Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

3.22.3 Running the Application
To successfully run the application, the command line used to start the application has to be in sync with the traffic
flows configured on the traffic generator side.

For examples of application command lines and traffic generator flows, please refer to the DPDK Test Report. For
more details on how to set up and run the sample applications provided with DPDK package, please refer to the DPDK
Getting Started Guide.

3.22.4 Explanation

Application Configuration

The application run-time configuration is done through the application command line parameters. Any parameter
that is not specified as mandatory is optional, with the default value hard-coded in the main.h header file from the
application folder.

The list of application command line parameters is listed below:

1. -rx “(PORT, QUEUE, LCORE), ...”: The list of NIC RX ports and queues handled by the I/O RX Icores. This
parameter also implicitly defines the list of I/O RX Icores. This is a mandatory parameter.

2. —tx “(PORT, LCORE), ... ”: The list of NIC TX ports handled by the I/O TX lcores. This parameter also
implicitly defines the list of I/O TX Icores. This is a mandatory parameter.

3. —w “LCORE, ...”: The list of the worker lcores. This is a mandatory parameter.

4. —lpm “IP / PREFIX => PORT; ...”: The list of LPM rules used by the worker lcores for packet forwarding. This
is a mandatory parameter.

5. -1sz “A, B, C, D”: Ring sizes:
(a) A =The size (in number of buffer descriptors) of each of the NIC RX rings read by the I/O RX Icores.

(b) B = The size (in number of elements) of each of the software rings used by the I/O RX Icores to send
packets to worker lcores.

(c) C = The size (in number of elements) of each of the software rings used by the worker Icores to send
packets to I/O TX Icores.

(d) D = The size (in number of buffer descriptors) of each of the NIC TX rings written by I/O TX Icores.
6. -bsz “(A, B), (C, D), (E, F)”: Burst sizes:

(a) A =The I/O RX Icore read burst size from NIC RX.

(b) B =The I/O RX Icore write burst size to the output software rings.

(c) C =The worker Icore read burst size from the input software rings.

(d) D =The worker Icore write burst size to the output software rings.

(e) E =The I/O TX Icore read burst size from the input software rings.

(f) F=The I/O TX Icore write burst size to the NIC TX.

7. —pos-1b POS: The position of the 1-byte field within the input packet used by the I/O RX Icores to identify the
worker Icore for the current packet. This field needs to be within the first 64 bytes of the input packet.

The infrastructure of software rings connecting I/O Icores and worker Icores is built by the application as a result of
the application configuration provided by the user through the application command line parameters.

3.22. Load Balancer Sample Application 135

dpdk, Release 0.11

A specific lcore performing the I/O RX role for a specific set of NIC ports can also perform the I/O TX role for the
same or a different set of NIC ports. A specific lcore cannot perform both the I/O role (either RX or TX) and the
worker role during the same session.

Example:
./load_balancer -1 3-7 -n 4 -- --rx "(0,0,3),(1,0,3)" —-tx "(0,3),(1,3)" —-w "4,5,6,7
—" ——lpm "1.0.0.0/24=>0; 1.0.1.0/24=>1;" --pos-1lb 29

There is a single I/O Icore (Icore 3) that handles RX and TX for two NIC ports (ports O and 1) that handles packets
to/from four worker Icores (Icores 4, 5, 6 and 7) that are assigned worker IDs 0 to 3 (worker ID for Icore 4 is 0, for
Icore 5 is 1, for Icore 6 is 2 and for Icore 7 is 3).

Assuming that all the input packets are IPv4 packets with no VLAN label and the source IP address of the current
packet is A.B.C.D, the worker Icore for the current packet is determined by byte D (which is byte 29). There are two
LPM rules that are used by each worker Icore to route packets to the output NIC ports.

The following table illustrates the packet flow through the system for several possible traffic flows:

Flow Source IP Destination IP Worker ID (Worker Output NIC
Address Address Icore) Port
1 0.0.0.0 1.0.0.1 0@4) 0
2 0.0.0.1 1.0.1.2 1(5) 1
3 0.0.0.14 1.0.0.3 2 (6) 0
4 0.0.0.15 1.0.1.4 3(7) 1
NUMA Support

The application has built-in performance enhancements for the NUMA case:
1. One buffer pool per each CPU socket.
2. One LPM table per each CPU socket.
3. Memory for the NIC RX or TX rings is allocated on the same socket with the lcore handling the respective ring.

In the case where multiple CPU sockets are used in the system, it is recommended to enable at least one lcore to fulfill
the I/0O role for the NIC ports that are directly attached to that CPU socket through the PCI Express* bus. It is always
recommended to handle the packet I/O with Icores from the same CPU socket as the NICs.

Depending on whether the I/O RX Icore (same CPU socket as NIC RX), the worker Icore and the I/O TX Icore (same
CPU socket as NIC TX) handling a specific input packet, are on the same or different CPU sockets, the following
run-time scenarios are possible:

1. AAA: The packet is received, processed and transmitted without going across CPU sockets.

2. AAB: The packet is received and processed on socket A, but as it has to be transmitted on a NIC port connected
to socket B, the packet is sent to socket B through software rings.

3. ABB: The packet is received on socket A, but as it has to be processed by a worker Icore on socket B, the packet
is sent to socket B through software rings. The packet is transmitted by a NIC port connected to the same CPU
socket as the worker lcore that processed it.

4. ABC: The packet is received on socket A, it is processed by an Icore on socket B, then it has to be transmitted
out by a NIC connected to socket C. The performance price for crossing the CPU socket boundary is paid twice
for this packet.

136 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

3.23 Server-Node EFD Sample Application

This sample application demonstrates the use of EFD library as a flow-level load balancer, for more information about
the EFD Library please refer to the DPDK programmer’s guide.

This sample application is a variant of the client-server sample application where a specific target node is specified
for every and each flow (not in a round-robin fashion as the original load balancing sample application).

3.23.1 Overview

The architecture of the EFD flow-based load balancer sample application is presented in the following figure.

Fig. 3.12: Using EFD as a Flow-Level Load Balancer

As shown in Fig. 3.12, the sample application consists of a front-end node (server) using the EFD library to create a
load-balancing table for flows, for each flow a target backend worker node is specified. The EFD table does not store
the flow key (unlike a regular hash table), and hence, it can individually load-balance millions of flows (number of
targets * maximum number of flows fit in a flow table per target) while still fitting in CPU cache.

It should be noted that although they are referred to as nodes, the frontend server and worker nodes are processes
running on the same platform.

Front-end Server

Upon initializing, the frontend server node (process) creates a flow distributor table (based on the EFD library) which
is populated with flow information and its intended target node.

The sample application assigns a specific target node_id (process) for each of the IP destination addresses as follows:

)

node_id = i % num_nodes; /* Target node id is generated =/
ip_dst = rte_cpu_to_be_32(1i); /* Specific ip destination address is
assigned to this target node x/

then the pair of <key,target> is inserted into the flow distribution table.

The main loop of the server process receives a burst of packets, then for each packet, a flow key (IP destination address)
is extracted. The flow distributor table is looked up and the target node id is returned. Packets are then enqueued to
the specified target node id.

It should be noted that flow distributor table is not a membership test table. Le. if the key has already been inserted
the target node id will be correct, but for new keys the flow distributor table will return a value (which can be valid).

Backend Worker Nodes

Upon initializing, the worker node (process) creates a flow table (a regular hash table that stores the key default size
1M flows) which is populated with only the flow information that is serviced at this node. This flow key is essential to
point out new keys that have not been inserted before.

The worker node’s main loop is simply receiving packets then doing a hash table lookup. If a match occurs then
statistics are updated for flows serviced by this node. If no match is found in the local hash table then this indicates
that this is a new flow, which is dropped.

3.23. Server-Node EFD Sample Application 137

dpdk, Release 0.11

3.23.2 Compiling the Application

The sequence of steps used to build the application is:

1. Export the required environment variables:

export RTE_SDK=/path/to/rte_sdk
export RTE_TARGET=x86_64-native—-linuxapp-gcc

2. Build the application executable file:

cd ${RTE_SDK}/examples/server_node_efd/
make

For more details on how to build the DPDK libraries and sample applications, please refer to the DPDK Getting
Started Guide.

3.23.3 Running the Application

The application has two binaries to be run: the front-end server and the back-end node.

The frontend server (server) has the following command line options:

./server [EAL options] -- -p PORTMASK -n NUM_NODES -f NUM_FLOWS

Where,
* —p PORTMASK: Hexadecimal bitmask of ports to configure
e —n NUM_NODES : Number of back-end nodes that will be used
e —f NUM_FLOWS: Number of flows to be added in the EFD table (1 million, by default)

The back-end node (node) has the following command line options:

./node [EAL options] —- -n NODE_ID

Where,
e —n NODE_ID: Node ID, which cannot be equal or higher than NUM_MODES

First, the server app must be launched, with the number of nodes that will be run. Once it has been started, the
node instances can be run, with different NODE_ID. These instances have to be run as secondary processes, with
-—-proc-type=secondary in the EAL options, which will attach to the primary process memory, and therefore,
they can access the queues created by the primary process to distribute packets.

To successfully run the application, the command line used to start the application has to be in sync with the traffic
flows configured on the traffic generator side.

For examples of application command lines and traffic generator flows, please refer to the DPDK Test Report. For
more details on how to set up and run the sample applications provided with DPDK package, please refer to the DPDK
Getting Started Guide for Linux and DPDK Getting Started Guide for FreeBSD.

3.23.4 Explanation

As described in previous sections, there are two processes in this example.

The first process, the front-end server, creates and populates the EFD table, which is used to distribute packets to
nodes, which the number of flows specified in the command line (1 million, by default).

138 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

static void
create_efd_table (void)

{

uint8_t socket_id = rte_socket_id();

/* create table */
efd_table = rte_efd_create("flow table", num_flows » 2, sizeof (uint32_¢t),
1 << socket_id, socket_id);

if (efd_table == NULL)
rte_exit (EXIT_FAILURE, "Problem creating the flow table\n");

static void
populate_efd_table (void)
{
unsigned int i;
int32_t ret;
uint32_t ip_dst;
uint8_t socket_id = rte_socket_id();
uint64_t node_id;

/* Add flows 1in table */
for (i = 0; i < num_flows; i++) {

o

node_id = i % num_nodes;

ip_dst = rte_cpu_to_be_32(1);
ret = rte_efd_update(efd_table, socket_id,
(void *)&ip_dst, (efd_value_t)node_id);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Unable to add entry %u in "
"EFD table\n", i);

printf ("EFD table: Adding 0Ox%x keys\n", num_flows);

After initialization, packets are received from the enabled ports, and the IPv4 address from the packets is used as a key
to look up in the EFD table, which tells the node where the packet has to be distributed.

static void
process_packets (uint32_t port_num __ rte_unused, struct rte_mbuf *pkts[],
uintl6_t rx_count, unsigned int socket_id)

uintl6é_t i;

uint8_t node;

efd_value_t data[EFD_BURST_MAX];
const void *key_ptrs[EFD_BURST_MAX];

struct ipv4_hdr xipv4_hdr;
uint32_t ipv4_dst_ip[EFD_BURST_MAX];

for (i = 0; 1 < rx_count; i++) {
/% Handle IPv4 header. x*/
ipv4_hdr = rte_pktmbuf_mtod_offset (pkts[i], struct ipv4_hdr =,
sizeof (struct ether_hdr));
ipv4_dst_ip[i] = ipv4_hdr->dst_addr;
key_ptrs[i] = (void «)&ipvé4_dst_ipli];

3.23. Server-Node EFD Sample Application 139

dpdk, Release 0.11

rte_efd_lookup_bulk (efd_table, socket_id, rx_count,
(const void xx) key_ptrs, data);
for (i = 0; 1 < rx_count; 1i++) {
node = (uint8_t) ((uintptr_t)datalil);

if (node >= num_nodes) {
/%
* Node 1is out of range, which means that
* flow has not been inserted
*/
flow_dist_stats.drop++;
rte_pktmbuf_free (pkts[i]);
} else {
flow_dist_stats.distributed++;
enqueue_rx_packet (node, pkts[i]);

for (i = 0; i < num_nodes; i++)
flush_rx_queue (i) ;

The burst of packets received is enqueued in temporary buffers (per node), and enqueued in the shared ring between
the server and the node. After this, a new burst of packets is received and this process is repeated infinitely.

static void
flush_rx_queue (uintl6_t node)

{
uintlé_t j;
struct node =*cl;

if (cl_rx_buf[node].count == 0)
return;
cl &nodes [node];
if (rte_ring_enqueue_bulk (cl->rx_g, (void *+*)cl_rx_buf[node].buffer,
cl_rx_buf[node].count, NULL) != cl_rx_buf[node].count) {
for (j = 0; J < cl_rx_buf[node].count; j++)

rte_pktmbuf_free(cl_rx_buf[node] .buffer[j]);
cl->stats.rx_drop += cl_rx_buf[node].count;
} else

cl->stats.rx += cl_rx_buf[node].count;

cl_rx_buf[node].count 0;

The second process, the back-end node, receives the packets from the shared ring with the server and send them out,
if they belong to the node.

At initialization, it attaches to the server process memory, to have access to the shared ring, parameters and statistics.

rx_ring = rte_ring_ lookup (get_rx_qgqueue_name (node_id));
if (rx_ring == NULL)
rte_exit (EXIT_FAILURE, "Cannot get RX ring — "
"is server process running?\n");

140 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

mp = rte_mempool_lookup (PKTMBUF_POOL_NAME) ;
if (mp == NULL)
rte_exit (EXIT_FAILURE, "Cannot get mempool for mbufs\n");

mz = rte_memzone_lookup (MZ_SHARED_INFO);
if (mz == NULL)
rte_exit (EXIT_FAILURE, "Cannot get port info structure\n");
info = mz->addr;
tx_stats = & (info->tx_stats[node_id]);
filter_stats = & (info->filter_stats([node_id]);

Then, the hash table that contains the flows that will be handled by the node is created and populated.

static struct rte_hash =

create_hash_table (const struct shared_info xinfo)

{
uint32_t num_flows_node = info->num_flows / info->num_nodes;
char name [RTE_HASH_NAMESIZE];
struct rte_hash +h;

/* create table */

struct rte_hash_parameters hash_params = {
.entries = num_flows_node = 2, /% table load = 50% x/
.key_len = sizeof (uint32_t), /+ Store IPv4 dest IP address */
.socket_id = rte_socket_id(),

.hash_func_init_val = 0,
}i
snprintf (name, sizeof (name), "hash table_ %d", node_id);
hash_params.name = name;
h = rte_hash_create(&¢hash_params);
if (h == NULL)

rte_exit (EXIT_FAILURE,
"Problem creating the hash table for node %d\n",
node_id) ;
return h;

static void
populate_hash_table (const struct rte_hash xh, const struct shared_info xinfo)
{

unsigned int i;

int32_t ret;

uint32_t ip_dst;

uint32_t num_flows_node = 0;

uint64_t target_node;

/+ Add flows in table x/

for (i = 0; i < info->num_flows; 1i++) {
target_node = i % info->num_nodes;
if (target_node != node_id)
continue;

ip_dst = rte_cpu_to_be_32(1);

ret = rte_hash_add_key(h, (void) &ip_dst);
if (ret < 0)

3.23. Server-Node EFD Sample Application 141

dpdk, Release 0.11

rte_exit (EXIT_FAILURE, "Unable to add entry %Su "
"in hash table\n", 1i);
else
num_flows_node++;

printf ("Hash table: Adding 0x%x keys\n", num_flows_node) ;

After initialization, packets are dequeued from the shared ring (from the server) and, like in the server process, the
IPv4 address from the packets is used as a key to look up in the hash table. If there is a hit, packet is stored in a buffer,
to be eventually transmitted in one of the enabled ports. If key is not there, packet is dropped, since the flow is not
handled by the node.

static inline void
handle_packets (struct rte_hash xh, struct rte_mbuf »+bufs, uintl6_t num_packets)
{

struct ipv4_hdr xipv4_hdr;

uint32_t ipv4_dst_1ip[PKT_READ_SIZE];

const void xkey_ptrs[PKT_READ_SIZE];

unsigned int i;

int32_t positions[PKT_READ_SIZE] = {0};

for (i = 0; 1 < num_packets; i++) {
/+ Handle IPv4 header. */
ipv4_hdr = rte_pktmbuf_mtod_offset (bufs[i], struct ipv4_hdr =,
sizeof (struct ether_hdr));
ipv4_dst_ipl[i] = ipv4_hdr->dst_addr;
key_ptrs[i] = &ipv4_dst_ipl[il];
}
/* Check 1if packets belongs to any flows handled by this node */
rte_hash_lookup_bulk (h, key_ptrs, num_packets, positions);

for (i = 0; i < num_packets; i++) {

if (likely(positions[i] >= 0)) {
filter_stats—>passed++;
transmit_packet (bufs[i]);

} else {
filter_stats->drop++;
/#* Drop packet, as flow is not handled by this node x/
rte_pktmbuf_free (bufs[i]);

Finally, note that both processes updates statistics, such as transmitted, received and dropped packets, which are shown
and refreshed by the server app.

static void

do_stats_display (void)

{
unsigned int i, 3j;
const char clr([] = {27, '[', '2', 'J', '"\0'};
const char topleft[] = {27, '[', '1', ‘';', '1', 'H', '"\0'};
uint64_t port_tx[RTE_MAX ETHPORTS], port_tx_drop[RTE_MAX_ ETHPORTS];
uint64_t node_tx[MAX_NODES], node_tx_drop[MAX_ NODES];

142 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

/* to get TX stats, we need to do some summing calculations #*/
memset (port_tx, 0, sizeof (port_tx));

memset (port_tx_drop, 0, sizeof (port_tx_drop));

memset (node_tx, 0, sizeof (node_tx));

memset (node_tx_drop, 0, sizeof (node_tx_drop));

for (i = 0; i < num_nodes; i++) {
const struct tx_stats *tx = &info->tx_stats[i];
for (j = 0; j < info->num_ports; j++) {
const uint64_t tx_val = tx->tx[info->id[]j]];

const uinté64_t drop_val = tx->tx_dropl[info->id[]j]];

port_tx[]j] += tx_val;
port_tx_drop[j] += drop_val;
node_tx[i] += tx_val;
node_tx_drop[i] += drop_val;

/#+ Clear screen and move to top left x/
printf ("%$s%s", clr, toplLeft);

printf ("PORTS\n");

printf ("-————- \n")
for (i = 0; 1 < info->num_ports; i++)
printf ("Port %u: '%s'\t", (unsigned int)info->id[i],

get_printable_mac_addr (info->id[i]));
printf ("\n\n");
for (i = 0; 1 < info->num_ports; i++) {
printf ("Port %u — rx: %9"PRIu64"\t"
"tx: %9"PRIu64"\n",
(unsigned int)info->id[i], info->rx_stats.rx[i],
port_tx[i]);

printf ("\nSERVER\n") ;

printf ("————— \n");

printf ("distributed: %9"PRIu64", drop: %9"PRIu64"\n",
flow_dist_stats.distributed, flow_dist_stats.drop);

printf ("\nNODES\n") ;

for (i = 0; 1 < num_nodes; 1i++) {
const unsigned long long rx = nodes[i].stats.rx;

const unsigned long long rx_drop = nodes[i].stats.rx_drop;
const struct filter_stats xfilter = &info->filter_stats[i];

printf ("Node %2u - rx: %911lu, rx_drop: %911lu\n"

" tx: %$9"PRIu64", tx_drop: %9"PRIu64"\n"

" filter_passed: %9"PRIu64", "
"filter drop: %9"PRIu64"\n",

i, rx, rx_drop, node_tx[i], node_tx_dropl[i],
filter->passed, filter—->drop);

printf ("\n");

3.23. Server-Node EFD Sample Application

143

dpdk, Release 0.11

3.24 Multi-process Sample Application

This chapter describes the example applications for multi-processing that are included in the DPDK.

3.24.1 Example Applications
Building the Sample Applications

The multi-process example applications are built in the same way as other sample applications, and as documented in
the DPDK Getting Started Guide. To build all the example applications:

1. Set RTE_SDK and go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/multi_process

2. Set the target (a default target will be used if not specified). For example:

’export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.
3. Build the applications:

’make

Note: If just a specific multi-process application needs to be built, the final make command can be run just in that
application’s directory, rather than at the top-level multi-process directory.

Basic Multi-process Example

The examples/simple_mp folder in the DPDK release contains a basic example application to demonstrate how two
DPDK processes can work together using queues and memory pools to share information.

Running the Application

To run the application, start one copy of the simple_mp binary in one terminal, passing at least two cores in the
coremask/corelist, as follows:

./build/simple_mp -1 0-1 -n 4 —--proc-type=primary

For the first DPDK process run, the proc-type flag can be omitted or set to auto, since all DPDK processes will default
to being a primary instance, meaning they have control over the hugepage shared memory regions. The process should
start successfully and display a command prompt as follows:

$./build/simple_mp -1 0-1 -n 4 --proc-type=primary
EAL: coremask set to 3

EAL: Detected lcore
EAL: Detected lcore
EAL: Detected lcore
EAL: Detected lcore

on socket
on socket
on socket
on socket

w N = O
o O O O

144 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

EAL: Requesting 2 pages of size 1073741824

EAL: Requesting 768 pages of size 2097152

EAL: Ask a virtual area of 0x40000000 bytes

EAL: Virtual area found at 0x7f££200000000 (size = 0x40000000)

EAL: check igb_uio module

EAL: check module finished

EAL: Master core 0 is ready (tid=54e41820)
EAL: Core 1 is ready (tid=53b32700)

Starting core 1

simple_mp >

To run the secondary process to communicate with the primary process, again run the same binary setting at least two
cores in the coremask/corelist:

./build/simple_mp -1 2-3 -n 4 —--proc-type=secondary

When running a secondary process such as that shown above, the proc-type parameter can again be specified as auto.
However, omitting the parameter altogether will cause the process to try and start as a primary rather than secondary
process.

Once the process type is specified correctly, the process starts up, displaying largely similar status messages to the
primary instance as it initializes. Once again, you will be presented with a command prompt.

Once both processes are running, messages can be sent between them using the send command. At any stage, either
process can be terminated using the quit command.

EAL: Master core 10 is ready (tid=b5£89820) EAL: Master core 8 is ready,,
— (t1id=864a3820)

EAL: Core 11 is ready (tid=84ffe700) EAL: Core 9 is ready,,

— (£1d=85995700)

Starting core 11 Starting core 9

simple_mp > send hello_secondary simple_mp > core 9: Received
—'hello_secondary'

simple_mp > core 11: Received 'hello_primary' simple_mp > send hello_primary
simple_mp > quit simple_mp > quit

Note: If the primary instance is terminated, the secondary instance must also be shut-down and restarted after the
primary. This is necessary because the primary instance will clear and reset the shared memory regions on startup,
invalidating the secondary process’s pointers. The secondary process can be stopped and restarted without affecting
the primary process.

How the Application Works

The core of this example application is based on using two queues and a single memory pool in shared memory.
These three objects are created at startup by the primary process, since the secondary process cannot create objects in
memory as it cannot reserve memory zones, and the secondary process then uses lookup functions to attach to these
objects as it starts up.

3.24. Multi-process Sample Application 145

dpdk, Release 0.11

if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
send_ring = rte_ring_create(_PRI_2_SEC, ring_size, SOCKETO, flags);
recv_ring = rte_ring_create(_SEC_2_PRI, ring_size, SOCKETO, flags);

message_pool = rte_mempool_create (_MSG_POOL, pool_size, string_size, pool_cache, |
—priv_data_sz, NULL, NULL, NULL, NULL, SOCKETO, flags);
} else {

recv_ring = rte_ring_lookup (_PRI_2_SEC);
send_ring = rte_ring_lookup (_SEC_2_PRI);
message_pool = rte_mempool_lookup (_MSG_POOL) ;

Note, however, that the named ring structure used as send_ring in the primary process is the recv_ring in the secondary
process.

Once the rings and memory pools are all available in both the primary and secondary processes, the application
simply dedicates two threads to sending and receiving messages respectively. The receive thread simply dequeues any
messages on the receive ring, prints them, and frees the buffer space used by the messages back to the memory pool.
The send thread makes use of the command-prompt library to interactively request user input for messages to send.
Once a send command is issued by the user, a buffer is allocated from the memory pool, filled in with the message
contents, then enqueued on the appropriate rte_ring.

Symmetric Multi-process Example

The second example of DPDK multi-process support demonstrates how a set of processes can run in parallel, with each
process performing the same set of packet- processing operations. (Since each process is identical in functionality to
the others, we refer to this as symmetric multi-processing, to differentiate it from asymmetric multi- processing - such
as a client-server mode of operation seen in the next example, where different processes perform different tasks, yet
co-operate to form a packet-processing system.) The following diagram shows the data-flow through the application,
using two processes.

As the diagram shows, each process reads packets from each of the network ports in use. RSS is used to distribute
incoming packets on each port to different hardware RX queues. Each process reads a different RX queue on each port
and so does not contend with any other process for that queue access. Similarly, each process writes outgoing packets
to a different TX queue on each port.

Running the Application

As with the simple_mp example, the first instance of the symmetric_mp process must be run as the primary instance,
though with a number of other application- specific parameters also provided after the EAL arguments. These addi-
tional parameters are:

e -p <portmask>, where portmask is a hexadecimal bitmask of what ports on the system are to be used. For
example: -p 3 to use ports 0 and 1 only.

e —num-procs <N>, where N is the total number of symmetric_mp instances that will be run side-by-side to
perform packet processing. This parameter is used to configure the appropriate number of receive queues on
each network port.

e —proc-id <n>, where n is a numeric value in the range 0 <= n < N (number of processes, specified above). This
identifies which symmetric_mp instance is being run, so that each process can read a unique receive queue on
each network port.

The secondary symmetric_mp instances must also have these parameters specified, and the first two must be the same
as those passed to the primary instance, or errors result.

146 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Hardwiare Queueas

Process O

Process 1

Fig. 3.13: Example Data Flow in a Symmetric Multi-process Application

3.24. Multi-process Sample Application

147

dpdk, Release 0.11

For example, to run a set of four symmetric_mp instances, running on Icores 1-4, all performing level-2 forwarding of
packets between ports 0 and 1, the following commands can be used (assuming run as root):

./build/symmetric_mp -1 1 -n 4 —--proc-type=auto —-- -p 3 —--num-procs=4 —--proc-id=0
./build/symmetric_mp -1 2 -n 4 —--proc-type=auto -- -p 3 —--num-procs=4 —--proc-id=1
./build/symmetric_mp -1 3 -n 4 —-—-proc-type=auto —-- -p 3 —-—-num-procs=4 —-proc—-id=2
./build/symmetric_mp -1 4 -n 4 —--proc-type=auto -- -p 3 —--num-procs=4 —--proc-id=3

Note: In the above example, the process type can be explicitly specified as primary or secondary, rather than auto.
When using auto, the first process run creates all the memory structures needed for all processes - irrespective of
whether it has a proc-id of 0, 1, 2 or 3.

Note: For the symmetric multi-process example, since all processes work in the same manner, once the hugepage
shared memory and the network ports are initialized, it is not necessary to restart all processes if the primary instance
dies. Instead, that process can be restarted as a secondary, by explicitly setting the proc-type to secondary on the
command line. (All subsequent instances launched will also need this explicitly specified, as auto-detection will detect
no primary processes running and therefore attempt to re-initialize shared memory.)

How the Application Works

The initialization calls in both the primary and secondary instances are the same for the most part, calling the
rte_eal_init(), 1 G and 10 G driver initialization and then rte_eal_pci_probe() functions. Thereafter, the initializa-
tion done depends on whether the process is configured as a primary or secondary instance.

In the primary instance, a memory pool is created for the packet mbufs and the network ports to be used are initialized -
the number of RX and TX queues per port being determined by the num-procs parameter passed on the command-line.
The structures for the initialized network ports are stored in shared memory and therefore will be accessible by the
secondary process as it initializes.

if (num_ports & 1)
rte_exit (EXIT_FAILURE, "Application must use an even number of ports\n");

for(i = 0; i1 < num_ports; i++){
if (proc_type == RTE_PROC_PRIMARY)
if (smp_port_init (ports[i], mp, (uintlé_t)num_procs) < 0)
rte_exit (EXIT_FAILURE, "Error initializing ports\n");

In the secondary instance, rather than initializing the network ports, the port information exported by the primary pro-
cess is used, giving the secondary process access to the hardware and software rings for each network port. Similarly,
the memory pool of mbufs is accessed by doing a lookup for it by name:

mp = (proc_type == RTE_PROC_SECONDARY) ? rte_mempool_lookup (_SMP_MBUF_POOL) : rte_
—mempool_create (_SMP_MBUF_POOL, NB_MBUFS, MBUF_SIZE, ...)

Once this initialization is complete, the main loop of each process, both primary and secondary, is exactly the same
- each process reads from each port using the queue corresponding to its proc-id parameter, and writes to the corre-
sponding transmit queue on the output port.

148 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Client-Server Multi-process Example

The third example multi-process application included with the DPDK shows how one can use a client-server type
multi-process design to do packet processing. In this example, a single server process performs the packet reception
from the ports being used and distributes these packets using round-robin ordering among a set of client processes,
which perform the actual packet processing. In this case, the client applications just perform level-2 forwarding of
packets by sending each packet out on a different network port.

The following diagram shows the data-flow through the application, using two client processes.

' Software Queues |
i e]

g

Fig. 3.14: Example Data Flow in a Client-Server Symmetric Multi-process Application

Running the Application

The server process must be run initially as the primary process to set up all memory structures for use by the clients.
In addition to the EAL parameters, the application- specific parameters are:

* -p <portmask >, where portmask is a hexadecimal bitmask of what ports on the system are to be used. For
example: -p 3 to use ports 0 and 1 only.

* -n<num-clients>, where the num-clients parameter is the number of client processes that will process the packets
received by the server application.

Note: In the server process, a single thread, the master thread, that is, the lowest numbered Icore in the core-
mask/corelist, performs all packet I/O. If a coremask/corelist is specified with more than a single lcore bit set in it, an
additional Icore will be used for a thread to periodically print packet count statistics.

Since the server application stores configuration data in shared memory, including the network ports to be used, the
only application parameter needed by a client process is its client instance ID. Therefore, to run a server application
on Icore 1 (with Icore 2 printing statistics) along with two client processes running on Icores 3 and 4, the following
commands could be used:

3.24. Multi-process Sample Application 149

dpdk, Release 0.11

./mp_server/build/mp_server -1 1-2 -n 4 —— -p 3 -n 2
./mp_client/build/mp_client -1 3 -n 4 —-proc-type=auto —-- -n 0
./mp_client/build/mp_client -1 4 -n 4 —--proc-type=auto —-- -n 1

Note: If the server application dies and needs to be restarted, all client applications also need to be restarted, as there
is no support in the server application for it to run as a secondary process. Any client processes that need restarting
can be restarted without affecting the server process.

How the Application Works

The server process performs the network port and data structure initialization much as the symmetric multi-process
application does when run as primary. One additional enhancement in this sample application is that the server process
stores its port configuration data in a memory zone in hugepage shared memory. This eliminates the need for the client
processes to have the portmask parameter passed into them on the command line, as is done for the symmetric multi-
process application, and therefore eliminates mismatched parameters as a potential source of errors.

In the same way that the server process is designed to be run as a primary process instance only, the client processes are
designed to be run as secondary instances only. They have no code to attempt to create shared memory objects. Instead,
handles to all needed rings and memory pools are obtained via calls to rte_ring_lookup() and rte_mempool_lookup().
The network ports for use by the processes are obtained by loading the network port drivers and probing the PCI bus,
which will, as in the symmetric multi-process example, automatically get access to the network ports using the settings
already configured by the primary/server process.

Once all applications are initialized, the server operates by reading packets from each network port in turn and dis-
tributing those packets to the client queues (software rings, one for each client process) in round-robin order. On the
client side, the packets are read from the rings in as big of bursts as possible, then routed out to a different network port.
The routing used is very simple. All packets received on the first NIC port are transmitted back out on the second port
and vice versa. Similarly, packets are routed between the 3rd and 4th network ports and so on. The sending of packets
is done by writing the packets directly to the network ports; they are not transferred back via the server process.

In both the server and the client processes, outgoing packets are buffered before being sent, so as to allow the sending
of multiple packets in a single burst to improve efficiency. For example, the client process will buffer packets to send,
until either the buffer is full or until we receive no further packets from the server.

Master-slave Multi-process Example

The fourth example of DPDK multi-process support demonstrates a master-slave model that provide the capability of
application recovery if a slave process crashes or meets unexpected conditions. In addition, it also demonstrates the
floating process, which can run among different cores in contrast to the traditional way of binding a process/thread to
a specific CPU core, using the local cache mechanism of mempool structures.

This application performs the same functionality as the L2 Forwarding sample application, therefore this chapter does
not cover that part but describes functionality that is introduced in this multi-process example only. Please refer to L2
Forwarding Sample Application (in Real and Virtualized Environments) for more information.

Unlike previous examples where all processes are started from the command line with input arguments, in this ex-
ample, only one process is spawned from the command line and that process creates other processes. The following
section describes this in more detail.

150 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Master-slave Process Models

The process spawned from the command line is called the master process in this document. A process created by the
master is called a slave process. The application has only one master process, but could have multiple slave processes.

Once the master process begins to run, it tries to initialize all the resources such as memory, CPU cores, driver, ports,
and so on, as the other examples do. Thereafter, it creates slave processes, as shown in the following figure.

2. retum

¥ I~
Y
mp-humm" nmme 5
arg) process
A
pipe

1. core_launch
i

-+

1

2. Return to entry and wait

Thread 1

Thread 2

Fig. 3.15: Master-slave Process Workflow

The master process calls the rte_eal_mp_remote_launch() EAL function to launch an application function for each
pinned thread through the pipe. Then, it waits to check if any slave processes have exited. If so, the process tries to
re-initialize the resources that belong to that slave and launch them in the pinned thread entry again. The following
section describes the recovery procedures in more detail.

For each pinned thread in EAL, after reading any data from the pipe, it tries to call the function that the application
specified. In this master specified function, a fork() call creates a slave process that performs the L2 forwarding task.
Then, the function waits until the slave exits, is killed or crashes. Thereafter, it notifies the master of this event and
returns. Finally, the EAL pinned thread waits until the new function is launched.

After discussing the master-slave model, it is necessary to mention another issue, global and static variables.

For multiple-thread cases, all global and static variables have only one copy and they can be accessed by any thread if
applicable. So, they can be used to sync or share data among threads.

In the previous examples, each process has separate global and static variables in memory and are independent of
each other. If it is necessary to share the knowledge, some communication mechanism should be deployed, such
as, memzone, ring, shared memory, and so on. The global or static variables are not a valid approach to share data
among processes. For variables in this example, on the one hand, the slave process inherits all the knowledge of these
variables after being created by the master. On the other hand, other processes cannot know if one or more processes
modifies them after slave creation since that is the nature of a multiple process address space. But this does not mean
that these variables cannot be used to share or sync data; it depends on the use case. The following are the possible
use cases:

3.24. Multi-process Sample Application 151

dpdk, Release 0.11

1. The master process starts and initializes a variable and it will never be changed after slave processes created.
This case is OK.

2. After the slave processes are created, the master or slave cores need to change a variable, but other processes do
not need to know the change. This case is also OK.

3. After the slave processes are created, the master or a slave needs to change a variable. In the meantime, one or
more other process needs to be aware of the change. In this case, global and static variables cannot be used to
share knowledge. Another communication mechanism is needed. A simple approach without lock protection
can be a heap buffer allocated by rte_malloc or mem zone.

Slave Process Recovery Mechanism

Before talking about the recovery mechanism, it is necessary to know what is needed before a new slave instance can
run if a previous one exited.

When a slave process exits, the system returns all the resources allocated for this process automatically. However, this
does not include the resources that were allocated by the DPDK. All the hardware resources are shared among the
processes, which include memzone, mempool, ring, a heap buffer allocated by the rte_malloc library, and so on. If the
new instance runs and the allocated resource is not returned, either resource allocation failed or the hardware resource
is lost forever.

When a slave process runs, it may have dependencies on other processes. They could have execution sequence orders;
they could share the ring to communicate; they could share the same port for reception and forwarding; they could
use lock structures to do exclusive access in some critical path. What happens to the dependent process(es) if the peer
leaves? The consequence are varied since the dependency cases are complex. It depends on what the processed had
shared. However, it is necessary to notify the peer(s) if one slave exited. Then, the peer(s) will be aware of that and
wait until the new instance begins to run.

Therefore, to provide the capability to resume the new slave instance if the previous one exited, it is necessary to
provide several mechanisms:

1. Keep a resource list for each slave process. Before a slave process run, the master should prepare a resource list.
After it exits, the master could either delete the allocated resources and create new ones, or re-initialize those
for use by the new instance.

2. Set up a notification mechanism for slave process exit cases. After the specific slave leaves, the master should
be notified and then help to create a new instance. This mechanism is provided in Section Master-slave Process
Models.

3. Use a synchronization mechanism among dependent processes. The master should have the capability to stop
or kill slave processes that have a dependency on the one that has exited. Then, after the new instance of exited
slave process begins to run, the dependency ones could resume or run from the start. The example sends a STOP
command to slave processes dependent on the exited one, then they will exit. Thereafter, the master creates new
instances for the exited slave processes.

The following diagram describes slave process recovery.

Floating Process Support

When the DPDK application runs, there is always a -c option passed in to indicate the cores that are enabled. Then,
the DPDK creates a thread for each enabled core. By doing so, it creates a 1:1 mapping between the enabled core and
each thread. The enabled core always has an ID, therefore, each thread has a unique core ID in the DPDK execution
environment. With the ID, each thread can easily access the structures or resources exclusively belonging to it without
using function parameter passing. It can easily use the rte_lcore_id() function to get the value in every function that is
called.

152 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

N

. Y Send STOP Wait peers Re-initialize launch all
[cmd to peers I (exit I [resource [Slave J

Pinned thread
l'l!!!!!!!ll lIHHH%III

Fig. 3.16: Slave Process Recovery Process Flow

For threads/processes not created in that way, either pinned to a core or not, they will not own a unique ID and the
rte_lcore_id() function will not work in the correct way. However, sometimes these threads/processes still need the
unique ID mechanism to do easy access on structures or resources. For example, the DPDK mempool library provides
a local cache mechanism (refer to Z~ %% 77) for fast element allocation and freeing. If using a non-unique ID or a
fake one, a race condition occurs if two or more threads/ processes with the same core ID try to use the local cache.

Therefore, unused core IDs from the passing of parameters with the -c option are used to organize the core ID allocation
array. Once the floating process is spawned, it tries to allocate a unique core ID from the array and release it on exit.

A natural way to spawn a floating process is to use the fork() function and allocate a unique core ID from the unused
core ID array. However, it is necessary to write new code to provide a notification mechanism for slave exit and make
sure the process recovery mechanism can work with it.

To avoid producing redundant code, the Master-Slave process model is still used to spawn floating processes, then
cancel the affinity to specific cores. Besides that, clear the core ID assigned to the DPDK spawning a thread that has a
1:1 mapping with the core mask. Thereafter, get a new core ID from the unused core ID allocation array.

Run the Application

This example has a command line similar to the L2 Forwarding sample application with a few differences.

To run the application, start one copy of the 12fwd_fork binary in one terminal. Unlike the L2 Forwarding example, this
example requires at least three cores since the master process will wait and be accountable for slave process recovery.
The command is as follows:

#./build/12fwd_fork -1 2-4 -n 4 —— -p 3 —-f

This example provides another -f option to specify the use of floating process. If not specified, the example will use a
pinned process to perform the L2 forwarding task.

To verify the recovery mechanism, proceed as follows: First, check the PID of the slave processes:

#ps —-fe | grep 1l2fwd_fork

root 5136 4843 29 11:11 pts/1 00:00:05 ./build/12fwd_fork
root 5145 5136 98 11:11 pts/1 00:00:11 ./build/l12fwd_fork
root 5146 5136 98 11:11 pts/1 00:00:11 ./build/l12fwd_fork

Then, kill one of the slaves:

#kill -9 5145

3.24. Multi-process Sample Application 153

dpdk, Release 0.11

After 1 or 2 seconds, check whether the slave has resumed:

#ps —-fe | grep 12fwd_fork

root 5136 4843 3 11:11 pts/1 00:00:06 ./build/l12fwd_fork
root 5247 5136 99 11:14 pts/1 00:00:01 ./build/l12fwd_fork
root 5248 5136 99 11:14 pts/1 00:00:01 ./build/12fwd_fork

It can also monitor the traffic generator statics to see whether slave processes have resumed.

Explanation

As described in previous sections, not all global and static variables need to change to be accessible in multiple
processes; it depends on how they are used. In this example, the statics info on packets dropped/forwarded/received
count needs to be updated by the slave process, and the master needs to see the update and print them out. So, it needs
to allocate a heap buffer using rte_zmalloc. In addition, if the -f option is specified, an array is needed to store the
allocated core ID for the floating process so that the master can return it after a slave has exited accidentally.

static int
12fwd_malloc_shared_struct (void)
{
port_statistics = rte_zmalloc ("port_stat", sizeof (struct 12fwd_port_statistics) =
< RTE_MAX_ETHPORTS, 0);

if (port_statistics == NULL)
return -1;
/* allocate mapping_id array #*/

if (float_proc) {
int i;

mapping_id = rte_malloc ("mapping id", sizeof (unsigned) * RTE_MAX_ LCORE, 0);
if (mapping_id == NULL)
return -1;

for (i = 0 ;i < RTE_MAX_LCORE; i++)
mapping_id[i] = INVALID_MAPPING_ID;

}

return 0;

For each slave process, packets are received from one port and forwarded to another port that another slave is operating
on. If the other slave exits accidentally, the port it is operating on may not work normally, so the first slave cannot
forward packets to that port. There is a dependency on the port in this case. So, the master should recognize the
dependency. The following is the code to detect this dependency:

for (portid = 0; portid < nb_ports; portid++) {
/* skip ports that are not enabled */

if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
continue;

/#+ Find pair ports' lcores */

find_lcore = find_pair_lcore = 0;
pair_port = 12fwd_dst_ports[portid];

154 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

for (i = 0; i < RTE_MAX_LCORE; i++) {
if (!rte_lcore_is_enabled(i))

continue;
for (j = 0; J < lcore_queue_conf[i].n_rx_port;j++) {

if (lcore_qgueue_conf[i].rx_port_list[]j] == portid) {
lcore = i;
find_lcore = 1;
break;

}

if (lcore_qgueue_conf[i].rx_port_list[]j] == pair_port) {
pair_lcore = i;
find_pair_lcore = 1;
break;

if (find_lcore && find_pair_lcore)
break;

if (!find_lcore || !find_pair_lcore)
rte_exit (EXIT_FAILURE, "Not find port=%d pair\\n", portid);

printf ("lcore %u and %u paired\\n", lcore, pair_lcore);

lcore_resource[lcore] .pair_id = pair_lcore;
lcore_resource[pair_lcore].pair_id = lcore;

Before launching the slave process, it is necessary to set up the communication channel between the master and slave
so that the master can notify the slave if its peer process with the dependency exited. In addition, the master needs to
register a callback function in the case where a specific slave exited.

for (i = 0; i < RTE_MAX_LCORE; i++) {
if (lcore_resource[i].enabled) {
/% Create ring for master and slave communication #*/

ret = create_ms_ring(i);
if (ret != 0)
rte_exit (EXIT_FAILURE, "Create ring for lcore=%u failed",i);

if (flib_register_slave_exit_notify(i,slave_exit_cb) != 0)
rte_exit (EXIT_FAILURE, "Register master_trace_slave_exit failed");

After launching the slave process, the master waits and prints out the port statics periodically. If an event indicating
that a slave process exited is detected, it sends the STOP command to the peer and waits until it has also exited. Then,
it tries to clean up the execution environment and prepare new resources. Finally, the new slave instance is launched.

while (1) {

sleep(l);
cur_tsc = rte_rdtsc();
diff_tsc = cur_tsc - prev_tsc;

3.24. Multi-process Sample Application 155

dpdk, Release 0.11

/% 1f timer is enabled x/

if (timer_period > 0) {
/% advance the timer x/
timer_tsc += diff_tsc;

/+ 1f timer has reached its timeout =*/
if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
print_stats();

/+* reset the timer x/
timer_tsc = 0;

prev_tsc = cur_tsc;
/#+ Check any slave need restart or recreate =/
rte_spinlock_lock (&res_lock);

for (i = 0; i < RTE_MAX_LCORE; i++) {
struct lcore_resource_struct xres = &lcore_resourcel[i];
struct lcore_resource_struct xpair = &lcore_resourcel[res—>pair_id];

/+ If find slave exited, try to reset palir =/

if (res—>enabled && res->flags && pair—->enabled) {

if (!pair->flags) {
master_sendcmd_with_ack (pair->1lcore_id, CMD_STOP) ;
rte_spinlock_unlock (&res_lock);
sleep(1);
rte_spinlock_lock (&res_lock);
if (pair->flags)

continue;

if (reset_pair(res->1lcore_id, pair->1lcore_id) != 0)
rte_exit (EXIT_FAILURE, "failed to reset slave");

res->flags = 0;
pair->flags = 0;

}

rte_spinlock_unlock (&res_lock);

When the slave process is spawned and starts to run, it checks whether the floating process option is applied. If so, it
clears the affinity to a specific core and also sets the unique core ID to 0. Then, it tries to allocate a new core ID. Since
the core ID has changed, the resource allocated by the master cannot work, so it remaps the resource to the new core
ID slot.

static int
12fwd_launch_one_lcore(attribute ((unused)) wvoid xdummy)

{

unsigned lcore_id = rte_lcore_id();

if (float_proc) {

156 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

unsigned flcore_id;

/* Change it to floating process, also change it's lcore_id x/
clear_cpu_affinity();

RTE_PER_LCORE (_lcore_id) = 0;

/% Get a lcore_id */

if (flib_assign_lcore_id() < 0) {
printf ("flib_assign_lcore_id failed\n");
return -1;

}
flcore_id = rte_lcore_id();
/* Set mapping id, so master can return it after slave exited =/

mapping_id[lcore_id] = flcore_id;
printf ("Org lcore_id = %u, cur lcore_id = %u\n",lcore_id, flcore_id);
remapping_slave_resource (lcore_id, flcore_id);

}
12fwd_main_loop();

/% return lcore_id before return =/

if (float_proc) {
flib_free_lcore_id(rte_lcore_id());
mapping_id[lcore_id] = INVALID_MAPPING_ID;

}

return 0;

3.25 QoS Metering Sample Application

The QoS meter sample application is an example that demonstrates the use of DPDK to provide QoS marking and
metering, as defined by RFC2697 for Single Rate Three Color Marker (srTCM) and RFC 2698 for Two Rate Three
Color Marker (trTCM) algorithm.

3.25.1 Overview
The application uses a single thread for reading the packets from the RX port, metering, marking them with the
appropriate color (green, yellow or red) and writing them to the TX port.

A policing scheme can be applied before writing the packets to the TX port by dropping or changing the color of the
packet in a static manner depending on both the input and output colors of the packets that are processed by the meter.

The operation mode can be selected as compile time out of the following options:
 Simple forwarding
* sr'TCM color blind

e sr'TCM color aware

3.25. QoS Metering Sample Application 157

dpdk, Release 0.11

e srTCM color blind
e sr'TCM color aware

Please refer to RFC2697 and RFC2698 for details about the s'TCM and trTCM configurable parameters (CIR, CBS
and EBS for srTCM; CIR, PIR, CBS and PBS for trTCM).

The color blind modes are functionally equivalent with the color-aware modes when all the incoming packets are
colored as green.

3.25.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd S${RTE_SDK}/examples/qgos_meter

2. Set the target (a default target is used if not specified):

Note: This application is intended as a linuxapp only.

’export RTE_TARGET=x86_64-native-linuxapp-gcc

3. Build the application:

’make

3.25.3 Running the Application

The application execution command line is as below:

./qos_meter [EAL options] -—- —-p PORTMASK

The application is constrained to use a single core in the EAL core mask and 2 ports only in the application port mask
(first port from the port mask is used for RX and the other port in the core mask is used for TX).

Refer to DPDK Getting Started Guide for general information on running applications and the Environment Abstrac-
tion Layer (EAL) options.

3.25.4 Explanation

Selecting one of the metering modes is done with these defines:

#define APP_MODE_FWD 0O

#define APP_MODE_SRTCM_COLOR_BLIND
#define APP_MODE_SRTCM COLOR_AWARE
#define APP_MODE_TRTCM_COLOR_BLIND
#define APP_MODE_TRTCM COLOR_AWARE

N W N

#define APP_MODE APP_MODE_SRTCM _COLOR_BLIND

158 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

To simplify debugging (for example, by using the traffic generator RX side MAC address based packet filtering fea-
ture), the color is defined as the LSB byte of the destination MAC address.

The traffic meter parameters are configured in the application source code with following default values:

struct rte_meter_srtcm_params app_srtcm_params[] = {
{.cir = 1000000 = 46, .cbs = 2048, .ebs = 2048},
}i
struct rte_meter_trtcm_params app_trtcm_params[] = {
{.cir = 1000000 = 46, .pir = 1500000 % 46, .cbs = 2048, .pbs = 2048},

bi

Assuming the input traffic is generated at line rate and all packets are 64 bytes Ethernet frames (IPv4 packet size of 46
bytes) and green, the expected output traffic should be marked as shown in the following table:

Table 3.1: Output Traffic Marking

Mode Green (Mpps) | Yellow (Mpps) | Red (Mpps)
srTCM blind | 1 1 12.88

sr'TCM color | 1 1 12.88

trTCM blind | 1 0.5 13.38

trTCM color | 1 0.5 13.38

FWD 14.88 0 0

To set up the policing scheme as desired, it is necessary to modify the main.h source file, where this policy is imple-
mented as a static structure, as follows:

int policer_table[e_RTE_METER_COLORS] [e_RTE_METER_COLORS] =
{

{ GREEN, RED, RED},

{ DROP, YELLOW, RED},

{ DROP, DROP, RED}
}i

Where rows indicate the input color, columns indicate the output color, and the value that is stored in the table indicates
the action to be taken for that particular case.

There are four different actions:
* GREEN: The packet’s color is changed to green.
* YELLOW: The packet’s color is changed to yellow.
* RED: The packet’s color is changed to red.
* DROP: The packet is dropped.
In this particular case:
 Every packet which input and output color are the same, keeps the same color.

» Every packet which color has improved is dropped (this particular case can’t happen, so these values will not be
used).

* For the rest of the cases, the color is changed to red.

3.25. QoS Metering Sample Application 159

dpdk, Release 0.11

3.26 QoS Scheduler Sample Application

The QoS sample application demonstrates the use of the DPDK to provide QoS scheduling.

3.26.1 Overview

The architecture of the QoS scheduler application is shown in the following figure.

CPU Core (RX) CPU Core (Traffic Mgmt + TX)

NIC

CPU Core (RX) CPU Core (Traffic Mgmt) CPU Caore (TX)

Fig. 3.17: QoS Scheduler Application Architecture

There are two flavors of the runtime execution for this application, with two or three threads per each packet flow
configuration being used. The RX thread reads packets from the RX port, classifies the packets based on the double
VLAN (outer and inner) and the lower two bytes of the IP destination address and puts them into the ring queue.
The worker thread dequeues the packets from the ring and calls the QoS scheduler enqueue/dequeue functions. If a
separate TX core is used, these are sent to the TX ring. Otherwise, they are sent directly to the TX port. The TX
thread, if present, reads from the TX ring and write the packets to the TX port.

3.26.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/gos_sched

2. Set the target (a default target is used if not specified). For example:

Note: This application is intended as a linuxapp only.

export RTE_TARGET=x86_64-native-linuxapp-gcc

160 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

3.

Build the application:

make

Note
must

: To get statistics on the sample app using the command line interface as described in the next section, DPDK
be compiled defining CONFIG_RTE_SCHED_COLLECT_STATS, which can be done by changing the configu-

ration file for the specific target to be compiled.

3.26.3 Running the Application

Note

: In order to run the application, a total of at least 4 G of huge pages must be set up for each of the used sockets

(depending on the cores in use).

The application has a number of command line options:

./gos_sched [EAL options] —-- <APP PARAMS>

Mandatory application parameters include:

—pfc “RX PORT, TX PORT, RX LCORE, WT LCORE, TX CORE”: Packet flow configuration. Multiple pfc
entities can be configured in the command line, having 4 or 5 items (if TX core defined or not).

Optional application parameters include:

-i: It makes the application to start in the interactive mode. In this mode, the application shows a command line
that can be used for obtaining statistics while scheduling is taking place (see interactive mode below for more
information).

—mst n: Master core index (the default value is 1).
-rsz “A, B, C”: Ring sizes:

A = Size (in number of buffer descriptors) of each of the NIC RX rings read by the I/O RX Icores (the default
value is 128).

B = Size (in number of elements) of each of the software rings used by the I/O RX Icores to send packets to
worker Icores (the default value is 8192).

C = Size (in number of buffer descriptors) of each of the NIC TX rings written by worker Icores (the default
value is 256)

—bsz “A, B, C, D”: Burst sizes
A =1/0 RX Icore read burst size from the NIC RX (the default value is 64)

B =1/0 RX Icore write burst size to the output software rings, worker lcore read burst size from input software
rings,QoS enqueue size (the default value is 64)

C = QoS dequeue size (the default value is 32)

D = Worker Icore write burst size to the NIC TX (the default value is 64)
—msz M: Mempool size (in number of mbufs) for each pfc (default 2097152)
—rth “A, B, C”: The RX queue threshold parameters

A = RX prefetch threshold (the default value is 8)

B = RX host threshold (the default value is 8)

3.26

. QoS Scheduler Sample Application 161

dpdk, Release 0.11

¢ C = RX write-back threshold (the default value is 4)

—tth “A, B, C”: TX queue threshold parameters

A = TX prefetch threshold (the default value is 36)
¢ B = TX host threshold (the default value is 0)

e C =TX write-back threshold (the default value is 0)

» —cfg FILE: Profile configuration to load

Refer to DPDK Getting Started Guide for general information on running applications and the Environment Abstrac-
tion Layer (EAL) options.

The profile configuration file defines all the port/subport/pipe/traffic class/queue parameters needed for the QoS sched-
uler configuration.

The profile file has the following format:

; port configuration [port]

frame overhead = 24

number of subports per port = 1
number of pipes per subport = 4096
queue sizes = 64 64 64 64

; Subport configuration
[subport 0]

tb rate = 1250000000; Bytes per second
tb size = 1000000; Bytes

tc 0 rate = 1250000000; Bytes per second

tc 1 rate = 1250000000; Bytes per second

tc 2 rate = 1250000000; Bytes per second

tc 3 rate = 1250000000; Bytes per second

tc period = 10; Milliseconds

tc oversubscription period = 10; Milliseconds

pipe 0-4095 = 0; These pipes are configured with pipe profile 0

; Pipe configuration

[pipe profile 0]
tb rate = 305175; Bytes per second
tb size = 1000000; Bytes

tc 0 rate = 305175; Bytes per second
tc 1 rate = 305175; Bytes per second
tc 2 rate = 305175; Bytes per second
tc 3 rate = 305175; Bytes per second
tc period = 40; Milliseconds

tc
tc
tc
tc

oversubscription weight =
oversubscription weight =
oversubscription weight =
oversubscription weight =

w N - O
e

[

tc 0 wrr weights =
tc 1 wrr weights =
tc 2 wrr weights =

=R e
= e
= e

162 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

tc 3 wrr weights = 1 1 1 1
; RED params per traffic class and color (Green / Yellow / Red)

[red]
tc 0 wred min = 48 40 32

tc 0 wred max = 64 64 64
tc 0 wred inv prob = 10 10 10
tc 0 wred weight = 9 9 9
tc 1 wred min = 48 40 32
tc 1 wred max = 64 64 64
tc 1 wred inv prob = 10 10 10
tc 1 wred weight = 9 9 9
tc 2 wred min = 48 40 32
tc 2 wred max = 64 64 64
tc 2 wred inv prob = 10 10 10
tc 2 wred weight = 9 9 9
tc 3 wred min = 48 40 32
tc 3 wred max = 64 64 64
tc 3 wred inv prob = 10 10 10
tc 3 wred weight = 9 9 9

Interactive mode

These are the commands that are currently working under the command line interface:
* Control Commands
e —quit: Quits the application.
* General Statistics
— stats app: Shows a table with in-app calculated statistics.

— stats port X subport Y: For a specific subport, it shows the number of packets that went through the
scheduler properly and the number of packets that were dropped. The same information is shown in bytes.
The information is displayed in a table separating it in different traffic classes.

— stats port X subport Y pipe Z: For a specific pipe, it shows the number of packets that went through the
scheduler properly and the number of packets that were dropped. The same information is shown in bytes.
This information is displayed in a table separating it in individual queues.

* Average queue size
All of these commands work the same way, averaging the number of packets throughout a specific subset of queues.
Two parameters can be configured for this prior to calling any of these commands:

* gavg n X: n is the number of times that the calculation will take place. Bigger numbers provide higher accuracy.
The default value is 10.

* gavg period X: period is the number of microseconds that will be allowed between each calculation. The default
value is 100.

The commands that can be used for measuring average queue size are:

» gavg port X subport Y: Show average queue size per subport.

3.26. QoS Scheduler Sample Application 163

dpdk, Release 0.11

* gavg port X subport Y tc Z: Show average queue size per subport for a specific traffic class.
e gavg port X subport Y pipe Z: Show average queue size per pipe.
* qavg port X subport Y pipe Z tc A: Show average queue size per pipe for a specific traffic class.

* qavg port X subport Y pipe Z tc A q B: Show average queue size of a specific queue.

Example

The following is an example command with a single packet flow configuration:

./qos_sched -1 1,5,7 -n 4 ——- —--pfc "3,2,5,7" --cfg ./profile.cfqg

This example uses a single packet flow configuration which creates one RX thread on Icore 5 reading from port 3 and
a worker thread on Icore 7 writing to port 2.

Another example with 2 packet flow configurations using different ports but sharing the same core for QoS scheduler
is given below:

./qgos_sched -1 1,2,6,7 -n 4 —— —--pfc "3,2,2,6,7" -—pfc "1,0,2,6,7" —-—-cfg ./profile.cfqg

Note that independent cores for the packet flow configurations for each of the RX, WT and TX thread are also sup-
ported, providing flexibility to balance the work.

The EAL coremask/corelist is constrained to contain the default mastercore 1 and the RX, WT and TX cores only.

3.26.4 Explanation

The Port/Subport/Pipe/Traffic Class/Queue are the hierarchical entities in a typical QoS application:
* A subport represents a predefined group of users.
* A pipe represents an individual user/subscriber.

* A traffic class is the representation of a different traffic type with a specific loss rate, delay and jitter require-
ments; such as data voice, video or data transfers.

* A queue hosts packets from one or multiple connections of the same type belonging to the same user.

The traffic flows that need to be configured are application dependent. This application classifies based on the QinQ
double VLAN tags and the IP destination address as indicated in the following table.

Table 3.2: Entity Types

Level Name Siblings per Parent QoS Functional De- | Selected By
scription

Port . Ethernet port Physical port

Subport Config (8) Traffic shaped (token | Outer VLAN tag
bucket)

Pipe Config (4k) Traffic shaped (token | Inner VLAN tag
bucket)

Traffic Class 4 TCs of the same pipe ser- | Destination IP address
vices in strict priority (0.0.X.0)

Queue 4 Queue of the same TC ser- | Destination IP address
viced in WRR (0.0.0.X)

164 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Please refer to the “QoS Scheduler” chapter in the DPDK Programmer’s Guide for more information about these
parameters.

3.27 Quota and Watermark Sample Application

The Quota and Watermark sample application is a simple example of packet processing using Data Plane Development
Kit (DPDK) that showcases the use of a quota as the maximum number of packets enqueue/dequeue at a time and low
and high thresholds, or watermarks, to signal low and high ring usage respectively.

Additionally, it shows how the thresholds can be used to feedback congestion notifications to data producers by tem-
porarily stopping processing overloaded rings and sending Ethernet flow control frames.

This sample application is split in two parts:
e qw - The core quota and watermark sample application

* gwectl - A command line tool to alter quota and watermarks while qw is running

3.27.1 Overview

The Quota and Watermark sample application performs forwarding for each packet that is received on a given port.
The destination port is the adjacent port from the enabled port mask, that is, if the first four ports are enabled (port
mask 0xf), ports 0 and 1 forward into each other, and ports 2 and 3 forward into each other. The MAC addresses of
the forwarded Ethernet frames are not affected.

Internally, packets are pulled from the ports by the master logical core and put on a variable length processing pipeline,
each stage of which being connected by rings, as shown in Fig. 3.18.

An adjustable quota value controls how many packets are being moved through the pipeline per enqueue and dequeue.
Adjustable threshold values associated with the rings control a back-off mechanism that tries to prevent the pipeline
from being overloaded by:

* Stopping enqueuing on rings for which the usage has crossed the high watermark threshold
» Sending Ethernet pause frames
* Only resuming enqueuing on a ring once its usage goes below a global low watermark threshold

This mechanism allows congestion notifications to go up the ring pipeline and eventually lead to an Ethernet flow
control frame being send to the source.

On top of serving as an example of quota and watermark usage, this application can be used to benchmark ring based
processing pipelines performance using a traffic- generator, as shown in Fig. 3.19.

3.27.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/quota_watermark

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3.27. Quota and Watermark Sample Application 165

dpdk, Release 0.11

leore 1 dequeuss padcoets leore N dequeuss padcoets
from the master loore’s rings from laore N -1'srings and
ard engueuses them on its send them on the
WM rings appropriate port
N N
(bl f R
Portl | ———]- - - ——= | Portl
Portl —.- R - —.- Portd
Port2 | ——]- - - = | Portz
Port2 | ——- - - = | Port2
_) .)
— — W
The master lcore iz pulling leore N-1 dequeues padcets
padkets from the ports and from lcore M- 2's rings and
pladng them onrings enqgueues them on its own
rings

Fig. 3.18: Pipeline Overview

166 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

k
F .
]
i
H
=
=

p————~Flow 1

L 4

2p——Flow 2 - ————
" < 1—-: E 2

b Fows > 3
il ’ Tt s

Traffic NUT
Generator (RTE)

Fig. 3.19: Ring-based Processing Pipeline Performance Setup

3.27. Quota and Watermark Sample Application 167

dpdk, Release 0.11

3. Build the application:

make

3.27.3 Running the Application

The core application, qw, has to be started first.

Once it is up and running, one can alter quota and watermarks while it runs using the control application, qwctl.
Running the Core Application

The application requires a single command line option:

./gw/build/qw [EAL options] -- -p PORTMASK

where,
-p PORTMASK: A hexadecimal bitmask of the ports to configure

To run the application in a linuxapp environment with four logical cores and ports 0 and 2, issue the following com-
mand:

./qw/build/qw -1 0-3 -n 4 —— -p 5

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-
straction Layer (EAL) options.

Running the Control Application

The control application requires a number of command line options:

./gqwctl/build/qwctl [EAL options] —-—-proc-type=secondary

The —proc-type=secondary option is necessary for the EAL to properly initialize the control application to use the
same huge pages as the core application and thus be able to access its rings.

To run the application in a linuxapp environment on logical core 0, issue the following command:

./gqwctl/build/gwctl -1 0 -n 4 —--proc-type=secondary

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-
straction Layer (EAL) options.

gwectl is an interactive command line that let the user change variables in a running instance of qw. The help command
gives a list of available commands:

$ gwctl > help

3.27.4 Code Overview

The following sections provide a quick guide to the application’s source code.

168 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Core Application - qw

EAL and Drivers Setup

The EAL arguments are parsed at the beginning of the main() function:

ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Cannot initialize EAL\n");

argc —= ret;
argv += ret;

Then, a call to init_dpdk(), defined in init.c, is made to initialize the poll mode drivers:

void
init_dpdk (void)
{

int ret;

/+ Bind the drivers to usable devices */

ret = rte_eal_pci_probe();
if (ret < 0)

rte_exit (EXIT_FAILURE, "rte_eal_pci_probe(): error %d\n", ret);
if (rte_eth_dev_count () < 2)

rte_exit (EXIT_FAILURE, "Not enough Ethernet port available\n");

To fully understand this code, it is recommended to study the chapters that relate to the Poll Mode Driver in the DPDK
Getting Started Guide and the DPDK API Reference.

Shared Variables Setup

The quota and high and low watermark shared variables are put into an rte_memzone using a call to
setup_shared_variables():

void
setup_shared_variables (void)
{

const struct rte_memzone xgqw_memzone;

gw_memzone = rte_memzone_reserve (QUOTA_WATERMARK_MEMZONE_NAME,
3 % sizeof (int), rte_socket_id(), 0);

if (gw_memzone == NULL)

rte_exit (EXIT_FAILURE, "%s\n", rte_strerror(rte_errno));
quota = gw_memzone-—>addr;
low_watermark = (unsigned int *) gw_memzone->addr + 1;
high_watermark = (unsigned int *) gw_memzone->addr + 2;

These three variables are initialized to a default value in main() and can be changed while qw is running using the
qwectl control program.

3.27. Quota and Watermark Sample Application 169

dpdk, Release 0.11

Application Arguments

The qw application only takes one argument: a port mask that specifies which ports should be used by the application.
At least two ports are needed to run the application and there should be an even number of ports given in the port
mask.

The port mask parsing is done in parse_qw_args(), defined in args.c.

Mbuf Pool Initialization

Once the application’s arguments are parsed, an mbuf pool is created. It contains a set of mbuf objects that are used
by the driver and the application to store network packets:

/* Create a pool of mbuf to store packets */
mbuf_pool = rte_pktmbuf_pool_create ("mbuf_ pool", MBUF_PER_POOL, 32, O,
MBUF_DATA_SIZE, rte_socket_id());

if (mbuf_pool == NULL)
rte_panic("%s\n", rte_strerror (rte_errno));

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is necessary to create a pool
that will be used by the driver.

The number of allocated pkt mbufs is MBUF_PER_POOL, with a data room size of MBUF_DATA_SIZE each. A
per-lcore cache of 32 mbufs is kept. The memory is allocated in on the master lcore’s socket, but it is possible to
extend this code to allocate one mbuf pool per socket.

The rte_pktmbuf pool_create() function uses the default mbuf pool and mbuf initializers, respectively
rte_pktmbuf_pool_init() and rte_pktmbuf_init(). An advanced application may want to use the mempool API to create
the mbuf pool with more control.

Ports Configuration and Pairing

Each port in the port mask is configured and a corresponding ring is created in the master lcore’s array of rings. This
ring is the first in the pipeline and will hold the packets directly coming from the port.

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++)
if (is_bit_set (port_id, portmask)) {
configure_eth_port (port_id);
init_ring(master_lcore_id, port_id);

}

pair_ports();

The configure_eth_port() and init_ring() functions are used to configure a port and a ring respectively and are defined
in init.c. They make use of the DPDK APIs defined in rte_eth.h and rte_ring.h.

pair_ports() builds the port_pairs[] array so that its key-value pairs are a mapping between reception and transmission
ports. It is defined in init.c.

Logical Cores Assighment

The application uses the master logical core to poll all the ports for new packets and enqueue them on a ring associated
with the port.

170 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Each logical core except the last runs pipeline_stage() after a ring for each used port is initialized on that core.
pipeline_stage() on core X dequeues packets from core X-1’s rings and enqueue them on its own rings. See Fig.
3.20.

/% Start pipeline stage() on all the available slave lcore but the last x/

for (lcore_id = 0 ; lcore_id < last_lcore_id; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) && lcore_id != master_lcore_id) {
for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++)
if (is_bit_set (port_id, portmask))
init_ring(lcore_id, port_id);

rte_eal_remote_launch (pipeline_stage, NULL, lcore_id);

The last available logical core runs send_stage(), which is the last stage of the pipeline dequeuing packets from the
last ring in the pipeline and sending them out on the destination port setup by pair_ports().

/+ Start send_stage() on the last slave core */

rte_eal_remote_launch (send_stage, NULL, last_lcore_id);

Receive, Process and Transmit Packets

In the receive_stage() function running on the master logical core, the main task is to read ingress packets from the RX
ports and enqueue them on the port’s corresponding first ring in the pipeline. This is done using the following code:

lcore_id = rte_lcore_id();
/% Process each port round robin style #*/

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++) {
if (!is_bit_set (port_id, portmask))

continue;
ring = rings[lcore_id] [port_id];
if (ring_state[port_id] != RING_READY) {
if (rte_ring_count (ring) > xlow_watermark)
continue;
else

ring_state[port_id] = RING_READY;

/* Enqueue received packets on the RX ring */
nb_rx_pkts = rte_eth_rx_burst (port_id, 0, pkts,
(uintl6_t) =quota);
ret = rte_ring_enqueue_bulk(ring, (void =) pkts,
nb_rx_pkts, &free);
if (RING_SIZE - free > xhigh_watermark) {
ring_state[port_id] = RING_OVERLOADED;
send_pause_frame (port_id, 1337);

if (ret == 0) {

3.27. Quota and Watermark Sample Application 171

dpdk, Release 0.11

pipeline_stage() on logicl send _stage() on logical
mre 1 mre N
.. M
(Y r 3
Portd | =] - .a ——P» | Fort
Portl | =—- - . ——P= | porto
Portz | ——~ - ‘e —— | Fortz
PortZ | ——l — “ae —P» | Port2
\ J \ J
N W
send _stage() I:;Emaster logical ipeline_) on logical
mre M-1

Fig. 3.20: Threads and Pipelines

172 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

/%
* Return mbufs to the pool,
* effectively dropping packets
*/
for (i = 0; 1 < nb_rx_pkts; i++)
rte_pktmbuf_free (pkts[i]);

For each port in the port mask, the corresponding ring’s pointer is fetched into ring and that ring’s state is checked:

 If it is in the RING_READY state, *quota packets are grabbed from the port and put on the ring. Should this
operation make the ring’s usage cross its high watermark, the ring is marked as overloaded and an Ethernet flow
control frame is sent to the source.

e If it is not in the RING_READY state, this port is ignored until the ring’s usage crosses the *low_watermark
value.

The pipeline_stage() function’s task is to process and move packets from the preceding pipeline stage. This thread is
running on most of the logical cores to create and arbitrarily long pipeline.

lcore_id = rte_lcore_id();
previous_lcore_id = get_previous_lcore_id(lcore_id);

for (port_id = 0; port_id < RTE_MAX_ ETHPORTS; port_id++) {
if (!is_bit_set (port_id, portmask))

continue;
tx = rings[lcore_id] [port_id];
rx = rings|[previous_lcore_id] [port_id];
if (ring_state[port_id] !'= RING_READY) {
if (rte_ring_count (tx) > xlow_watermark)
continue;
else
ring_state[port_id] = RING_READY;

/+ Dequeue up to quota mbuf from rx #*/
nb_dqg_pkts = rte_ring_dequeue_burst (rx, pkts,
~quota, NULL);
if (unlikely(nb_dg_pkts < 0))

continue;

/* Enqueue them on tx =%/
ret rte_ring_enqueue_bulk (tx, pkts,
nb_dqg_pkts, &free);
if (RING_SIZE - free > xhigh_watermark)
ring_state[port_id] = RING_OVERLOADED;

if (ret == 0) {

/%
* Return mbufs to the pool,
* effectively dropping packets
*/

for (i = 0; i < nb_dg_pkts; 1i++)

3.27. Quota and Watermark Sample Application 173

dpdk, Release 0.11

rte_pktmbuf_free (pkts[i]);

The thread’s logic works mostly like receive_stage(), except that packets are moved from ring to ring instead of port
to ring.

In this example, no actual processing is done on the packets, but pipeline_stage() is an ideal place to perform any
processing required by the application.

Finally, the send_stage() function’s task is to read packets from the last ring in a pipeline and send them on the
destination port defined in the port_pairs[] array. It is running on the last available logical core only.

lcore_id = rte_lcore_id();
previous_lcore_id = get_previous_lcore_id(lcore_id);

for (port_id = 0; port_id < RTE_MAX ETHPORTS; port_id++) {
if (!is_bit_set (port_id, portmask)) continue;

dest_port_id = port_pairs[port_id];
tx = rings[previous_lcore_id] [port_id];

if (rte_ring_empty(tx)) continue;
/* Dequeue packets from tx and send them =/

nb_dg_pkts = rte_ring_dequeue_burst (tx, (void) tx_pkts, =*quota);
nb_tx_pkts = rte_eth_tx_burst (dest_port_id, 0, tx_pkts, nb_dqg pkts);

For each port in the port mask, up to *quota packets are pulled from the last ring in its pipeline and sent on the
destination port paired with the current port.

Control Application - qwctl

The qwectl application uses the rte_cmdline library to provide the user with an interactive command line that can
be used to modify and inspect parameters in a running qw application. Those parameters are the global quota and
low_watermark value as well as each ring’s built-in high watermark.

Command Definitions

The available commands are defined in commands.c.

It is advised to use the cmdline sample application user guide as a reference for everything related to the rte_cmdline
library.

Accessing Shared Variables

The setup_shared_variables() function retrieves the shared variables quota and low_watermark from the rte_memzone
previously created by qw.

static void
setup_shared_variables (void)

174 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

const struct rte_memzone xgw_memzone;
gw_memzone = rte_memzone_lookup (QUOTA_WATERMARK_MEMZONE_NAME) ;
if (gw_memzone == NULL)

rte_exit (EXIT_FAILURE, "Couldn't find memzone\n");

quota = gw_memzone->addr;

low_watermark = (unsigned int *) gw_memzone->addr + 1;
high_watermark = (unsigned int *) gw_memzone->addr + 2;

3.28 Timer Sample Application

The Timer sample application is a simple application that demonstrates the use of a timer in a DPDK application. This
application prints some messages from different lcores regularly, demonstrating the use of timers.

3.28.1 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/timer

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc ‘

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

[rare |

3.28.2 Running the Application

To run the example in linuxapp environment:

$./build/timer -1 0-3 -n 4

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-
straction Layer (EAL) options.

3.28.3 Explanation

The following sections provide some explanation of the code.

3.28. Timer Sample Application 175

dpdk, Release 0.11

Initialization and Main Loop

In addition to EAL initialization, the timer subsystem must be initialized, by calling the rte_timer_subsystem_init()
function.

/* init EAL #*/
ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_panic("Cannot init EAL\n");

/+ init RTE timer library =/

rte_timer_subsystem_init ();

After timer creation (see the next paragraph), the main loop is executed on each slave lcore using the well-known
rte_eal_remote_launch() and also on the master.

/% call lcore_mainloop () on every slave lcore */
RTE_LCORE_FOREACH_SLAVE (lcore_id) {

rte_eal_remote_launch (lcore_mainloop, NULL, lcore_id);
/+ call it on master lcore too #*/

(void) lcore_mainloop (NULL) ;

The main loop is very simple in this example:

while (1) {

/%
* Call the timer handler on each core: as we don't
* need a very precise timer, so only call
* rte_timer_manage () every ~10ms (at 2 GHz). In a real
* application, this will enhance performances as
* reading the HPET timer is not efficient.

*/

cur_tsc = rte_rdtsc();

diff_tsc = cur_tsc - prev_tsc;

if (diff_tsc > TIMER_RESOLUTION_CYCLES) {
rte_timer_manage () ;
prev_tsc = cur_tsc;

As explained in the comment, it is better to use the TSC register (as it is a per-lcore register) to check if the
rte_timer_manage() function must be called or not. In this example, the resolution of the timer is 10 milliseconds.

Managing Timers

In the main() function, the two timers are initialized. This call to rte_timer_init() is necessary before doing any other
operation on the timer structure.

176 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

/% 1nit timer structures */

rte_timer_init (&timer0);
rte_timer_init (&timerl);

Then, the two timers are configured:

* The first timer (timer0) is loaded on the master Icore and expires every second. Since the PERIODICAL flag is
provided, the timer is reloaded automatically by the timer subsystem. The callback function is timer0O_cb().

* The second timer (timerl) is loaded on the next available lcore every 333 ms. The SINGLE flag means that the
timer expires only once and must be reloaded manually if required. The callback function is timer1_cb().

/% load timer(0, every second, on master lcore, reloaded automatically =/
hz = rte_get_hpet_hz();

lcore_id = rte_lcore_id();

rte_timer_reset (&timer0, hz, PERIODICAL, lcore_id, timerO_cb, NULL);

/+ load timerl, every second/3, on next lcore, reloaded manually =/
lcore_id = rte_get_next_lcore(lcore_id, 0, 1);

rte_timer_reset (&timerl, hz/3, SINGLE, lcore_id, timerl_cb, NULL);

The callback for the first timer (timerQO) only displays a message until a global counter reaches 20 (after 20 seconds).
In this case, the timer is stopped using the rte_timer_stop() function.

/* timerQ callback x/

static void

timer0_cb (attribute ((unused)) struct rte_timer xtim, __attribute ((unused)) wvoid
—*arg)
{

static unsigned counter = 0;

unsigned lcore_id = rte_lcore_id();
printf ("%s() on lcore %u\n", FUNCTION , lcore_id);

/* this timer is automatically reloaded until we decide to stop it, when counter_
—reaches 20. x/

if ((counter ++) == 20)
rte_timer_stop(tim);

The callback for the second timer (timerl) displays a message and reloads the timer on the next Icore, using the
rte_timer_reset() function:

/* timerl callback x/

static void
timerl_cb(attribute ((unused)) struct rte_timer xtim, _attribute ((unused)) wvoid
—*arg)

{

3.28. Timer Sample Application 177

dpdk, Release 0.11

unsigned lcore_id = rte_lcore_id();
uint64_t hz;

printf ("%s () on lcore %u\\n", FUNCTION , lcore_id);
/+ reload it on another lcore */

hz = rte_get_hpet_hz();

lcore_id = rte_get_next_lcore(lcore_id, 0, 1);

rte_timer_reset (&timerl, hz/3, SINGLE, lcore_id, timerl_cb, NULL);

3.29 Packet Ordering Application

The Packet Ordering sample app simply shows the impact of reordering a stream. It’s meant to stress the library with
different configurations for performance.

3.29.1 Overview

The application uses at least three CPU cores:
* RX core (maser core) receives traffic from the NIC ports and feeds Worker cores with traffic through SW queues.

» Worker core (slave core) basically do some light work on the packet. Currently it modifies the output port of the
packet for configurations with more than one port enabled.

e TX Core (slave core) receives traffic from Worker cores through software queues, inserts out-of-order pack-
ets into reorder buffer, extracts ordered packets from the reorder buffer and sends them to the NIC ports for
transmission.

3.29.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/helloworld

2. Set the target (a default target is used if not specified). For example:

’export RTE_TARGET=x86_64-native-linuxapp—-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

’make

3.29.3 Running the Application

Refer to DPDK Getting Started Guide for general information on running applications and the Environment Abstrac-
tion Layer (EAL) options.

178 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Application Command Line

The application execution command line is:

./test-pipeline [EAL options] —-- —-p PORTMASK [--disable-reorder]

The -c EAL CPU_COREMASK option has to contain at least 3 CPU cores. The first CPU core in the core mask is the
master core and would be assigned to RX core, the last to TX core and the rest to Worker cores.

The PORTMASK parameter must contain either 1 or even enabled port numbers. When setting more than 1 port,
traffic would be forwarded in pairs. For example, if we enable 4 ports, traffic from port O to 1 and from 1 to 0, then the
other pair from 2 to 3 and from 3 to 2, having [0,1] and [2,3] pairs.

The disable-reorder long option does, as its name implies, disable the reordering of traffic, which should help evaluate
reordering performance impact.

3.30 VMDQ and DCB Forwarding Sample Application

The VMDQ and DCB Forwarding sample application is a simple example of packet processing using the DPDK. The
application performs L2 forwarding using VMDQ and DCB to divide the incoming traffic into queues. The traffic
splitting is performed in hardware by the VMDQ and DCB features of the Intel® 82599 and X710/XL710 Ethernet
Controllers.

3.30.1 Overview

This sample application can be used as a starting point for developing a new application that is based on the DPDK
and uses VMDQ and DCB for traffic partitioning.

The VMDQ and DCB filters work on MAC and VLAN traffic to divide the traffic into input queues on the basis of
the Destination MAC address, VLAN ID and VLAN user priority fields. VMDAQ filters split the traffic into 16 or 32
groups based on the Destination MAC and VLAN ID. Then, DCB places each packet into one of queues within that
group, based upon the VLAN user priority field.

All traffic is read from a single incoming port (port 0) and output on port 1, without any processing being performed.
With Intel® 82599 NIC, for example, the traffic is split into 128 queues on input, where each thread of the application
reads from multiple queues. When run with 8 threads, that is, with the -c FF option, each thread receives and forwards
packets from 16 queues.

As supplied, the sample application configures the VMDQ feature to have 32 pools with 4 queues each as indicated in
Fig. 3.21. The Intel® 82599 10 Gigabit Ethernet Controller NIC also supports the splitting of traffic into 16 pools of 8
queues. While the Intel® X710 or XL710 Ethernet Controller NICs support many configurations of VMDQ pools of 4
or 8 queues each. For simplicity, only 16 or 32 pools is supported in this sample. And queues numbers for each VMDQ
pool can be changed by setting CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM in config/common_* file.
The nb-pools, nb-tcs and enable-rss parameters can be passed on the command line, after the EAL parameters:

./build/vmdg_dcb [EAL options] -- —-p PORTMASK --nb-pools NP --nb-tcs TC --enable-rss

where, NP can be 16 or 32, TC can be 4 or 8, rss is disabled by default.

Fig. 3.21: Packet Flow Through the VMDQ and DCB Sample Application

In Linux* user space, the application can display statistics with the number of packets received on each queue. To
have the application display the statistics, send a SIGHUP signal to the running application process.

3.30. VMDQ and DCB Forwarding Sample Application 179

dpdk, Release 0.11

The VMDQ and DCB Forwarding sample application is in many ways simpler than the L2 Forwarding application
(see L2 Forwarding Sample Application (in Real and Virtualized Environments)) as it performs unidirectional L2
forwarding of packets from one port to a second port. No command-line options are taken by this application apart
from the standard EAL command-line options.

Note: Since VMD queues are being used for VMM, this application works correctly when VTd is disabled in the
BIOS or Linux* kernel (intel_iommu=off).

3.30.2 Compiling the Application

1. Go to the examples directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/vmdg_dcb

2. Set the target (a default target is used if not specified). For example:

’export RTE_TARGET=x86_64-native—-linuxapp—-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

’make

3.30.3 Running the Application

To run the example in a linuxapp environment:

user@target:~$./build/vmdg_dcb -1 0-3 -n 4 —-- -p 0x3 —--nb-pools 32 —--nb-tcs 4

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-
straction Layer (EAL) options.

3.30.4 Explanation

The following sections provide some explanation of the code.

Initialization

The EAL, driver and PCI configuration is performed largely as in the L2 Forwarding sample application, as is the
creation of the mbuf pool. See L2 Forwarding Sample Application (in Real and Virtualized Environments). Where this
example application differs is in the configuration of the NIC port for RX.

The VMDQ and DCB hardware feature is configured at port initialization time by setting the appropriate values in
the rte_eth_conf structure passed to the rte_eth_dev_configure() API. Initially in the application, a default structure is
provided for VMDQ and DCB configuration to be filled in later by the application.

180 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

/+ empty vmdg+dch configuration structure. Filled in programmatically x/

static const struct rte_eth_conf vmdg _dcb_conf_default = {
.rxmode = {
.mg_mode = ETH_MQ_RX_ VMDQ_DCB,

.split_hdr_size =
.header_split =
.hw_ip_checksum =
.hw_vlan_filter
. jumbo_frame =

4

, /#**< Header Split disabled =/

, /#*x< IP checksum offload disabled x/
, /#**< VLAN filtering disabled =/

, /#**< Jumbo Frame Support disabled =/

O O O o o

}I
.txmode = {
.mg_mode = ETH_MQ_ TX_VMDQ_DCB,
}I
/%
* should be overridden separately in code with
* appropriate values
*/
.rx_adv_conf = {
.vindg_dcb_conf = {
.nb_queue_pools = ETH_32_POOLS,
.enable_default_pool = 0,
.default_pool = 0,
.nb_pool_maps = 0,
.pool_map = {{0, 0},},
.dcb_tc = {0},
}!
.dcb_rx_conf = {
.nb_tcs = ETH_4_TCS,
/++ Traffic class each UP mapped to. x/
.dcb_tc = {0},
}I
.vmdg_rx_conf = {
.nb_queue_pools = ETH_32_POOLS,
.enable_default_pool = 0,
.default_pool = 0,
.nb_pool_maps = 0,
.pool_map = {{0, O0},},
}!
}I
.tx_adv_conf = {
.vmdg_dcb_tx_conf = {
.nb_queue_pools = ETH_32_POOLS,
.dcb_tc = {0},
br
}I
}i

The get_eth_conf() function fills in an rte_eth_conf structure with the appropriate values, based on the global vlan_tags
array, and dividing up the possible user priority values equally among the individual queues (also referred to as traffic
classes) within each pool. With Intel® 82599 NIC, if the number of pools is 32, then the user priority fields are
allocated 2 to a queue. If 16 pools are used, then each of the 8 user priority fields is allocated to its own queue
within the pool. With Intel® X710/XL710 NICs, if number of tcs is 4, and number of queues in pool is 8, then
the user priority fields are allocated 2 to one tc, and a tc has 2 queues mapping to it, then RSS will determine the
destination queue in 2. For the VLAN IDs, each one can be allocated to possibly multiple pools of queues, so the
pools parameter in the rte_eth_vmdq_dcb_conf structure is specified as a bitmask value. For destination MAC, each
VMDAQ pool will be assigned with a MAC address. In this sample, each VMDQ pool is assigned to the MAC like
52:54:00:12:<port_id>:<pool_id>, that is, the MAC of VMDQ pool 2 on port 1 is 52:54:00:12:01:02.

3.30. VMDQ and DCB Forwarding Sample Application 181

dpdk, Release 0.11

const uintlé6_t vlan_tags([] = {

0o, 1, 2, 3, 4, 5, 6, 1,

8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31

}i

/% pool mac addr template, pool mac addr is like:
static struct ether_addr pool_addr_template = {
.addr_bytes {0x52, 0x54, 0x00, 0x12, 0x00,

52 54 00 12 port# pool# =*/

0x00}
}i

/% Builds up the correct configuration for vmdg+dcb based on the vlan tags array
* given above, and the number of traffic classes available for use. x/

static inline int

get_eth_conf (struct rte_eth_conf

{

+eth_conf)

struct
struct
struct
struct

rte_eth_vmdg_dcb_conf
rte_eth_vmdg_rx_conf
rte_eth_dcb_rx_ conf

conf;
vmdg_conf;
dcb_conf;

rte_eth_vmdg_dcb_tx_conf tx_conf;

uint8_t i;

conf.nb_queue_pools
vmdg_conf.nb_queue_pool
tx_conf.nb_queue_pools
conf.nb_pool_maps
vmdg_conf.nb_pool_maps
conf.enable_default_poo

vmdg_conf.enable_default_pool

conf.default_pool = 0;

(enum rte_eth_nb_pools)num_pools;
(enum rte_eth_nb_pools)num_pools;

S

(enum rte_eth_nb_pools)num_pools;

num_pools;

num_pools;
0;

1

0;
/+ set explicit value,

even 1f not used

*/

vmdg_conf.default_pool = 0;

for (1 0; 1 < conf.nb_pool_maps; i++) {
conf.pool_map[i].vlan_id vlan_tags[i];
vindg_conf.pool_map([i].vlan_id vlan_tags([i];
conf.pool_map[i] .pools 1UL << 1 ;

vmdg_conf.pool_map[i].pools 1UL << i;

for

(i = 0;

i < ETH_DCB_NUM_USER_PRIORITIES;

i+4) {

conf.dcb_tc[i] = 1 %
dcb_conf.dcb_tc[i]

tx_conf.dcb_tc[i]

=1 %

o)

i %

}
dcb_conf.nb_tcs (enum rte_.
(void) (rte_memcpy (eth_conf,

(void) (rte_memcpy (ð_conf->rx_adv_conf.vmdg _dcb_conf,

num_tcs;

num_tcs;
num_tcs;

eth_nb_tcs)num_tcs;
&vmdg_dcb_conf_default,

sizeof (xreth_conf)));
&conf,

sizeof (conf)));

(void) (rte_memcpy (ð_conf->rx_adv_conf.dcb_rx_conf,
sizeof (dcb_conf)));

(void) (rte_memcpy (ð_conf->rx_adv_conf.vmdg_rx_conf,
sizeof (vmdg_conf)));

(void) (rte_memcpy (ð_conf->tx_adv_conf.vmdg_dcb_tx_conf,

sizeof (tx_conf)));
(rss_enable) {
eth_conf->rxmode.mqg_mode= ETH_MQ RX_VMDQ_DCB_RSS;
ETH_RSS_1IP

if

eth_conf->rx_adv_conf.rss_conf.rss_hf
ETH_RSS_UDP |

&dcb_conf,

&vmdg_conf,

&tx_conf,

182

Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

ETH_RSS_TCP |
ETH_RSS_SCTP;
}

return 0O;

/+ Set mac for each pool.x*/
for (g = 0; g < num_pools; gt++) {
struct ether_addr mac;
mac = pool_addr_template;
mac.addr_bytes[4] = port;
mac.addr_bytes[5] = qg;
printf ("Port %u vmdg pool %u set mac %02x:%02x:%02x:%02x:%02x:%02x\n",
port, q,
mac.addr_bytes[0], mac.addr_bytes[1],
mac.addr_bytes[2], mac.addr_bytes[3],
mac.addr_bytes[4], mac.addr_bytes[5]);
retval = rte_eth_dev_mac_addr_add(port, &mac,
g + vmdg_pool_base);
if (retval) {
printf ("mac addr add failed at pool %d\n", q);
return retval;

Once the network port has been initialized using the correct VMDQ and DCB values, the initialization of the port’s
RX and TX hardware rings is performed similarly to that in the L2 Forwarding sample application. See L2 Forwarding
Sample Application (in Real and Virtualized Environments) for more information.

Statistics Display

When run in a linuxapp environment, the VMDQ and DCB Forwarding sample application can display statistics
showing the number of packets read from each RX queue. This is provided by way of a signal handler for the SIGHUP
signal, which simply prints to standard output the packet counts in grid form. Each row of the output is a single pool
with the columns being the queue number within that pool.

To generate the statistics output, use the following command:

user@host$ sudo killall -HUP vmdg_dcb_app

Please note that the statistics output will appear on the terminal where the vmdq_dcb_app is running, rather than the
terminal from which the HUP signal was sent.

3.31 Vhost Sample Application

The vhost sample application demonstrates integration of the Data Plane Development Kit (DPDK) with the Linux*
KVM hypervisor by implementing the vhost-net offload API. The sample application performs simple packet switch-
ing between virtual machines based on Media Access Control (MAC) address or Virtual Local Area Network (VLAN)
tag. The splitting of Ethernet traffic from an external switch is performed in hardware by the Virtual Machine Device
Queues (VMDQ) and Data Center Bridging (DCB) features of the Intel® 82599 10 Gigabit Ethernet Controller.

3.31. Vhost Sample Application 183

dpdk, Release 0.11

3.31.1 Testing steps

This section shows the steps how to test a typical PVP case with this vhost-switch sample, whereas packets are received
from the physical NIC port first and enqueued to the VM’s Rx queue. Through the guest testpmd’s default forwarding
mode (io forward), those packets will be put into the Tx queue. The vhost-switch example, in turn, gets the packets
and puts back to the same physical NIC port.

Build

Follow the Getting Started Guide for Linux on generic info about environment setup and building DPDK from source.

In this example, you need build DPDK both on the host and inside guest. Also, you need build this example.

export RTE_SDK=/path/to/dpdk_source
export RTE_TARGET=x86_64-native-linuxapp-gcc

cd ${RTE_SDK}/examples/vhost
make

Start the vswitch example

./vhost-switch -1 0-3 -n 4 --socket-mem 1024 \
—-— —-socket-file /tmp/sock0 —--client \

Check the Parameters section for the explanations on what do those parameters mean.

Start the VM

gemu-system-x86_64 -machine accel=kvm —-cpu host \

-m $mem -object memory-backend-file, id=mem, size=$mem, mem-path=/dev/hugepages,
—»share=on \

-mem-prealloc —-numa node,memdev=mem \

\

-chardev socket, id=charl,path=/tmp/sock0, server \

-netdev type=vhost-user,id=hostnetl,chardev=charl \

—device virtio-net-pci,netdev=hostnetl, id=netl,mac=52:54:00:00:00:14 \

Note: For basic vhost-user support, QEMU 2.2 (or above) is required. For some specific features, a higher version
might be need. Such as QEMU 2.7 (or above) for the reconnect feature.

Run testpmd inside guest

Make sure you have DPDK built inside the guest. Also make sure the corresponding virtio-net PCI device is bond to
a uio driver, which could be done by:

modprobe uio_pci_generic
SRTE_SDK/usertools/dpdk-devbind.py —-b=uio_pci_generic 0000:00:04.0

184 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Then start testpmd for packet forwarding testing.

./x86_64-native-gcc/app/testpmd -1 0-1 —- -i
> start tx_first

3.31.2 Inject packets

While a virtio-net is connected to vhost-switch, a VLAN tag starts with 1000 is assigned to it. So make sure configure
your packet generator with the right MAC and VLAN tag, you should be able to see following log from the vhost-
switch console. It means you get it work:

VHOST_DATA: (0) mac 52:54:00:00:00:14 and vlan 1000 registered

3.31.3 Parameters

—socket-file path Specifies the vhost-user socket file path.

—client DPDK vhost-user will act as the client mode when such option is given. In the client mode, QEMU will create
the socket file. Otherwise, DPDK will create it. Put simply, it’s the server to create the socket file.

—vm2vm mode The vm2vm parameter sets the mode of packet switching between guests in the host.
* 0 disables vm2vm, impling that VM’s packets will always go to the NIC port.
* 1 means a normal mac lookup packet routing.

* 2 means hardware mode packet forwarding between guests, it allows packets go to the NIC port, hardware L.2
switch will determine which guest the packet should forward to or need send to external, which bases on the
packet destination MAC address and VLAN tag.

—mergeable 0l1 Set 0/1 to disable/enable the mergeable Rx feature. It’s disabled by default.

—stats interval The stats parameter controls the printing of virtio-net device statistics. The parameter specifies an
interval (in unit of seconds) to print statistics, with an interval of 0 seconds disabling statistics.

—rx-retry 0l1 The rx-retry option enables/disables enqueue retries when the guests Rx queue is full. This feature
resolves a packet loss that is observed at high data rates, by allowing it to delay and retry in the receive path. This
option is enabled by default.

—rx-retry-num num The rx-retry-num option specifies the number of retries on an Rx burst, it takes effect only when
rx retry is enabled. The default value is 4.

—-rx-retry-delay msec The rx-retry-delay option specifies the timeout (in micro seconds) between retries on an RX
burst, it takes effect only when rx retry is enabled. The default value is 15.

—dequeue-zero-copy Dequeue zero copy will be enabled when this option is given.

—vlan-strip 011 VLAN strip option is removed, because different NICs have different behaviors when disabling VLAN
strip. Such feature, which heavily depends on hardware, should be removed from this example to reduce confusion.
Now, VLAN strip is enabled and cannot be disabled.

3.31.4 Common Issues

* QEMU fails to allocate memory on hugetlbfs, with an error like the following:

file_ram_alloc: can't mmap RAM pages: Cannot allocate memory

3.31. Vhost Sample Application 185

dpdk, Release 0.11

When running QEMU the above error indicates that it has failed to allocate memory for the Virtual Machine on
the hugetlbfs. This is typically due to insufficient hugepages being free to support the allocation request. The
number of free hugepages can be checked as follows:

cat /sys/kernel/mm/hugepages/hugepages—<pagesize>/nr_hugepages

The command above indicates how many hugepages are free to support QEMU’s allocation request.
* vhost-user will not work with QEMU without the -mem-prealloc option

The current implementation works properly only when the guest memory is pre-allocated.
* vhost-user will not work with a QEMU version without shared memory mapping:

Make sure share=on QEMU option is given.
¢ Failed to build DPDK in VM

Make sure “-cpu host” QEMU option is given.

3.32 Netmap Compatibility Sample Application

3.32.1 Introduction

The Netmap compatibility library provides a minimal set of APIs to give programs written against the Netmap APIs
the ability to be run, with minimal changes to their source code, using the DPDK to perform the actual packet I/O.

Since Netmap applications use regular system calls, like open (), ioctl () and mmap () to communicate with the
Netmap kernel module performing the packet I/O, the compat_netmap library provides a set of similar APIs to use
in place of those system calls, effectively turning a Netmap application into a DPDK application.

The provided library is currently minimal and doesn’t support all the features that Netmap supports, but is enough to
run simple applications, such as the bridge example detailed below.

Knowledge of Netmap is required to understand the rest of this section. Please refer to the Netmap distribution for
details about Netmap.

3.32.2 Available APIs

The library provides the following drop-in replacements for system calls usually used in Netmap applications:
* rte_netmap_close ()
* rte_netmap_ioctl ()
* rte_netmap_open ()
* rte_netmap_mmap ()
* rte_netmap_poll ()

They use the same signature as their libc counterparts, and can be used as drop-in replacements in most cases.

3.32.3 Caveats

Given the difference between the way Netmap and the DPDK approach packet I/O, there are caveats and limitations
to be aware of when trying to use the compat_netmap library, the most important of these are listed below. These
may change as the library is updated:

186 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

* Any system call that can potentially affect file descriptors cannot be used with a descriptor returned by the
rte_netmap_open () function.

Note that:

e The rte_netmap_mmap () function merely returns the address of a DPDK memzone. The address, length,
flags, offset, and other arguments are ignored.

e The rte_netmap_poll () function only supports infinite (negative) or zero time outs. It effectively turns
calls to the poll () system call made in a Netmap application into polling of the DPDK ports, changing the
semantics of the usual POSIX defined poll.

* Not all of Netmap’s features are supported: host rings, slot flags and so on are not supported or are simply not
relevant in the DPDK model.

» The Netmap manual page states that “a device obtained through /dev/netmap also supports the ioctl supported
by network devices”. This is not the case with this compatibility layer.

* The Netmap kernel module exposes a sysfs interface to change some internal parameters, such as the size of the
shared memory region. This interface is not available when using this compatibility layer.

3.32.4 Porting Netmap Applications

Porting Netmap applications typically involves two major steps:
* Changing the system calls to use their compat_netmap library counterparts.
* Adding further DPDK initialization code.

Since the compat_netmap functions have the same signature as the usual libc calls, the change is trivial in most
cases.

The usual DPDK initialization code involving rte_eal_init () and rte_eal_pci_probe () has to be added
to the Netmap application in the same way it is used in all other DPDK sample applications. Please refer to the DPDK
Programmer’s Guide and example source code for details about initialization.

In addition of the regular DPDK initialization code, the ported application needs to call initialization functions for the
compat_netmap library, namely rte_netmap_init () and rte_netmap_init_port ().

These two initialization functions take compat_netmap specific data structures as parameters: struct
rte_netmap_conf and struct rte_netmap_port_conf. The structures’ fields are Netmap related
and are self-explanatory for developers familiar with Netmap. They are defined in SRTE_SDK/examples/
netmap_compat/lib/compat_netmap.h.

The bridge application is an example largely based on the bridge example shipped with the Netmap distribution. It
shows how a minimal Netmap application with minimal and straightforward source code changes can be run on top of
the DPDK. Please refer to $SRTE_SDK/examples/netmap_compat/bridge/bridge. c for an example of a
ported application.

3.32.5 Compiling the “bridge” Sample Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/netmap_compat

2. Set the target (a default target is used if not specified). For example:

3.32. Netmap Compatibility Sample Application 187

dpdk, Release 0.11

’export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for Linux for possible RTE_TARGET values.

3. Build the application:

’make

3.32.6 Running the “bridge” Sample Application

The application requires a single command line option:

./build/bridge [EAL options] —-- —-i INTERFACE_A [-i INTERFACE_B]

where,
e —i INTERFACE: Interface (DPDK port number) to use.

If a single —1i parameter is given, the interface will send back all the traffic it receives. If two —i parameters are
given, the two interfaces form a bridge, where traffic received on one interface is replicated and sent to the other
interface.

For example, to run the application in a linuxapp environment using port 0 and 2:

./build/bridge [EAL options] —-- -1 0 -1 2

Refer to the DPDK Getting Started Guide for Linux for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

Note that unlike a traditional bridge or the 12fwd sample application, no MAC address changes are done on the
frames. Do not forget to take this into account when configuring a traffic generators and testing this sample application.

3.33 Internet Protocol (IP) Pipeline Application

3.33.1 Application overview
The Internet Protocol (IP) Pipeline application is intended to be a vehicle for rapid development of packet processing
applications running on multi-core CPUs.

The application provides a library of reusable functional blocks called pipelines. These pipelines can be seen as
prefabricated blocks that can be instantiated and inter-connected through packet queues to create complete applications
(super-pipelines).

Pipelines are created and inter-connected through the application configuration file. By using different configuration
files, different applications are effectively created, therefore this application can be seen as an application generator.
The configuration of each pipeline can be updated at run-time through the application Command Line Interface (CLI).

Main application components are:
A Library of reusable pipelines
* Each pipeline represents a functional block, e.g. flow classification, firewall, routing, master, etc.

» Each pipeline type can be instantiated several times in the same application, which each instance configured
separately and mapped to a single CPU core. Each CPU core can run one or several pipeline instances, which
can be of same or different type.

188 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

* Pipeline instances are inter-connected through packet queues (for packet processing) and message queues (for
run-time configuration).

* Pipelines are implemented using DPDK Packet Framework.
* More pipeline types can always be built and added to the existing pipeline types.
The Configuration file

» The configuration file defines the application structure. By using different configuration files, different applica-
tions are created.

¢ All the application resources are created and configured through the application configuration file: pipeline
instances, buffer pools, links (i.e. network interfaces), hardware device RX/TX queues, software queues, traffic
manager devices, EAL startup arguments, etc.

* The configuration file syntax is “define by reference”, meaning that resources are defined as they are refer-
enced. First time a resource name is detected, it is registered with default parameters. Optionally, the resource
parameters can be further refined through a configuration file section dedicated to that resource.

e Command Line Interface (CLI)
Global CLI commands: link configuration, etc.
* Common pipeline CLI commands: ping (keep-alive), statistics, etc.

* Pipeline type specific CLI commands: used to configure instances of specific pipeline type. These commands
are registered with the application when the pipeline type is registered. For example, the commands for routing
pipeline instances include: route add, route delete, route list, etc.

* CLI commands can be grouped into scripts that can be invoked at initialization and at runtime.

3.33.2 Design goals

Rapid development

This application enables rapid development through quick connectivity of standard components called pipelines. These
components are built using DPDK Packet Framework and encapsulate packet processing features at different levels:
ports, tables, actions, pipelines and complete applications.

Pipeline instances are instantiated, configured and inter-connected through low complexity configuration files loaded
during application initialization. Each pipeline instance is mapped to a single CPU core, with each CPU core able to
run one or multiple pipeline instances of same or different types. By loading a different configuration file, a different
application is effectively started.

Flexibility

Each packet processing application is typically represented as a chain of functional stages which is often called the
functional pipeline of the application. These stages are mapped to CPU cores to create chains of CPU cores (pipeline
model), clusters of CPU cores (run-to-completion model) or chains of clusters of CPU cores (hybrid model).

This application allows all the above programming models. By applying changes to the configuration file, the applica-
tion provides the flexibility to reshuffle its building blocks in different ways until the configuration providing the best
performance is identified.

3.33. Internet Protocol (IP) Pipeline Application 189

dpdk, Release 0.11

Move pipelines around

The mapping of pipeline instances to CPU cores can be reshuffled through the configuration file. One or several
pipeline instances can be mapped to the same CPU core.

Fig. 3.22: Example of moving pipeline instances across different CPU cores

Move tables around

There is some degree of flexibility for moving tables from one pipeline instance to another. Based on the configuration
arguments passed to each pipeline instance in the configuration file, specific tables can be enabled or disabled. This
way, a specific table can be “moved” from pipeline instance A to pipeline instance B by simply disabling its associated
functionality for pipeline instance A while enabling it for pipeline instance B.

Due to requirement to have simple syntax for the configuration file, moving tables across different pipeline instances
is not as flexible as the mapping of pipeline instances to CPU cores, or mapping actions to pipeline tables. Complete
flexibility in moving tables from one pipeline to another could be achieved through a complex pipeline description
language that would detail the structural elements of the pipeline (ports, tables and actions) and their connectivity,
resulting in complex syntax for the configuration file, which is not acceptable. Good configuration file readability
through simple syntax is preferred.

Example: the IP routing pipeline can run the routing function only (with ARP function run by a different pipeline
instance), or it can run both the routing and ARP functions as part of the same pipeline instance.

Fig. 3.23: Example of moving tables across different pipeline instances

Move actions around

When it makes sense, packet processing actions can be moved from one pipeline instance to another. Based on the
configuration arguments passed to each pipeline instance in the configuration file, specific actions can be enabled
or disabled. This way, a specific action can be “moved” from pipeline instance A to pipeline instance B by simply
disabling its associated functionality for pipeline instance A while enabling it for pipeline instance B.

Example: The flow actions of accounting, traffic metering, application identification, NAT, etc can be run as part of the
flow classification pipeline instance or split across several flow actions pipeline instances, depending on the number
of flow instances and their compute requirements.

Fig. 3.24: Example of moving actions across different tables and pipeline instances

Performance
Performance of the application is the highest priority requirement. Flexibility is not provided at the expense of perfor-
mance.

The purpose of flexibility is to provide an incremental development methodology that allows monitoring the perfor-
mance evolution:

190 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

* Apply incremental changes in the configuration (e.g. mapping on pipeline instances to CPU cores) in order to
identify the configuration providing the best performance for a given application;

* Add more processing incrementally (e.g. by enabling more actions for specific pipeline instances) until the
application is feature complete while checking the performance impact at each step.

Debug capabilities

The application provides a significant set of debug capabilities:

* Command Line Interface (CLI) support for statistics polling: pipeline instance ping (keep-alive checks), pipeline
instance statistics per input port/output port/table, link statistics, etc;

* Logging: Turn on/off application log messages based on priority level;

3.33.3 Running the application

The application startup command line is:

ip_pipeline [-f CONFIG_FILE] [-s SCRIPT_FILE] -p PORT_MASK [-1 LOG_LEVEL]

The application startup arguments are:
—-f CONFIG_FILE
* Optional: Yes
e Default: . /config/ip_pipeline.cfg

* Argument: Path to the configuration file to be loaded by the application. Please refer to the Configuration file
syntax for details on how to write the configuration file.

-s SCRIPT_FILE
» Optional: Yes
¢ Default: Not present

e Argument: Path to the CLI script file to be run by the master pipeline at application startup. No CLI script file
will be run at startup of this argument is not present.

-p PORT_MASK
¢ Optional: No
* Default: N/A

* Argument: Hexadecimal mask of NIC port IDs to be used by the application. First port enabled in this mask
will be referenced as LINKO as part of the application configuration file, next port as LINK1, etc.

-1 LOG_LEVEL
* Optional: Yes
e Default: 1 (High priority)

* Argument: Log level to determine which application messages are to be printed to standard output. Available
log levels are: 0 (None), 1 (High priority), 2 (Low priority). Only application messages whose priority is higher
than or equal to the application log level will be printed.

3.33. Internet Protocol (IP) Pipeline Application 191

dpdk, Release 0.11

3.33.4 Application stages

Configuration

During this stage, the application configuration file is parsed and its content is loaded into the application data struc-
tures. In case of any configuration file parse error, an error message is displayed and the application is terminated.
Please refer to the Configuration file syntax for a description of the application configuration file format.

Configuration checking

In the absence of any parse errors, the loaded content of application data structures is checked for overall consistency.
In case of any configuration check error, an error message is displayed and the application is terminated.

Initialization

During this stage, the application resources are initialized and the handles to access them are saved into the application
data structures. In case of any initialization error, an error message is displayed and the application is terminated.

The typical resources to be initialized are: pipeline instances, buffer pools, links (i.e. network interfaces), hardware
device RX/TX queues, software queues, traffic management devices, etc.

Run-time

Each CPU core runs the pipeline instances assigned to it in time sharing mode and in round robin order:

1. Packet processing task: The pipeline run-time code is typically a packet processing task built on top of DPDK
Packet Framework rte_pipeline library, which reads bursts of packets from the pipeline input ports, performs
table lookups and executes the identified actions for all tables in the pipeline, with packet eventually written to
pipeline output ports or dropped.

2. Message handling task: Each CPU core will also periodically execute the message handling code of each of
the pipelines mapped to it. The pipeline message handling code is processing the messages that are pending in
the pipeline input message queues, which are typically sent by the master CPU core for the on-the-fly pipeline
configuration: check that pipeline is still alive (ping), add/delete entries in the pipeline tables, get statistics, etc.
The frequency of executing the message handling code is usually much smaller than the frequency of executing
the packet processing work.

Please refer to the PIPELINE section for more details about the application pipeline module encapsulation.

3.33.5 Configuration file syntax

Syntax overview

The syntax of the configuration file is designed to be simple, which favors readability. The configuration file is parsed
using the DPDK library librte_cfgfile, which supports simple INI file format for configuration files.

As result, the configuration file is split into several sections, with each section containing one or more entries. The
scope of each entry is its section, and each entry specifies a variable that is assigned a specific value. Any text after
the ; character is considered a comment and is therefore ignored.

The following are application specific: number of sections, name of each section, number of entries of each section,
name of the variables used for each section entry, the value format (e.g. signed/unsigned integer, string, etc) and range
of each section entry variable.

192 Chapter 3. Sample Applications User Guides

http://en.wikipedia.org/wiki/INI_file

dpdk, Release 0.11

Generic example of configuration file section:

[<section_name>]

<variable_name_1> = <value_1>

<variable_name_ N> = <value_ N>

Application resources present in the configuration file

Table 3.3: Application resource names in the configuration file

Resource type Format Examples

Pipeline PIPELINE<ID> PIPELINEO, PIPELINEL
anmool MEMPOOL<ID> MEMPOOLO, MEMPOOL1
Link (network interface) LINK<ID> LINKO, LINK1

Link RX queue RXQ<LINK_ID>.<QUEUE_ID> RXQ0.0,RXQ1.5
LkaXXpwue TXQ<LINK_ID>.<QUEUE_ID> TXQ0.0,TXQ1l.5
Software queue SWQ<ID> SWQO0, SWQ1

Traffic Manager TM<LINK_ID> TMO, TM1

KNI (kernel NIC interface) KNI<LINK_ID> KNIO, KNIl

MSGQ-REQ-PIPELINE<ID>
MSGQ-RSP-PIPELINE<ID>
MSGQ-REQ-CORE—-<CORE_ID>
MSGQ—-RSP-CORE—<CORE_ID>

MSGO-REQ-PIPELINEZ,
MSGQO-RSP-PIPELINEZ,
MSGQ-REQ-CORE-s0cl,
MSGQ-RSP-CORE-s0cl

Source SOURCE<ID> SOURCEOQ, SOURCE1
Sink SINK<ID> SINKO, SINKL1
Message queue MSGQ<ID> MSGQO, MSGQ1,

LINK instances are created implicitly based on the PORT_MASK application startup argument. LINKO is the first port
enabled in the PORT_MASK, port 1 is the next one, etc. The LINK ID is different than the DPDK PMD-level NIC
port ID, which is the actual position in the bitmask mentioned above. For example, if bit 5 is the first bit set in the
bitmask, then LINKO is having the PMD ID of 5. This mechanism creates a contiguous LINK ID space and isolates
the configuration file against changes in the board PCle slots where NICs are plugged in.

RXOQ, TXQ, TM and KNT instances have the LINK ID as part of their name. For example, RXQ2 .1, TXQ2 .1 and TM2

are all associated with LINK2.

Rules to parse the configuration file

The main rules used to parse the configuration file are:

1. Application resource name determines the type of resource based on the name prefix.

Example: all software queues need to start with SWQ prefix, so SWQ0 and SWQ5 are valid software queue names.

2. An application resource is defined by creating a configuration file section with its name. The configuration file
section allows fine tuning on any of the resource parameters. Some resource parameters are mandatory, in which
case it is required to have them specified as part of the section, while some others are optional, in which case
they get assigned their default value when not present.

Example: section SWQO defines a software queue named SWQO, whose parameters are detailed as part of this

section.

3.33. Internet Protocol (IP) Pipeline Application

193

dpdk, Release 0.11

3. An application resource can also be defined by referencing it. Referencing a resource takes place by simply
using its name as part of the value assigned to a variable in any configuration file section. In this case, the
resource is registered with all its parameters having their default values. Optionally, a section with the resource
name can be added to the configuration file to fine tune some or all of the resource parameters.

Example: in section PIPELINE3, variable pktqg_in includes SWQ5 as part of its list, which results in defining
a software queue named SWQ5; when there is no SWQ5 section present in the configuration file, SWQ5 gets
registered with default parameters.

PIPELINE section

Table 3.4: Configuration file PIPELINE section (1/2)

Section Description Optional | Range Default
value
type Pipeline type. Defines the functionality to be exe- | NO See “List | N/A
cuted. of pipeline
types”
core CPU core to run the current pipeline. YES See “CPU | CPU
Core nota- | socket O,
tion” core 0,
hyper-
thread
0
pktq_in Packet queues to serve as input ports for the cur- | YES List of in- | Empty list
rent pipeline instance. The acceptable packet put packet
queue types are: RXQ, SWQ, TM and SOURCE. queue IDs
First device in this list is used as pipeline input
port 0, second as pipeline input port 1, etc.
pktg_out Packet queues to serve as output ports for the | YES List of | Empty list
current pipeline instance. The acceptable packet output
queue types are: TXQ, SWQ, TM and SINK. First packet
device in this list is used as pipeline output port O, queue
second as pipeline output port 1, etc. IDs.

194 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Table 3.5: Configuration file PIPELINE section (2/2)

by the pipeline type. The value of the arguments
is applicable to the current pipeline instance only.

Section Description Optional | Range Default
value
msgq_in Input message queues. These queues contain re- | YES List of | Empty list
quest messages that need to be handled by the message
current pipeline instance. The type and format queue IDs
of request messages is defined by the pipeline
type. For each pipeline instance, there is an input
message queue defined implicitly, whose name is:
MSGQ-REQ-<PIPELINE_ID>. This message
queue should not be mentioned as part of msgq_in
list.
msgq_out Output message queues. These queues are used | YES List of | Empty list
by the current pipeline instance to write re- message
sponse messages as result of request messages queue IDs
being handled. The type and format of re-
sponse messages is defined by the pipeline type.
For each pipeline instance, there is an output
message queue defined implicitly, whose name
is: MSGQ-RSP—-<PIPELINE_ID>. This mes-
sage queue should not be mentioned as part of
msgq_out list.
timer_period Time period, measured in milliseconds, for han- | YES milliseconds 1 ms
dling the input message queues.
<any other> Arguments to be passed to the current pipeline | Depends Depends Depends
instance. Format of the arguments, their type, | on on on
whether each argument is optional or mandatory | pipeline pipeline pipeline
and its default value (when optional) are defined | type type type

CPU core notation

The CPU Core notation is:

<CPU core> ::= [s]|S<CPU socket ID>][c|C]<CPU core ID>[h|H]

For example:

CPU socket 0, core 0, hyper-thread 0: 0, c0, s0cO

CPU socket 0, core 0, hyper-thread 1: Oh, cOh, s0cOh

CPU socket 3, core 9, hyper-thread 1: s3cSh

3.33. Internet Protocol (IP) Pipeline Application

195

dpdk, Release 0.11

MEMPOOL section
Table 3.6: Configuration file MEMPOOL section
Section Description Optional | Type Default value
buffer_size Buffer size (in bytes) for the current buffer | YES uint32_t 2048 + sizeof(struct
pool. rte_mbuf) + HEAD-
ROOM
pool_size Number of buffers in the current buffer | YES uint32_t 32K
pool.
cache_size Per CPU thread cache size (in number of | YES uint32_t 256
buffers) for the current buffer pool.
cpu CPU socket ID where to allocate memory | YES uint32_t 0
for the current buffer pool.
LINK section
Table 3.7: Configuration file LINK section
Section entry Description Optional | Type Default
value
arp_q NIC RX queue where ARP packets should be fil- | YES 0..127 0 (default
tered. queue)
tep_syn_local_q NIC RX queue where TCP packets with SYN flag | YES 0.. 127 0 (default
should be filtered. queue)
ip_local_q NIC RX queue where IP packets with local des- | YES 0. 127 0 (default
tination should be filtered. When TCP, UDP and queue)
SCTP local queues are defined, they take higher
priority than this queue.
tep_local_q NIC RX queue where TCP packets with local des- | YES 0. 127 0 (default
tination should be filtered. queue)
udp_local_q NIC RX queue where TCP packets with local des- | YES 0. 127 0 (default
tination should be filtered. queue)
sctp_local_q NIC RX queue where TCP packets with local des- | YES 0. 127 0 (default
tination should be filtered. queue)
promisc Indicates whether current link should be started in | YES YES/NO YES
promiscuous mode.
RXQ section
Table 3.8: Configuration file RXQ section
Section Description Optional | Type Default
value
mempool Mempool to use for buffer allocation for current | YES uint32_t MEMPOOLO
NIC RX queue. The mempool ID has to be associ-
ated with a valid instance defined in the mempool
entry of the global section.
Size NIC RX queue size (number of descriptors) YES uint32_t 128
burst Read burst size (number of descriptors) YES uint32_t 32
196 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

TXQ section
Table 3.9: Configuration file TXQ section
Section Description Optional | Type Default
value
size NIC TX queue size (number of descriptors) YES uint32_t 512
power of 2 >
0
burst Write burst size (number of descriptors) YES uint32_t 32
power of 2 0
< burst < size
dropless When dropless is set to NO, packets can be | YES YES/NO NO
dropped if not enough free slots are currently
available in the queue, so the write operation to
the queue is non- blocking. When dropless is set
to YES, packets cannot be dropped if not enough
free slots are currently available in the queue, so
the write operation to the queue is blocking, as the
write operation is retried until enough free slots
become available and all the packets are success-
fully written to the queue.
n_retries Number of retries. Valid only when dropless is | YES uint32_t 0
set to YES. When set to 0, it indicates unlimited
number of retries.
3.33. Internet Protocol (IP) Pipeline Application 197

dpdk, Release 0.11

SWaQ section
Table 3.10: Configuration file SWQ section
Section Description Optional | Type Default
value
size Queue size (number of packets) YES uint32_t 256
power of 2
burst_read Read burst size (number of packets) YES uint32_t 32
power of
2 0 < burst
< size
burst_write Write burst size (number of packets) YES uint32_t 32
power of
20 < burst
< size
dropless When dropless is set to NO, packets can be | YES YES/NO NO
dropped if not enough free slots are currently
available in the queue, so the write operation to
the queue is non- blocking. When dropless is set
to YES, packets cannot be dropped if not enough
free slots are currently available in the queue, so
the write operation to the queue is blocking, as the
write operation is retried until enough free slots
become available and all the packets are success-
fully written to the queue.
n_retries Number of retries. Valid only when dropless is | YES uint32_t 0
set to YES. When set to 0, it indicates unlimited
number of retries.
cpu CPU socket ID where to allocate memory for this | YES uint32_t 0
SWQ.
TM section
Table 3.11: Configuration file TM section
Section Description Optional | Type Default
value
Cfg File name to parse for the TM configuration to be | YES string tm_profile
applied. The syntax of this file is described in
the examples/qos_sched DPDK application doc-
umentation.
burst_read Read burst size (number of packets) YES uint32_t 64
burst_write Write burst size (number of packets) YES uint32_t 32

198

Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

KNI section
Table 3.12: Configuration file KNI section
Section Description Optional | Type Default
value
core CPU core to run the KNI kernel thread. When | YES See “CPU | Not set
core config is set, the KNI kernel thread will be Core nota-
bound to the particular core. When core config is tion”
not set, the KNI kernel thread will be scheduled
by the OS.
mempool Mempool to use for buffer allocation for current | YES uint32_t MEMPOOL0
KNI port. The mempool ID has to be associated
with a valid instance defined in the mempool entry
of the global section.
burst_read Read burst size (number of packets) YES uint32_t 32
power of
2 0 < burst
< size
burst_write Write burst size (number of packets) YES uint32_t 32
power of
2 0 < burst
< size
dropless When dropless is set to NO, packets can be | YES YES/NO NO
dropped if not enough free slots are currently
available in the queue, so the write operation to
the queue is non- blocking. When dropless is set
to YES, packets cannot be dropped if not enough
free slots are currently available in the queue, so
the write operation to the queue is blocking, as the
write operation is retried until enough free slots
become available and all the packets are success-
fully written to the queue.
n_retries Number of retries. Valid only when dropless is | YES uint64_t 0
set to YES. When set to 0, it indicates unlimited
number of retries.
SOURCE section
Table 3.13: Configuration file SOURCE section
Section Description Optional | Type Default
value
Mempool Mempool to use for buffer allocation. YES uint32_t MEMPOOLO
Burst Read burst size (number of packets) uint32_t 32
SINK section

Currently, there are no parameters to be passed to a sink device, so SINK section is not allowed.

3.33. Internet Protocol (IP) Pipeline Application

199

dpdk, Release 0.11

MSGQ section

Table 3.14: Configuration file MSGQ section

Section Description Optional | Type Default
value
size Queue size (number of packets) YES uint32_t 64
I= 0
power of 2
cpu CPU socket ID where to allocate memory for the | YES uint32_t 0
current queue.

EAL section

The application generates the EAL parameters rather than reading them from the command line.

The CPU core mask parameter is generated based on the core entry of all PIPELINE sections. All the other EAL
parameters can be set from this section of the application configuration file.

3.33.6 Library of pipeline types

Pipeline module

A pipeline is a self-contained module that implements a packet processing function and is typically implemented on
top of the DPDK Packet Framework librte_pipeline library. The application provides a run-time mechanism to register
different pipeline types.

Depending on the required configuration, each registered pipeline type (pipeline class) is instantiated one or several
times, with each pipeline instance (pipeline object) assigned to one of the available CPU cores. Each CPU core can
run one or more pipeline instances, which might be of same or different types. For more information of the CPU core
threading model, please refer to the Run-time section.

Pipeline type

Each pipeline type is made up of a back-end and a front-end. The back-end represents the packet processing engine of
the pipeline, typically implemented using the DPDK Packet Framework libraries, which reads packets from the input
packet queues, handles them and eventually writes them to the output packet queues or drops them. The front-end
represents the run-time configuration interface of the pipeline, which is exposed as CLI commands. The front-end
communicates with the back-end through message queues.

200 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Table 3.15: Pipeline back-end

Field Field type Description
name
f_init Function Function to initialize the back-end of the current pipeline instance. Typical work im-
pointer plemented by this function for the current pipeline instance: Memory allocation; Parse
the pipeline type specific arguments; Initialize the pipeline input ports, output ports
and tables, interconnect input ports to tables; Set the message handlers.
f free | Function Function to free the resources allocated by the back-end of the current pipeline in-
pointer stance.
f_run Function Set to NULL for pipelines implemented using the DPDK library librte_pipeline (typ-
pointer ical case), and to non-NULL otherwise. This mechanism is made available to support
quick integration of legacy code. This function is expected to provide the packet
processing related code to be called as part of the CPU thread dispatch loop, so this
function is not allowed to contain an infinite loop.
f timer | Function Function to read the pipeline input message queues, handle the request messages, cre-
pointer ate response messages and write the response queues. The format of request and re-
sponse messages is defined by each pipeline type, with the exception of some requests
which are mandatory for all pipelines (e.g. ping, statistics).
f track | Function See section Tracking pipeline output port to physical link
pointer

Table 3.16: Pipeline front-end

Field Field type Description
name
f_init Function Function to initialize the front-end of the current pipeline instance.
pointer
f_free | Function Function to free the resources allocated by the front-end of the current pipeline in-
pointer stance.
cmds Array of CLI | Array of CLI commands to be registered to the application CLI for the current pipeline
commands type. Even though the CLI is executed by a different pipeline (typically, this is the
master pipeline), from modularity perspective is more efficient to keep the message
client side (part of the front-end) together with the message server side (part of the
back-end).

Tracking pipeline output port to physical link

Each pipeline instance is a standalone block that does not have visibility into the other pipeline instances or the
application-level pipeline inter-connectivity. In some cases, it is useful for a pipeline instance to get application level
information related to pipeline connectivity, such as to identify the output link (e.g. physical NIC port) where one of
its output ports connected, either directly or indirectly by traversing other pipeline instances.

Tracking can be successful or unsuccessful. Typically, tracking for a specific pipeline instance is successful when
each one of its input ports can be mapped to a single output port, meaning that all packets read from the current input
port can only go out on a single output port. Depending on the pipeline type, some exceptions may be allowed: a
small portion of the packets, considered exception packets, are sent out on an output port that is pre-configured for this

purpose.

For pass-through pipeline type, the tracking is always successful. For pipeline types as flow classification, firewall or
routing, the tracking is only successful when the number of output ports for the current pipeline instance is 1.

This feature is used by the IP routing pipeline for adding/removing implicit routes every time a link is brought up/down.

3.33. Internet Protocol (IP) Pipeline Application 201

dpdk, Release 0.11

Table copies

Fast table copy: pipeline table used by pipeline for the packet processing task, updated through messages, table data
structures are optimized for lookup operation.

Slow table copy: used by the configuration layer, typically updated through CLI commands, kept in sync with the fast
copy (its update triggers the fast copy update). Required for executing advanced table queries without impacting the
packet processing task, therefore the slow copy is typically organized using different criteria than the fast copy.

Examples:
* Flow classification: Search through current set of flows (e.g. list all flows with a specific source IP address);
* Firewall: List rules in descending order of priority;
* Routing table: List routes sorted by prefix depth and their type (local, remote, default);

* ARP: List entries sorted per output interface.

Packet meta-data

Packet meta-data field offsets provided as argument to pipeline instances are essentially defining the data structure for
the packet meta-data used by the current application use-case. It is very useful to put it in the configuration file as a
comment in order to facilitate the readability of the configuration file.

The reason to use field offsets for defining the data structure for the packet meta-data is due to the C language lim-
itation of not being able to define data structures at run-time. Feature to consider: have the configuration file parser
automatically generate and print the data structure defining the packet meta-data for the current application use-case.

Packet meta-data typically contains:

1. Pure meta-data: intermediate data per packet that is computed internally, passed between different tables of
the same pipeline instance (e.g. lookup key for the ARP table is obtained from the routing table), or between
different pipeline instances (e.g. flow ID, traffic metering color, etc);

2. Packet fields: typically, packet header fields that are read directly from the packet, or read from the packet and
saved (duplicated) as a working copy at a different location within the packet meta-data (e.g. Diffserv 5-tuple,
IP destination address, etc).

Several strategies are used to design the packet meta-data, as described in the next subsections.

Store packet meta-data in a different cache line as the packet headers

This approach is able to support protocols with variable header length, like MPLS, where the offset of IP header
from the start of the packet (and, implicitly, the offset of the IP header in the packet buffer) is not fixed. Since the
pipelines typically require the specification of a fixed offset to the packet fields (e.g. Diffserv 5-tuple, used by the flow
classification pipeline, or the IP destination address, used by the IP routing pipeline), the workaround is to have the
packet RX pipeline copy these fields at fixed offsets within the packet meta-data.

As this approach duplicates some of the packet fields, it requires accessing more cache lines per packet for filling in
selected packet meta-data fields (on RX), as well as flushing selected packet meta-data fields into the packet (on TX).

Example:

; struct app_pkt_metadata {

; uint32_t ip_da;
; uint32_t hash;
; uint32_t flow_1id;

202 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

; uint32_t color;
; } __attribute_ ((__packed _));

7

[PIPELINE1]
; Packet meta-data offsets
ip_da_offset = 0; Used by: routing

hash_offset = 4; Used by: RX, flow classification
flow_id_offset = 8; Used by: flow classification, flow actions
color_offset = 12; Used by: flow actions, routing

Overlay the packet meta-data in the same cache line with the packet headers

This approach is minimizing the number of cache line accessed per packet by storing the packet metadata in the same
cache line with the packet headers. To enable this strategy, either some headroom is reserved for meta-data at the
beginning of the packet headers cache line (e.g. if 16 bytes are needed for meta-data, then the packet headroom can be
set to 128+16 bytes, so that NIC writes the first byte of the packet at offset 16 from the start of the first packet cache
line), or meta-data is reusing the space of some packet headers that are discarded from the packet (e.g. input Ethernet
header).

Example:

; Struct app_pkt_metadata {

; uint8_t headroom[RTE_PKTMBUF_HEADROOM]; /+ 128 bytes (default) #*/
; union {

; struct {

; struct ether_hdr ether; /% 14 bytes =/
; struct ging_hdr ging; /* 8 bytes x/

; };

; struct |

; uint32_t hash;

; uint32_t flow_id;

; uint32_t color;

; }i

; b

; struct ipv4_hdr ip; /* 20 bytes =/

; } __attribute__ ((__packed _));

7

[PIPELINE2]

; Packet meta-data offsets

ging offset = 142; Used by: RX, flow classification
ip_da_offset = 166; Used by: routing

hash_offset = 128; Used by: RX, flow classification
flow_id_offset = 132; Used by: flow classification, flow actions
color_offset = 136; Used by: flow actions, routing

3.33. Internet Protocol (IP) Pipeline Application 203

dpdk, Release 0.11

List of pipeline types

Table 3.17: List of pipeline types provided with the application

Name Table(s) Actions Messages
Pass-th h Passth h
Notr g‘;‘;gen ding on asstiroug 1. Pkt metadata build 1. Ping
port ' type, can be 2. Flow hash 2. Stats
used for RX, TX, IP j‘ Ekt Zhlfclks .
fragmentation, IP re- - Load bajancing
assembly or Traffic
Management
Flow classification Exact match .
* Key = byte array (source: pkt 1. Flow ID 1. Ping
2. Flow stats 2. Stats
metadata) .
« Data = action dependent 3. Metering 3. Flow stats
4. Network Address 4. Action stats
5. Translation (NAT) 5. Flow add/ wupdate/
delete
6. Default flow add/ up-
date/ delete
7. Action update
Flow actions Array .
* Key = Flow ID (source: pkt 1. Flow s.tats 1. Ping
metadata) 2. Metering 2. Stats
« Data = action dependent 3. Network Address 3. Action stats
4. Translation (NAT) 4. Action update
Fi 11 ACL
frewa ¢ K . 1. Allow/Drop 1. Ping
* Key = n-tuple (source: pkt
headers) 2. Stats
Data = 3. Rule add/ update/
* Data = none
delete
4. Default rule add/ up-
date/ delete
IP routi LPM (IPv4 or IPv6, d di .
routg ; elilge tV e(;r v, depending on 1. TTL decrement and 1. Ping
PP yp_ L . 2. IPv4 checksum 2. Stats
» Key = IP destination (source:
kt metadata) 3. update 3. Route add/ update/
P . 4. Header delete
* Data = Dependent on actions .
5. encapsulation 4. Default route add/ up-
and next hop type
6. (based on next hop date/ delete
Hash table (for ARP, only 7 5. ARP dd/
when ARP is enabled) - type) : entry add/ up-
K date/ delete
* Key = (Port ID, next hop IP
) 6. Default ARP entry
address) (source: pkt meta-
add/ update/ delete
data)
* Data: MAC address
204 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

3.33.7 Command Line Interface (CLI)

Global CLI commands

Table 3.18: Global CLI commands

Command Description Syntax

run Run CLI commands script file. run <file> <file> = path to file with CLI
commands to execute

quit Gracefully terminate the application. quit

CLI commands for link configuration

Table 3.19: List of run-time configuration commands for link configuration

Command Description Syntax

link config Link configuration link <link ID> config <IP address>
<depth>

link up Link up link <link ID> up

link down Link down link <link ID> down

link Is Link list link Is

CLI commands common for all pipeline types

Table 3.20: CLI commands mandatory for all pipelines

Command

Description

Syntax

ping

Check whether specific pipeline instance is
alive. The master pipeline sends a ping re-
quest message to given pipeline instance
and waits for a response message back.
Timeout message is displayed when the re-
sponse message is not received before the
timer expires.

p <pipeline ID> ping

stats

Display statistics for specific pipeline input
port, output port or table.

p <pipeline ID> stats port in <port in ID> p
<pipeline ID> stats port out <port out ID>
p <pipeline ID> stats table <table ID>

input port enable

Enable given input port for specific
pipeline instance.

p <pipeline ID> port in <port ID> enable

input port disable

Disable given input port for specific
pipeline instance.

p <pipeline ID> port in <port ID> disable

Pipeline type specific CLI commands

The pipeline specific CLI commands are part of the pipeline type front-end.

3.33. Internet Protocol (IP) Pipeline Application

205

dpdk, Release 0.11

3.34 Test Pipeline Application

The Test Pipeline application illustrates the use of the DPDK Packet Framework tool suite. Its purpose is to demon-
strate the performance of single-table DPDK pipelines.

3.34.1 Overview

The application uses three CPU cores:
* Core A (“RX core”) receives traffic from the NIC ports and feeds core B with traffic through SW queues.

e Core B (“Pipeline core”) implements a single-table DPDK pipeline whose type is selectable through specific
command line parameter. Core B receives traffic from core A through software queues, processes it according to
the actions configured in the table entries that are hit by the input packets and feeds it to core C through another
set of software queues.

* Core C (“TX core”) receives traffic from core B through software queues and sends it to the NIC ports for
transmission.

Fig. 3.25: Test Pipeline Application

3.34.2 Compiling the Application

1. Go to the app/test directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/app/test/test-pipeline

2. Set the target (a default target is used if not specified):

export RTE_TARGET=x86_64-native-linuxapp-gcc

3. Build the application:

make

206 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

3.34.3 Running the Application
Application Command Line

The application execution command line is:

./test-pipeline [EAL options] -- -p PORTMASK —--TABLE_TYPE

The -c or -1 EAL CPU coremask/corelist option has to contain exactly 3 CPU cores. The first CPU core in the core
mask is assigned for core A, the second for core B and the third for core C.

The PORTMASK parameter must contain 2 or 4 ports.

Table Types and Behavior

Table 3.21 describes the table types used and how they are populated.
The hash tables are pre-populated with 16 million keys. For hash tables, the following parameters can be selected:

* Configurable key size implementation or fixed (specialized) key size implementation (e.g. hash-8-ext or
hash-spec-8-ext). The key size specialized implementations are expected to provide better performance for
8-byte and 16-byte key sizes, while the key-size-non-specialized implementation is expected to provide better
performance for larger key sizes;

* Key size (e.g. hash-spec-8-ext or hash-spec-16-ext). The available options are 8, 16 and 32 bytes;

* Table type (e.g. hash-spec-16-ext or hash-spec-16-Iru). The available options are ext (extendable bucket) or
Iru (least recently used).

3.34. Test Pipeline Application 207

dpdk, Release 0.11

Table 3.21: Table Types

TABLE_TYPE Description of Core B | Pre-added Table En-
Table tries

1 none Core B is not imple- | N/A

menting a DPDK pipeline.
Core B is implementing a
pass-through from its in-
put set of software queues
to its output set of soft-
ware queues.

2 stub Stub table. Core B is im- | N/A
plementing the same pass-
through functionality as
described for the “none”
option by using the DPDK
Packet Framework by us-
ing one stub table for each
input NIC port.

3 hash-[spec]-8-lru LRU hash table with 8- | 16 million entries are suc-
byte key size and 16 mil- | cessfully added to the
lion entries. hash table with the follow-

ing key format:

[4-byte index, 4 bytes of
0]

The action configured for
all table entries is “Sendto
output port”, with the out-
put port index uniformly
distributed for the range of
output ports.

The default table rule
(used in the case of a
lookup miss) is to drop the
packet.

At run time, core A is cre-
ating the following lookup
key and storing it into the
packet meta data for core
B to use for table lookup:
[destination IPv4 address,
4 bytes of 0]

4 hash-[spec]-8-ext Extendable bucket hash | Same as hash-[spec]-8-lru
table with 8-byte key size | table entries, above.
and 16 million entries.

5 hash-[spec]-16-1ru LRU hash table with 16- | 16 million entries are suc-
byte key size and 16 mil- | cessfully added to the
lion entries. hash table with the follow-

ing key format:

[4-byte index, 12 bytes of
0]

The action configured for
all table entries is “Send to
output port”, with the out-
put port index uniformly

208 Chapter 3. Sample AppilichtiensdUser Geidés

output ports.
The default table rule
(used in the case of a

E D P LR, DR P

dpdk, Release 0.11

Input Traffic

Regardless of the table type used for the core B pipeline, the same input traffic can be used to hit all table entries with
uniform distribution, which results in uniform distribution of packets sent out on the set of output NIC ports. The
profile for input traffic is TCP/IPv4 packets with:

e destination IP address as A.B.C.D with A fixed to 0 and B, C,D random
* source IP address fixed to 0.0.0.0
¢ destination TCP port fixed to O

* source TCP port fixed to 0

3.35 Distributor Sample Application

The distributor sample application is a simple example of packet distribution to cores using the Data Plane Develop-
ment Kit (DPDK).

3.35.1 Overview
The distributor application performs the distribution of packets that are received on an RX_PORT to different cores.
When processed by the cores, the destination port of a packet is the port from the enabled port mask adjacent to the

one on which the packet was received, that is, if the first four ports are enabled (port mask 0xf), ports 0 and 1 RX/TX
into each other, and ports 2 and 3 RX/TX into each other.

This application can be used to benchmark performance using the traffic generator as shown in the figure below.

Fig. 3.26: Performance Benchmarking Setup (Basic Environment)

3.35.2 Compiling the Application

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/distributor

2. Set the target (a default target is used if not specified). For example:

’export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

’make

3.35.3 Running the Application

1. The application has a number of command line options:

3.35. Distributor Sample Application 209

dpdk, Release 0.11

./build/distributor_app [EAL options] -- —-p PORTMASK

where,
* -p PORTMASK: Hexadecimal bitmask of ports to configure

2. To run the application in linuxapp environment with 10 lcores, 4 ports, issue the command:

$./build/distributor_app -1 1-9,22 -n 4 —— -p £

3. Refer to the DPDK Getting Started Guide for general information on running applications and the Environment
Abstraction Layer (EAL) options.

3.35.4 Explanation

The distributor application consists of four types of threads: a receive thread (1core_rx ()), a distributor thread
(lcore_dist ()), a set of worker threads (1core_worker ()), and a transmit thread(1core_tx ()). How these
threads work together is shown in Fig. 3.27 below. The main () function launches threads of these four types. Each
thread has a while loop which will be doing processing and which is terminated only upon SIGINT or ctrl+C.

The receive thread receives the packets using rte_eth_rx_burst () and will enqueue them to an
rte_ring. The distributor thread will dequeue the packets from the ring and assign them to workers (using
rte_distributor_process () API). This assignment is based on the tag (or flow ID) of the packet - indi-
cated by the hash field in the mbuf. For IP traffic, this field is automatically filled by the NIC with the “usr” hash value
for the packet, which works as a per-flow tag. The distributor thread communicates with the worker threads using a
cache-line swapping mechanism, passing up to 8 mbuf pointers at a time (one cache line) to each worker.

More than one worker thread can exist as part of the application, and these worker threads do simple packet processing
by requesting packets from the distributor, doing a simple XOR operation on the input port mbuf field (to indicate
the output port which will be used later for packet transmission) and then finally returning the packets back to the
distributor thread.

The distributor thread will then call the distributor api rte_distributor_returned_pkts () to get the pro-
cessed packets, and will enqueue them to another rte_ring for transfer to the TX thread for transmission on the output
port. The transmit thread will dequeue the packets from the ring and transmit them on the output port specified in
packet mbuf.

Users who wish to terminate the running of the application have to press ctrl+C (or send SIGINT to the app). Upon
this signal, a signal handler provided in the application will terminate all running threads gracefully and print final
statistics to the user.

Fig. 3.27: Distributor Sample Application Layout

3.35.5 Debug Logging Support

Debug logging is provided as part of the application; the user needs to uncomment the line “#define DEBUG” defined
in start of the application in main.c to enable debug logs.

3.35.6 Statistics

The main function will print statistics on the console every second. These statistics include the number of packets
enqueued and dequeued at each stage in the application, and also key statistics per worker, including how many
packets of each burst size (1-8) were sent to each worker thread.

210 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

3.35.7 Application Initialization

Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application. See Command
Line Arguments.

Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application. See Mbuf
Pool Initialization.

Driver Initialization is done in same way as it is done in the L2 Forwarding Sample Application. See Driver Initial-
ization.

RX queue initialization is done in the same way as it is done in the L2 Forwarding Sample Application. See RX Queue
Initialization.

TX queue initialization is done in the same way as it is done in the L2 Forwarding Sample Application. See 7X Queue
Initialization.

3.36 VM Power Management Application

3.36.1 Introduction

Applications running in Virtual Environments have an abstract view of the underlying hardware on the Host, in par-
ticular applications cannot see the binding of virtual to physical hardware. When looking at CPU resourcing, the
pinning of Virtual CPUs(vCPUs) to Host Physical CPUs(pCPUS) is not apparent to an application and this pinning
may change over time. Furthermore, Operating Systems on virtual machines do not have the ability to govern their own
power policy; the Machine Specific Registers (MSRs) for enabling P-State transitions are not exposed to Operating
Systems running on Virtual Machines(VMs).

The Virtual Machine Power Management solution shows an example of how a DPDK application can indicate its
processing requirements using VM local only information(vCPU/Icore) to a Host based Monitor which is responsible
for accepting requests for frequency changes for a vCPU, translating the vCPU to a pCPU via libvirt and affecting the
change in frequency.

The solution is comprised of two high-level components:
1. Example Host Application

Using a Command Line Interface(CLI) for VM->Host communication channel management allows adding chan-
nels to the Monitor, setting and querying the vCPU to pCPU pinning, inspecting and manually changing the
frequency for each CPU. The CLI runs on a single Icore while the thread responsible for managing VM requests
runs on a second Icore.

VM requests arriving on a channel for frequency changes are passed to the librte_power ACPI cpufreq sysfs
based library. The Host Application relies on both gemu-kvm and libvirt to function.

2. librte_power for Virtual Machines

Using an alternate implementation for the librte_power API, requests for frequency changes are forwarded to
the host monitor rather than the APCI cpufreq sysfs interface used on the host.

The 13fwd-power application will use this implementation when deployed on a VM (see L3 Forwarding with
Power Management Sample Application).

Fig. 3.28: Highlevel Solution

3.36. VM Power Management Application 211

dpdk, Release 0.11

3.36.2 Overview

VM Power Management employs gemu-kvm to provide communications channels between the host and VMs in the
form of Virtio-Serial which appears as a paravirtualized serial device on a VM and can be configured to use various
backends on the host. For this example each Virtio-Serial endpoint on the host is configured as AF_UNIX file socket,
supporting poll/select and epoll for event notification. In this example each channel endpoint on the host is monitored
via epoll for EPOLLIN events. Each channel is specified as gemu-kvm arguments or as libvirt XML for each VM,
where each VM can have a number of channels up to a maximum of 64 per VM, in this example each DPDK Icore on
a VM has exclusive access to a channel.

To enable frequency changes from within a VM, a request via the librte_power interface is forwarded via Virtio-Serial
to the host, each request contains the vCPU and power command(scale up/down/min/max). The API for host and
guest librte_power is consistent across environments, with the selection of VM or Host Implementation determined at
automatically at runtime based on the environment.

Upon receiving a request, the host translates the vCPU to a pCPU via the libvirt API before forwarding to the host
librte_power.

Fig. 3.29: VM request to scale frequency

Performance Considerations

While Haswell Microarchitecture allows for independent power control for each core, earlier Microarchtectures do
not offer such fine grained control. When deployed on pre-Haswell platforms greater care must be taken in selecting
which cores are assigned to a VM, for instance a core will not scale down until its sibling is similarly scaled.

3.36.3 Configuration

BIOS

Enhanced Intel SpeedStep® Technology must be enabled in the platform BIOS if the power management feature of
DPDK is to be used. Otherwise, the sys file folder /sys/devices/system/cpu/cpuO/cpufreq will not exist, and the CPU
frequency-based power management cannot be used. Consult the relevant BIOS documentation to determine how
these settings can be accessed.

Host Operating System

The Host OS must also have the apci_cpufreq module installed, in some cases the intel_pstate driver may be the
default Power Management environment. To enable acpi_cpufreq and disable intel_pstate, add the following to the
grub Linux command line:

intel_pstate=disable

Upon rebooting, load the acpi_cpufreq module:

’modprobe acpi_cpufreq

212 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Hypervisor Channel Configuration

Virtio-Serial channels are configured via libvirt XML:

<name> { vm_name } </name>
<controller type='virtio-serial' index='0"'>
<address type='pci' domain='0x0000"' bus='0x00' slot='0x06"' function='0x0"'/>
</controller>
<channel type='unix'>
<source mode='bind' path='/tmp/powermonitor/{vm_name}.{channel_num}'/>
<target type='virtio' name='virtio.serial.port.poweragent.{vm_channel_num}'/>
<address type='virtio-serial' controller='0' bus='0' port='{N}"'/>
</channel>

Where a single controller of type virtio-serial is created and up to 32 channels can be associated with a single controller
and multiple controllers can be specified. The convention is to use the name of the VM in the host path {vm_name}
and to increment {channel_num} for each channel, likewise the port value { N}/ must be incremented for each channel.

Each channel on the host will appear in path, the directory /tmp/powermonitor/ must first be created and given gemu
permissions

mkdir /tmp/powermonitor/
chown gemu:gemu /tmp/powermonitor

Note that files and directories within /tmp are generally removed upon rebooting the host and the above steps may
need to be carried out after each reboot.

The serial device as it appears on a VM is configured with the farget element attribute name and must be in the form
of virtio.serial.port.poweragent.{vm_channel_num}, where vm_channel_num is typically the Icore channel to be used
in DPDK VM applications.

Each channel on a VM will be present at /dev/virtio-ports/virtio.serial.port.poweragent.{vm_channel_num}
3.36.4 Compiling and Running the Host Application

Compiling
1. export RTE_SDK=/path/to/rte_sdk
2. cd ${RTE_SDK}/examples/vm_power_manager
3. make

Running

The application does not have any specific command line options other than EAL:

’./build/vm_power_mgr [EAL options]

The application requires exactly two cores to run, one core is dedicated to the CLI, while the other is dedicated to the
channel endpoint monitor, for example to run on cores 0 & 1 on a system with 4 memory channels:

’./build/vmﬁpowerimgr -1 0-1 -n 4

After successful initialization the user is presented with VM Power Manager CLI:

3.36. VM Power Management Application 213

dpdk, Release 0.11

’vmﬁpower>

Virtual Machines can now be added to the VM Power Manager:

’vm_power> add_vm {vm_name}

When a {vm_name} is specified with the add_vm command a lookup is performed with libvirt to ensure that the
VM exists, {vm_name} is used as an unique identifier to associate channels with a particular VM and for executing
operations on a VM within the CLI. VMs do not have to be running in order to add them.

A number of commands can be issued via the CLI in relation to VMs:

Remove a Virtual Machine identified by {vm_name} from the VM Power Manager.

’rm_vm {vm_name} ‘

Add communication channels for the specified VM, the virtio channels must be enabled in the VM con-
figuration(qemu/libvirt) and the associated VM must be active. {list} is a comma-separated list of channel
numbers to add, using the keyword ‘all’ will attempt to add all channels for the VM:

add_channels {vm_name} {list}|all ‘

Enable or disable the communication channels in {list}(comma-separated) for the specified VM, alterna-
tively list can be replaced with keyword ‘all’. Disabled channels will still receive packets on the host,
however the commands they specify will be ignored. Set status to ‘enabled’ to begin processing requests
again:

set_channel status {vm_name} {list}|all enabled|disabled ‘

Print to the CLI the information on the specified VM, the information lists the number of vCPUS, the
pinning to pCPU(s) as a bit mask, along with any communication channels associated with each VM,
along with the status of each channel:

show_vm {vm_name} ‘

Set the binding of Virtual CPU on VM with name {vm_name} to the Physical CPU mask:

set_pcpu_mask {vm_name} {vcpu} {pcpu} ‘

Set the binding of Virtual CPU on VM to the Physical CPU:

set_pcpu {vm_name} {vcpu} {pcpu}

Manual control and inspection can also be carried in relation CPU frequency scaling:

Get the current frequency for each core specified in the mask:

show_cpu_freqg mask {mask} ‘

Set the current frequency for the cores specified in {core_mask} by scaling each up/down/min/max:

’set_cpu_freq {core_mask} up|down|min|max

Get the current frequency for the specified core:

show_cpu_freq {core_num} ‘

Set the current frequency for the specified core by scaling up/down/min/max:

214 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

set_cpu_freq {core_num} up|down|min|max

3.36.5 Compiling and Running the Guest Applications

For compiling and running 13fwd-power, see L3 Forwarding with Power Management Sample Application.
A guest CLI is also provided for validating the setup.

For both 13fwd-power and guest CLI, the channels for the VM must be monitored by the host application using the
add_channels command on the host.

Compiling
1. export RTE_SDK=/path/to/rte_sdk
2. cd ${RTE_SDK }/examples/vm_power_manager/guest_cli
3. make

Running

The application does not have any specific command line options other than EAL:

’./build/vmﬁpowerimgr [EAL options]

The application for example purposes uses a channel for each lcore enabled, for example to run on cores 0,1,2,3 on a
system with 4 memory channels:

’./build/guestivmipowerimgr -1 0-3 —n 4

After successful initialization the user is presented with VM Power Manager Guest CLI:

’vm_power(guest)>

To change the frequency of a Icore, use the set_cpu_freq command. Where {core_num} is the lcore and channel to
change frequency by scaling up/down/min/max.

’set_cpu_freq {core_num} up|down|min|max

3.37 TEP termination Sample Application

The TEP (Tunnel End point) termination sample application simulates a VXLAN Tunnel Endpoint (VTEP) termination
in DPDK, which is used to demonstrate the offload and filtering capabilities of Intel® XL710 10/40 Gigabit Ethernet
Controller for VXLAN packet. This sample uses the basic virtio devices management mechanism from vhost example,
and also uses the us-vHost interface and tunnel filtering mechanism to direct a specified traffic to a specific VM. In
addition, this sample is also designed to show how tunneling protocols can be handled.

3.37. TEP termination Sample Application 215

dpdk, Release 0.11

3.37.1 Background

With virtualization, overlay networks allow a network structure to be built or imposed across physical nodes which is
abstracted away from the actual underlining physical network connections. This allows network isolation, QOS, etc
to be provided on a per client basis.

Fig. 3.30: Overlay Networking.

In a typical setup, the network overlay tunnel is terminated at the Virtual/Tunnel End Point (VEP/TEP). The TEP
is normally located at the physical host level ideally in the software switch. Due to processing constraints and the
inevitable bottleneck that the switch becomes, the ability to offload overlay support features becomes an important
requirement. Intel® XL710 10/40 Gigabit Ethernet network card provides hardware filtering and offload capabilities
to support overlay networks implementations such as MAC in UDP and MAC in GRE.

3.37.2 Sample Code Overview
The DPDK TEP termination sample code demonstrates the offload and filtering capabilities of Intel® XL710 10/40
Gigabit Ethernet Controller for VXLAN packet.

The sample code is based on vhost library. The vhost library is developed for user space Ethernet switch to easily
integrate with vhost functionality.

The sample will support the followings:
* Tunneling packet recognition.
* The port of UDP tunneling is configurable

* Directing incoming traffic to the correct queue based on the tunnel filter type. The supported filter type are listed
below.

— Inner MAC and VLAN and tenant ID
— Inner MAC and tenant ID, and Outer MAC
— Inner MAC and tenant ID

The tenant ID will be assigned from a static internal table based on the us-vhost device ID. Each device will
receive a unique device ID. The inner MAC will be learned by the first packet transmitted from a device.

* Decapsulation of RX VXLAN traffic. This is a software only operation.
* Encapsulation of TX VXLAN traffic. This is a software only operation.
* Inner IP and inner L4 checksum offload.

* TSO offload support for tunneling packet.

The following figure shows the framework of the TEP termination sample application based on DPDK vhost lib.

Fig. 3.31: TEP termination Framework Overview

3.37.3 Supported Distributions

The example in this section have been validated with the following distributions:

216 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

e Fedora* 18
e Fedora* 19
e Fedora* 20

3.37.4 Compiling the Sample Code

1. Compile vhost lib:

To enable vhost, turn on vhost library in the configure file config/common_linuxapp.

CONFIG_RTE_LIBRTE_VHOST=y

2. Go to the examples directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/tep_termination

3. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.
4. Build the application:

cd ${RTE_SDK}

make config ${RTE_TARGET}

make install S${RTE_TARGET}

cd ${RTE_SDK}/examples/tep_termination
make

3.37.5 Running the Sample Code

1. Go to the examples directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/tep_termination

2. Run the tep_termination sample code:

user@target:~$./build/app/tep_termination -1 0-3 -n 4 —--huge-dir /mnt/huge --
-p 0x1 —--dev-basename tep-termination —--nb-devices 4
——udp-port 4789 ——-filter-type 1

Note: Please note the huge-dir parameter instructs the DPDK to allocate its memory from the 2 MB page hugetlbfs.

Parameters

The same parameters with the vhost sample.

Refer to Parameters for detailed explanation.

3.37. TEP termination Sample Application 217

dpdk, Release 0.11

Number of Devices.

The nb-devices option specifies the number of virtlO device. The default value is 2.

user@target:~$./build/app/tep_termination -1 0-3 -n 4 —--huge-dir /mnt/huge —--—
-—-nb-devices 2

Tunneling UDP port.

The udp-port option is used to specify the destination UDP number for UDP tunneling packet. The default value is
4789.

user@target:~$./build/app/tep_termination -1 0-3 -n 4 --huge-dir /mnt/huge --
--nb-devices 2 —--udp-port 4789

Filter Type.

The filter-type option is used to specify which filter type is used to filter UDP tunneling packet to a specified queue.
The default value is 1, which means the filter type of inner MAC and tenant ID is used.

user@target:~$./build/app/tep_termination -1 0-3 -n 4 —--huge-dir /mnt/huge —--
--nb-devices 2 —--udp-port 4789 --filter-type 1

TX Checksum.

The tx-checksum option is used to enable or disable the inner header checksum offload. The default value is 0, which
means the checksum offload is disabled.

user@target:~$./build/app/tep_termination -1 0-3 -n 4 —--huge-dir /mnt/huge —-—
——nb-devices 2 —-—-tx-checksum

TCP segment size.

The tso-segsz option specifies the TCP segment size for TSO offload for tunneling packet. The default value is O,
which means TSO offload is disabled.

user@target:~$./build/app/tep_termination -1 0-3 -n 4 —--huge-dir /mnt/huge —-—
——tx-checksum —--tso-segsz 800

Decapsulation option.

The decap option is used to enable or disable decapsulation operation for received VXLAN packet. The default value
is 1.

user@target:~$./build/app/tep_termination -1 0-3 -n 4 —--huge-dir /mnt/huge —-—
—--nb-devices 4 --udp-port 4789 --decap 1

Encapsulation option.

The encap option is used to enable or disable encapsulation operation for transmitted packet. The default value is 1.

user@target:~$./build/app/tep_termination -1 0-3 -n 4 —--huge-dir /mnt/huge --
—--nb-devices 4 —--udp-port 4789 —--encap 1

3.37.6 Running the Virtual Machine (QEMU)

Refer to Start the VM.

218 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

3.37.7 Running DPDK in the Virtual Machine

Refer to Run testpmd inside guest.

3.37.8 Passing Traffic to the Virtual Machine Device

For a virtio-net device to receive traffic, the traffic’s Layer 2 header must include both the virtio-net device’s MAC
address. The DPDK sample code behaves in a similar manner to a learning switch in that it learns the MAC address of
the virtio-net devices from the first transmitted packet. On learning the MAC address, the DPDK vhost sample code
prints a message with the MAC address and tenant ID virtio-net device. For example:

DATA: (0) MAC_ADDRESS cc:bb:bb:bb:bb:bb and VNI 1000 registered

The above message indicates that device 0 has been registered with MAC address cc:bb:bb:bb:bb:bb and VNI 1000.
Any packets received on the NIC with these values are placed on the devices receive queue.

3.38 PTP Client Sample Application

The PTP (Precision Time Protocol) client sample application is a simple example of using the DPDK IEEE1588 API
to communicate with a PTP master clock to synchronize the time on the NIC and, optionally, on the Linux system.

Note, PTP is a time syncing protocol and cannot be used within DPDK as a time-stamping mechanism. See the
following for an explanation of the protocol: Precision Time Protocol.

3.38.1 Limitations
The PTP sample application is intended as a simple reference implementation of a PTP client using the DPDK
IEEE1588 API. In order to keep the application simple the following assumptions are made:

* The first discovered master is the master for the session.

e Only L2 PTP packets are supported.

¢ Only the PTP v2 protocol is supported.

* Only the slave clock is implemented.

3.38.2 How the Application Works

Fig. 3.32: PTP Synchronization Protocol

The PTP synchronization in the sample application works as follows:

* Master sends Sync message - the slave saves it as T2.

* Master sends Follow Up message and sends time of T1.

* Slave sends Delay Request frame to PTP Master and stores T3.

* Master sends Delay Response T4 time which is time of received T3.
The adjustment for slave can be represented as:

adj = -[(T2-T1)-(T4 - T3)]/2

3.38. PTP Client Sample Application 219

https://en.wikipedia.org/wiki/Precision_Time_Protocol

dpdk, Release 0.11

If the command line parameter —T 1 is used the application also synchronizes the PTP PHC clock with the Linux
kernel clock.

3.38.3 Compiling the Application

To compile the application, export the path to the DPDK source tree and edit the config/common_linuxapp
configuration file to enable IEEE1588:

export RTE_SDK=/path/to/rte_sdk

Edit common_linuxapp and set the following options:
CONFIG_RTE_LIBRTE_IEEE1588=y

Set the target, for example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

Build the application as follows:

Recompile DPDK.
make install T=$RTE_TARGET

Compile the application.
cd ${RTE_SDK}/examples/ptpclient
make

3.38.4 Running the Application

To run the example in a 1 inuxapp environment:

./build/ptpclient -1 1 -n 4 —— -p 0x1 -T 0

Refer to DPDK Getting Started Guide for general information on running applications and the Environment Abstrac-
tion Layer (EAL) options.

* —-p portmask: Hexadecimal portmask.
e —T 0: Update only the PTP slave clock.

e —T 1: Update the PTP slave clock and synchronize the Linux Kernel to the PTP clock.

3.38.5 Code Explanation

The following sections provide an explanation of the main components of the code.

All DPDK library functions used in the sample code are prefixed with rte_ and are explained in detail in the DPDK
API Documentation.

The Main Function

The main () function performs the initialization and calls the execution threads for each Icore.

220 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv arguments are provided
tothe rte_eal_init () function. The value returned is the number of parsed arguments:

int ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Error with EAL initialization\n");

And than we parse application specific arguments

argc —= ret;
argv += ret;

ret = ptp_parse_args (argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Error with PTP initialization\n");

The main () also allocates a mempool to hold the mbufs (Message Buffers) used by the application:

mbuf_pool = rte_pktmbuf_pool_create ("MBUF_POOL", NUM_MBUFS * nb_ports,
MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());

Mbufs are the packet buffer structure used by DPDK. They are explained in detail in the “Mbuf Library” section of
the DPDK Programmer’s Guide.

The main () function also initializes all the ports using the user defined port_init () function with portmask
provided by user:

for (portid = 0; portid < nb_ports; portid++)

if ((ptp_enabled_port_mask & (1 << portid)) != 0) {
if (port_init (portid, mbuf_pool) == 0) {
ptp_enabled_ports[ptp_enabled_port_nb] = portid;
ptp_enabled_port_nb++;
} else {
rte_exit (EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
portid);

Once the initialization is complete, the application is ready to launch a function on an Icore. In this example
lcore_main () is called on a single Icore.

lcore_main () ;

The 1core_main () function is explained below.

The Lcores Main

As we saw above the main () function calls an application function on the available Icores.

The main work of the application is done within the loop:

for (portid = 0; portid < ptp_enabled_port_nb; portid++) {

portid = ptp_enabled_ports[portid];
nb_rx = rte_eth_rx_burst (portid, 0, &m, 1);

if (likely(nb_rx == 0))

3.38. PTP Client Sample Application 221

dpdk, Release 0.11

continue;

if (m->o0l_flags & PKT_RX_IEEE1588_PTP)
parse_ptp_frames (portid, m);

rte_pktmbuf_free (m);

Packets are received one by one on the RX ports and, if required, PTP response packets are transmitted on the TX
ports.

If the offload flags in the mbuf indicate that the packet is a PTP packet then the packet is parsed to determine which
type:

if (m—>o0l_flags & PKT_RX_IEEE1588_PTP)
parse_ptp_frames (portid, m);

All packets are freed explicitly using rte_pktmbuf_free ().

The forwarding loop can be interrupted and the application closed using Ctr1-C.

PTP parsing

The parse_ptp_frames () function processes PTP packets, implementing slave PTP IEEE1588 L2 functionality.

void

parse_ptp_frames (uint8_t portid, struct rte_mbuf xm) {
struct ptp_header xptp_hdr;
struct ether_hdr xeth_hdr;
uintl6_t eth_type;

eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr »);
eth_type = rte_be_to_cpu_16(eth_hdr->ether_type);

if (eth_type == PTP_PROTOCOL) {
ptp_data.m = m;
ptp_data.portid = portid;
ptp_hdr = (struct ptp_header) (rte_pktmbuf_mtod(m, char x)
+ sizeof (struct ether_hdr));

switch (ptp_hdr->msgtype) {
case SYNC:
parse_sync (&ptp_data);
break;
case FOLLOW UP:
parse_fup (&ptp_data) ;
break;
case DELAY RESP:
parse_drsp (&ptp_data);
print_clock_info (&ptp_data);
break;
default:
break;

222 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

There are 3 types of packets on the RX path which we must parse to create a minimal implementation of the PTP slave
client:

* SYNC packet.
 FOLLOW UP packet
* DELAY RESPONSE packet.

When we parse the FOLLOW UP packet we also create and send a DELAY_REQUEST packet. Also when we parse
the DELAY RESPONSE packet, and all conditions are met we adjust the PTP slave clock.

3.39 Performance Thread Sample Application

The performance thread sample application is a derivative of the standard L3 forwarding application that demonstrates
different threading models.

3.39.1 Overview

For a general description of the L3 forwarding applications capabilities please refer to the documentation of the
standard application in L3 Forwarding Sample Application.

The performance thread sample application differs from the standard L3 forwarding example in that it divides the TX
and RX processing between different threads, and makes it possible to assign individual threads to different cores.

Three threading models are considered:
1. When there is one EAL thread per physical core.
2. When there are multiple EAL threads per physical core.
3. When there are multiple lightweight threads per EAL thread.

Since DPDK release 2.0 it is possible to launch applications using the ——1cores EAL parameter, specifying cpu-sets
for a physical core. With the performance thread sample application its is now also possible to assign individual RX
and TX functions to different cores.

As an alternative to dividing the L3 forwarding work between different EAL threads the performance thread sample
introduces the possibility to run the application threads as lightweight threads (L-threads) within one or more EAL
threads.

In order to facilitate this threading model the example includes a primitive cooperative scheduler (L-thread) subsystem.
More details of the L-thread subsystem can be found in The L-thread subsystem.

Note: Whilst theoretically possible it is not anticipated that multiple L-thread schedulers would be run on the same
physical core, this mode of operation should not be expected to yield useful performance and is considered invalid.

3.39.2 Compiling the Application

The application is located in the sample application folder in the performance-thread folder.

1. Go to the example applications folder

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/performance-thread/13fwd-thread

2. Set the target (a default target is used if not specified). For example:

3.39. Performance Thread Sample Application 223

dpdk, Release 0.11

3.

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Linux Getting Started Guide for possible RTE_TARGET values.
Build the application:

make

3.39.3 Running the Application

The application has a number of command line options:

./build/13fwd-thread [EAL options] —-—

-p PORTMASK [-P]

—--rx (port, queue, lcore, thread) [, (port, queue, lcore, thread)]

——tx (lcore, thread) [, (1lcore,thread)]

[-—enable—-jumbo] [-—max-pkt-len PKTLEN]] [--no-numa]
[--hash-entry-num] [-—-ipv6] [-—no-lthreads] [-—-stat-lcore lcore]
[-—parse—-ptype]

Where:

-p PORTMASK: Hexadecimal bitmask of ports to configure.

—P: optional, sets all ports to promiscuous mode so that packets are accepted regardless of the packet’s Ethernet
MAC destination address. Without this option, only packets with the Ethernet MAC destination address set to
the Ethernet address of the port are accepted.

--rx (port,queue, lcore,thread) [, (port,queue, lcore, thread)]: the list of NIC RX
ports and queues handled by the RX Icores and threads. The parameters are explained below.

-—tx (lcore,thread) [, (Lcore,thread)]: the list of TX threads identifying the lcore the thread
runs on, and the id of RX thread with which it is associated. The parameters are explained below.

—-—enable-jumbo: optional, enables jumbo frames.

—-max-pkt-1len: optional, maximum packet length in decimal (64-9600).

——no-numa: optional, disables numa awareness.

——hash-entry—-num: optional, specifies the hash entry number in hex to be setup.

——1ipv6: optional, set it if running ipv6 packets.

-—no-lthreads: optional, disables l-thread model and uses EAL threading model. See below.
——stat—-1core: optional, run CPU load stats collector on the specified Icore.

-—parse-ptype: optional, set to use software to analyze packet type. Without this option, hardware will
check the packet type.

The parameters of the ——rx and ——t x options are:

——IrXx parameters

port RX port

queue | RX queue that will be read on the specified RX port
Icore Core to use for the thread

thread | Thread id (continuously from 0 to N)

——tx parameters

224

Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Icore Core to use for L3 route match and transmit
thread | Id of RX thread to be associated with this TX thread

The 13fwd-thread application allows you to start packet processing in two threading models: L-Threads (default)
and EAL Threads (when the ——no-1threads parameter is used). For consistency all parameters are used in the
same way for both models.

Running with L-threads

When the L-thread model is used (default option), Icore and thread parameters in ——rx/—-tx are used to affinitize
threads to the selected scheduler.

For example, the following places every I-thread on different lcores:

13fwd-thread -1 0-7 -n 2 —— -P -p 3 \
--rx="(0,0,0,0) (1,0,1,1)" \
-——tx="(2,0) (3,1)"

The following places RX 1-threads on Icore 0 and TX I-threads on Icore 1 and 2 and so on:

13fwd-thread -1 0-7 -n 2 — -P -p 3 \
--rx="(0,0,0,0) (1,0,0,1)" \
——tx="(1,0) (2,1)"

Running with EAL threads

When the ——no-1threads parameter is used, the L-threading model is turned off and EAL threads are used for all
processing. EAL threads are enumerated in the same way as L-threads, but the -—1cores EAL parameter is used to
affinitize threads to the selected cpu-set (scheduler). Thus it is possible to place every RX and TX thread on different
Icores.

For example, the following places every EAL thread on different lcores:

13fwd-thread -1 0-7 -n 2 —— -P -p 3 \
--rx="(0,0,0,0) (1,0,1,1)" \
——tx="(2,0) (3,1)" \
——no-1lthreads

To affinitize two or more EAL threads to one cpu-set, the EAL ——1cores parameter is used.

The following places RX EAL threads on Icore 0 and TX EAL threads on Icore 1 and 2 and so on:

13fwd-thread -1 0-7 -n 2 --lcores="(0,1)@0, (2,3)@1" —— -P -p 3 \
——rx="(0,0,0,0) (1,0,1,1)" \
——tx="(2,0) (3,1)" \
——-no-lthreads

Examples

For selected scenarios the command line configuration of the application for L-threads and its corresponding EAL
threads command line can be realized as follows:

1. Start every thread on different scheduler (1:1):

3.39. Performance Thread Sample Application 225

dpdk, Release 0.11

13fwd-thread -1 0-7 -n 2 —— -P -p 3 \
--rx="(0,0,0,0) (1,0,1,1)" \
——tx="(2,0) (3,1)"

EAL thread equivalent:

13fwd-thread -1 0-7 -n 2 —— -P -p 3 \
-—-rx="(0,0,0,0) (1,0,1,1)" \
——tx="(2,0) (3,1)" \
—-no-lthreads

2. Start all threads on one core (N:1).

Start 4 L-threads on Icore 0O:

13fwd-thread -1 0-7 -n 2 —— -P -p 3 \
--rx="(0,0,0,0) (1,0,0,1)" \
-——tx="(0,0) (0,1)"

Start 4 EAL threads on cpu-set O:

13fwd-thread -1 0-7 —n 2 —--lcores="(0-3)C0" —— -P -p 3 \
--rx="(0,0,0,0) (1,0,0,1)" \
——tx="(2,0) (3,1)" \
——no—-lthreads

3. Start threads on different cores (N:M).
Start 2 L-threads for RX on Icore 0, and 2 L-threads for TX on Icore 1:

13fwd-thread -1 0-7 -n 2 —— -P -p 3 \
--rx="(0,0,0,0) (1,0,0,1)" \
-——tx="(1,0) (1,1)"

Start 2 EAL threads for RX on cpu-set 0, and 2 EAL threads for TX on cpu-set 1:

13fwd-thread -1 0-7 —n 2 —-lcores="(0-1)Q0, (2-3)@1L" —— -P -p 3 \
--rx="(0,0,0,0) (1,0,1,1)" \
——tx="(2,0) (3,1)" \
——no—-lthreads

3.39.4 Explanation

To a great extent the sample application differs little from the standard L3 forwarding application, and readers are
advised to familiarize themselves with the material covered in the L3 Forwarding Sample Application documentation
before proceeding.

The following explanation is focused on the way threading is handled in the performance thread example.

Mode of operation with EAL threads

The performance thread sample application has split the RX and TX functionality into two different threads, and the
RX and TX threads are interconnected via software rings. With respect to these rings the RX threads are producers
and the TX threads are consumers.

On initialization the TX and RX threads are started according to the command line parameters.

226 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

The RX threads poll the network interface queues and post received packets to a TX thread via a corresponding
software ring.

The TX threads poll software rings, perform the L3 forwarding hash/LPM match, and assemble packet bursts before
performing burst transmit on the network interface.

As with the standard L3 forward application, burst draining of residual packets is performed periodically with the
period calculated from elapsed time using the timestamps counter.

The diagram below illustrates a case with two RX threads and three TX threads.

Mode of operation with L-threads

Like the EAL thread configuration the application has split the RX and TX functionality into different threads, and the
pairs of RX and TX threads are interconnected via software rings.

On initialization an L-thread scheduler is started on every EAL thread. On all but the master EAL thread only a a
dummy L-thread is initially started. The L-thread started on the master EAL thread then spawns other L-threads on
different L-thread schedulers according the the command line parameters.

The RX threads poll the network interface queues and post received packets to a TX thread via the corresponding
software ring.

The ring interface is augmented by means of an L-thread condition variable that enables the TX thread to be suspended
when the TX ring is empty. The RX thread signals the condition whenever it posts to the TX ring, causing the TX
thread to be resumed.

Additionally the TX L-thread spawns a worker L-thread to take care of polling the software rings, whilst it handles
burst draining of the transmit buffer.

The worker threads poll the software rings, perform L3 route lookup and assemble packet bursts. If the TX ring is
empty the worker thread suspends itself by waiting on the condition variable associated with the ring.

Burst draining of residual packets, less than the burst size, is performed by the TX thread which sleeps (using an
L-thread sleep function) and resumes periodically to flush the TX buffer.

This design means that L-threads that have no work, can yield the CPU to other L-threads and avoid having to con-
stantly poll the software rings.

The diagram below illustrates a case with two RX threads and three TX functions (each comprising a thread that
processes forwarding and a thread that periodically drains the output buffer of residual packets).

CPU load statistics

It is possible to display statistics showing estimated CPU load on each core. The statistics indicate the percentage of
CPU time spent: processing received packets (forwarding), polling queues/rings (waiting for work), and doing any
other processing (context switch and other overhead).

When enabled statistics are gathered by having the application threads set and clear flags when they enter and exit
pertinent code sections. The flags are then sampled in real time by a statistics collector thread running on another core.
This thread displays the data in real time on the console.

This feature is enabled by designating a statistics collector core, using the ——stat—-1core parameter.

3.39. Performance Thread Sample Application 227

dpdk, Release 0.11

3.39.5 The L-thread subsystem

The L-thread subsystem resides in the examples/performance-thread/common directory and is built and linked auto-
matically when building the 13fwd-thread example.

The subsystem provides a simple cooperative scheduler to enable arbitrary functions to run as cooperative threads
within a single EAL thread. The subsystem provides a pthread like API that is intended to assist in reuse of legacy
code written for POSIX pthreads.

The following sections provide some detail on the features, constraints, performance and porting considerations when
using L-threads.

Comparison between L-threads and POSIX pthreads

The fundamental difference between the L-thread and pthread models is the way in which threads are scheduled. The
simplest way to think about this is to consider the case of a processor with a single CPU. To run multiple threads on a
single CPU, the scheduler must frequently switch between the threads, in order that each thread is able to make timely
progress. This is the basis of any multitasking operating system.

This section explores the differences between the pthread model and the L-thread model as implemented in the pro-
vided L-thread subsystem. If needed a theoretical discussion of preemptive vs cooperative multi-threading can be
found in any good text on operating system design.

Scheduling and context switching

The POSIX pthread library provides an application programming interface to create and synchronize threads. Schedul-
ing policy is determined by the host OS, and may be configurable. The OS may use sophisticated rules to determine
which thread should be run next, threads may suspend themselves or make other threads ready, and the scheduler may
employ a time slice giving each thread a maximum time quantum after which it will be preempted in favor of another
thread that is ready to run. To complicate matters further threads may be assigned different scheduling priorities.

By contrast the L-thread subsystem is considerably simpler. Logically the L-thread scheduler performs the same
multiplexing function for L-threads within a single pthread as the OS scheduler does for pthreads within an application
process. The L-thread scheduler is simply the main loop of a pthread, and in so far as the host OS is concerned it is
a regular pthread just like any other. The host OS is oblivious about the existence of and not at all involved in the
scheduling of L-threads.

The other and most significant difference between the two models is that L-threads are scheduled cooperatively. L-
threads cannot not preempt each other, nor can the L-thread scheduler preempt a running L-thread (i.e. there is no time
slicing). The consequence is that programs implemented with L-threads must possess frequent rescheduling points,
meaning that they must explicitly and of their own volition return to the scheduler at frequent intervals, in order to
allow other L-threads an opportunity to proceed.

In both models switching between threads requires that the current CPU context is saved and a new context (belonging
to the next thread ready to run) is restored. With pthreads this context switching is handled transparently and the set
of CPU registers that must be preserved between context switches is as per an interrupt handler.

An L-thread context switch is achieved by the thread itself making a function call to the L-thread scheduler. Thus it
is only necessary to preserve the callee registers. The caller is responsible to save and restore any other registers it is
using before a function call, and restore them on return, and this is handled by the compiler. For X86_64 on both
Linux and BSD the System V calling convention is used, this defines registers RSP, RBP, and R12-R15 as callee-save
registers (for more detailed discussion a good reference is X86 Calling Conventions).

Taking advantage of this, and due to the absence of preemption, an L-thread context switch is achieved with less than
20 load/store instructions.

228 Chapter 3. Sample Applications User Guides

https://en.wikipedia.org/wiki/X86_calling_conventions

dpdk, Release 0.11

The scheduling policy for L-threads is fixed, there is no prioritization of L-threads, all L-threads are equal and schedul-
ing is based on a FIFO ready queue.

An L-thread is a struct containing the CPU context of the thread (saved on context switch) and other useful items. The
ready queue contains pointers to threads that are ready to run. The L-thread scheduler is a simple loop that polls the
ready queue, reads from it the next thread ready to run, which it resumes by saving the current context (the current
position in the scheduler loop) and restoring the context of the next thread from its thread struct. Thus an L-thread is
always resumed at the last place it yielded.

A well behaved L-thread will call the context switch regularly (at least once in its main loop) thus returning to the
scheduler’s own main loop. Yielding inserts the current thread at the back of the ready queue, and the process of
servicing the ready queue is repeated, thus the system runs by flipping back and forth the between L-threads and
scheduler loop.

In the case of pthreads, the preemptive scheduling, time slicing, and support for thread prioritization means that
progress is normally possible for any thread that is ready to run. This comes at the price of a relatively heavier context
switch and scheduling overhead.

With L-threads the progress of any particular thread is determined by the frequency of rescheduling opportunities in
the other L-threads. This means that an errant L-thread monopolizing the CPU might cause scheduling of other threads
to be stalled. Due to the lower cost of context switching, however, voluntary rescheduling to ensure progress of other
threads, if managed sensibly, is not a prohibitive overhead, and overall performance can exceed that of an application
using pthreads.

Mutual exclusion

With pthreads preemption means that threads that share data must observe some form of mutual exclusion protocol.

The fact that L-threads cannot preempt each other means that in many cases mutual exclusion devices can be com-
pletely avoided.

Locking to protect shared data can be a significant bottleneck in multi-threaded applications so a carefully designed
cooperatively scheduled program can enjoy significant performance advantages.

So far we have considered only the simplistic case of a single core CPU, when multiple CPUs are considered things
are somewhat more complex.

First of all it is inevitable that there must be multiple L-thread schedulers, one running on each EAL thread. So long
as these schedulers remain isolated from each other the above assertions about the potential advantages of cooperative
scheduling hold true.

A configuration with isolated cooperative schedulers is less flexible than the pthread model where threads can be
affinitized to run on any CPU. With isolated schedulers scaling of applications to utilize fewer or more CPUs according
to system demand is very difficult to achieve.

The L-thread subsystem makes it possible for L-threads to migrate between schedulers running on different CPUs.
Needless to say if the migration means that threads that share data end up running on different CPUs then this will
introduce the need for some kind of mutual exclusion system.

Of course rte_ring software rings can always be used to interconnect threads running on different cores, however
to protect other kinds of shared data structures, lock free constructs or else explicit locking will be required. This is a
consideration for the application design.

In support of this extended functionality, the L-thread subsystem implements thread safe mutexes and condition vari-
ables.

The cost of affinitizing and of condition variable signaling is significantly lower than the equivalent pthread operations,
and so applications using these features will see a performance benefit.

3.39. Performance Thread Sample Application 229

dpdk, Release 0.11

Thread local storage

As with applications written for pthreads an application written for L-threads can take advantage of thread local
storage, in this case local to an L-thread. An application may save and retrieve a single pointer to application data in
the L-thread struct.

For legacy and backward compatibility reasons two alternative methods are also offered, the first is modelled directly
on the pthread get/set specific APIs, the second approach is modelled on the RTE_PER_LCORE macros, whereby
PER_LTHREAD macros are introduced, in both cases the storage is local to the L-thread.

Constraints and performance implications when using L-threads

API compatibility

The L-thread subsystem provides a set of functions that are logically equivalent to the corresponding functions offered
by the POSIX pthread library, however not all pthread functions have a corresponding L-thread equivalent, and not all
features available to pthreads are implemented for L-threads.

The pthread library offers considerable flexibility via programmable attributes that can be associated with threads,
mutexes, and condition variables.

By contrast the L-thread subsystem has fixed functionality, the scheduler policy cannot be varied, and L-threads
cannot be prioritized. There are no variable attributes associated with any L-thread objects. L-threads, mutexes and
conditional variables, all have fixed functionality. (Note: reserved parameters are included in the APIs to facilitate
possible future support for attributes).

The table below lists the pthread and equivalent L-thread APIs with notes on differences and/or constraints. Where
there is no L-thread entry in the table, then the L-thread subsystem provides no equivalent function.

Table 3.22: Pthread and equivalent L-thread APIs.

Pthread function L-thread function Notes

pthread_barrier_destroy

pthread_barrier_init

pthread_barrier_wait

pthread_cond_broadcast Ithread_cond_broadcast | See note 1

pthread_cond_destroy Ithread_cond_destroy

pthread_cond_init Ithread_cond_init

pthread_cond_signal Ithread_cond_signal See note 1

pthread_cond_timedwait

pthread_cond_wait Ithread_cond_wait See note 5

pthread_create Ithread_create See notes 2, 3

pthread_detach Ithread_detach See note 4

pthread_equal

pthread_exit Ithread_exit

pthread_getspecific Ithread_getspecific

pthread_getcpuclockid

pthread_join Ithread_join

pthread_key_create Ithread_key_create

pthread_key_delete Ithread_key_delete

pthread_mutex_destroy Ithread_mutex_destroy

pthread_mutex_init Ithread_mutex_init

pthread_mutex_lock Ithread_mutex_lock See note 6
Continued on next page

230 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Note 1:

Table 3.22 — continued from previous page

Pthread function

L-thread function

Notes

pthread_mutex_trylock

Ithread_mutex_trylock

See note 6

pthread_mutex_timedlock

pthread_mutex_unlock

Ithread_mutex_unlock

pthread_once

pthread_rwlock_destroy

pthread_rwlock_init

pthread_rwlock_rdlock

pthread_rwlock_timedrdlock

pthread_rwlock_timedwrlock

pthread_rwlock_tryrdlock

pthread_rwlock_trywrlock

pthread_rwlock_unlock

pthread_rwlock_wrlock

pthread_self

Ithread_current

pthread_setspecific

Ithread_setspecific

pthread_spin_init

See note 10

pthread_spin_destroy

See note 10

pthread_spin_lock

See note 10

pthread_spin_trylock

See note 10

pthread_spin_unlock

See note 10

pthread_cancel

Ithread_cancel

pthread_setcancelstate

pthread_setcanceltype

pthread_testcancel

pthread_getschedparam

pthread_setschedparam

pthread_yield

Ithread_yield

See note 7

pthread_setaffinity_np

Ithread_set_affinity

See notes 2, 3, 8

Ithread_sleep

See note 9

Ithread_sleep_clks

See note 9

Neither Ithread signal nor broadcast may be called concurrently by L-threads running on different schedulers, although
multiple L-threads running in the same scheduler may freely perform signal or broadcast operations. L-threads running
on the same or different schedulers may always safely wait on a condition variable.

Note 2:

Pthread attributes may be used to affinitize a pthread with a cpu-set. The L-thread subsystem does not support a
cpu-set. An L-thread may be affinitized only with a single CPU at any time.

Note 3:

If an L-thread is intended to run on a different NUMA node than the node that creates the thread then, when calling
lthread_create () itis advantageous to specify the destination core as a parameter of lthread_create ().
See Memory allocation and NUMA awareness for details.

Note 4:

An L-thread can only detach itself, and cannot detach other L-threads.

Note 5:

3.39. Performance Thread Sample Application

231

dpdk, Release 0.11

A wait operation on a pthread condition variable is always associated with and protected by a mutex which must
be owned by the thread at the time it invokes pthread_wait (). By contrast L-thread condition variables are
thread safe (for waiters) and do not use an associated mutex. Multiple L-threads (including L-threads running on
other schedulers) can safely wait on a L-thread condition variable. As a consequence the performance of an L-thread
condition variables is typically an order of magnitude faster than its pthread counterpart.

Note 6:
Recursive locking is not supported with L-threads, attempts to take a lock recursively will be detected and rejected.
Note 7:

lthread_yield () will save the current context, insert the current thread to the back of the ready queue, and
resume the next ready thread. Yielding increases ready queue backlog, see Ready queue backlog for more details
about the implications of this.

N.B. The context switch time as measured from immediately before the call to 1thread_yield () to the point
at which the next ready thread is resumed, can be an order of magnitude faster that the same measurement for
pthread_yield.

Note 8:

lthread_set_affinity () is similar to a yield apart from the fact that the yielding thread is inserted into a peer
ready queue of another scheduler. The peer ready queue is actually a separate thread safe queue, which means that
threads appearing in the peer ready queue can jump any backlog in the local ready queue on the destination scheduler.

The context switch time as measured from the time just before the call to 1thread_set_affinity () to just after
the same thread is resumed on the new scheduler can be orders of magnitude faster than the same measurement for
pthread_setaffinity_np().

Note 9:

Although there is no pthread_sleep () function, lthread_sleep () and lthread_sleep_clks () can
be used wherever sleep (), usleep () or nanosleep () might ordinarily be used. The L-thread sleep func-
tions suspend the current thread, start an rte_timer and resume the thread when the timer matures. The
rte_timer_manage () entry point is called on every pass of the scheduler loop. This means that the worst case
jitter on timer expiry is determined by the longest period between context switches of any running L-threads.

In a synthetic test with many threads sleeping and resuming then the measured jitter is typically orders of magnitude
lower than the same measurement made for nanosleep ().

Note 10:

Spin locks are not provided because they are problematical in a cooperative environment, see Locks and spinlocks for
a more detailed discussion on how to avoid spin locks.

Thread local storage

Of the three L-thread local storage options the simplest and most efficient is storing a single application data pointer
in the L-thread struct.

The PER_LTHREAD macros involve a run time computation to obtain the address of the variable being saved/retrieved
and also require that the accesses are de-referenced via a pointer. This means that code that has used
RTE_PER_LCORE macros being ported to L-threads might need some slight adjustment (see Thread local storage for
hints about porting code that makes use of thread local storage).

The get/set specific APIs are consistent with their pthread counterparts both in use and in performance.

232 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

Memory allocation and NUMA awareness

All memory allocation is from DPDK huge pages, and is NUMA aware. Each scheduler maintains its own caches of
objects: lthreads, their stacks, TLS, mutexes and condition variables. These caches are implemented as unbounded
lock free MPSC queues. When objects are created they are always allocated from the caches on the local core (current
EAL thread).

If an L-thread has been affinitized to a different scheduler, then it can always safely free resources to the caches from
which they originated (because the caches are MPSC queues).

If the L-thread has been affinitized to a different NUMA node then the memory resources associated with it may incur
longer access latency.

The commonly used pattern of setting affinity on entry to a thread after it has started, means that memory allocation for
both the stack and TLS will have been made from caches on the NUMA node on which the threads creator is running.
This has the side effect that access latency will be sub-optimal after affinitizing.

This side effect can be mitigated to some extent (although not completely) by specifying the destination CPU as a
parameter of 1thread_create () this causes the L-thread’s stack and TLS to be allocated when it is first scheduled
on the destination scheduler, if the destination is a on another NUMA node it results in a more optimal memory
allocation.

Note that the Ithread struct itself remains allocated from memory on the creating node, this is unavoidable because an
L-thread is known everywhere by the address of this struct.

Object cache sizing

The per Icore object caches pre-allocate objects in bulk whenever a request to allocate an object finds a cache empty.
By default 100 objects are pre-allocated, this is defined by LTHREAD_PREALLOC in the public API header file
Ithread_api.h. This means that the caches constantly grow to meet system demand.

In the present implementation there is no mechanism to reduce the cache sizes if system demand reduces. Thus the
caches will remain at their maximum extent indefinitely.

A consequence of the bulk pre-allocation of objects is that every 100 (default value) additional new object create
operations results in a call to rte_malloc (). For creation of objects such as L-threads, which trigger the allocation
of even more objects (i.e. their stacks and TLS) then this can cause outliers in scheduling performance.

If this is a problem the simplest mitigation strategy is to dimension the system, by setting the bulk object pre-allocation
size to some large number that you do not expect to be exceeded. This means the caches will be populated once only,
the very first time a thread is created.

Ready queue backlog

One of the more subtle performance considerations is managing the ready queue backlog. The fewer threads that are
waiting in the ready queue then the faster any particular thread will get serviced.

In a naive L-thread application with N L-threads simply looping and yielding, this backlog will always be equal to the
number of L-threads, thus the cost of a yield to a particular L-thread will be N times the context switch time.

This side effect can be mitigated by arranging for threads to be suspended and wait to be resumed, rather than polling
for work by constantly yielding. Blocking on a mutex or condition variable or even more obviously having a thread
sleep if it has a low frequency workload are all mechanisms by which a thread can be excluded from the ready queue
until it really does need to be run. This can have a significant positive impact on performance.

3.39. Performance Thread Sample Application 233

dpdk, Release 0.11

Initialization, shutdown and dependencies

The L-thread subsystem depends on DPDK for huge page allocation and depends on the rte_timer subsystem.
The DPDK EAL initialization and rte_timer_subsystem_init () MUST be completed before the L-thread
sub system can be used.

Thereafter initialization of the L-thread subsystem is largely transparent to the application. Constructor functions
ensure that global variables are properly initialized. Other than global variables each scheduler is initialized indepen-
dently the first time that an L-thread is created by a particular EAL thread.

If the schedulers are to be run as isolated and independent schedulers, with no intention that L-threads running on
different schedulers will migrate between schedulers or synchronize with L-threads running on other schedulers, then
initialization consists simply of creating an L-thread, and then running the L-thread scheduler.

If there will be interaction between L-threads running on different schedulers, then it is important that the starting of
schedulers on different EAL threads is synchronized.

To achieve this an additional initialization step is necessary, this is simply to set the number of schedulers by calling
the API function 1thread_num_schedulers_set (n), where n is the number of EAL threads that will run L-
thread schedulers. Setting the number of schedulers to a number greater than O will cause all schedulers to wait until
the others have started before beginning to schedule L-threads.

The L-thread scheduler is started by calling the function 1thread_run () and should be called from the EAL thread
and thus become the main loop of the EAL thread.

The function lthread_run (), will not return until all threads running on the scheduler have exited,
and the scheduler has been explicitly stopped by calling lthread_scheduler_shutdown (lcore) or
lthread_scheduler_shutdown_all ().

All these function do is tell the scheduler that it can exit when there are no longer any running L-threads, neither
function forces any running L-thread to terminate. Any desired application shutdown behavior must be designed and
built into the application to ensure that L-threads complete in a timely manner.

Important Note: It is assumed when the scheduler exits that the application is terminating for good, the scheduler
does not free resources before exiting and running the scheduler a subsequent time will result in undefined behavior.

Porting legacy code to run on L-threads
Legacy code originally written for a pthread environment may be ported to L-threads if the considerations about
differences in scheduling policy, and constraints discussed in the previous sections can be accommodated.

This section looks in more detail at some of the issues that may have to be resolved when porting code.

pthread API compatibility

The first step is to establish exactly which pthread APIs the legacy application uses, and to understand the requirements
of those APIs. If there are corresponding L-Ithread APIs, and where the default pthread functionality is used by the
application then, notwithstanding the other issues discussed here, it should be feasible to run the application with
L-threads. If the legacy code modifies the default behavior using attributes then if may be necessary to make some
adjustments to eliminate those requirements.

Blocking system API calls

It is important to understand what other system services the application may be using, bearing in mind that in a coop-
eratively scheduled environment a thread cannot block without stalling the scheduler and with it all other cooperative

234 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

threads. Any kind of blocking system call, for example file or socket IO, is a potential problem, a good tool to analyze
the application for this purpose is the st race utility.

There are many strategies to resolve these kind of issues, each with it merits. Possible solutions include:
* Adopting a polled mode of the system API concerned (if available).

* Arranging for another core to perform the function and synchronizing with that core via constructs that will not
block the L-thread.

» Affinitizing the thread to another scheduler devoted (as a matter of policy) to handling threads wishing to make
blocking calls, and then back again when finished.

Locks and spinlocks

Locks and spinlocks are another source of blocking behavior that for the same reasons as system calls will need to be
addressed.

If the application design ensures that the contending L-threads will always run on the same scheduler then it its
probably safe to remove locks and spin locks completely.

The only exception to the above rule is if for some reason the code performs any kind of context switch whilst holding
the lock (e.g. yield, sleep, or block on a different lock, or on a condition variable). This will need to determined before
deciding to eliminate a lock.

If a lock cannot be eliminated then an L-thread mutex can be substituted for either kind of lock.

An L-thread blocking on an L-thread mutex will be suspended and will cause another ready L-thread to be resumed,
thus not blocking the scheduler. When default behavior is required, it can be used as a direct replacement for a pthread
mutex lock.

Spin locks are typically used when lock contention is likely to be rare and where the period during which the lock
may be held is relatively short. When the contending L-threads are running on the same scheduler then an L-thread
blocking on a spin lock will enter an infinite loop stopping the scheduler completely (see Infinite loops below).

If the application design ensures that contending L-threads will always run on different schedulers then it might be
reasonable to leave a short spin lock that rarely experiences contention in place.

If after all considerations it appears that a spin lock can neither be eliminated completely, replaced with an L-thread
mutex, or left in place as is, then an alternative is to loop on a flag, with a call to 1thread_yield () inside the
loop (n.b. if the contending L-threads might ever run on different schedulers the flag will need to be manipulated
atomically).

Spinning and yielding is the least preferred solution since it introduces ready queue backlog (see also Ready queue
backlog).

Sleeps and delays

Yet another kind of blocking behavior (albeit momentary) are delay functions like sleep (), usleep(),
nanosleep () etc. All will have the consequence of stalling the L-thread scheduler and unless the delay is very
short (e.g. a very short nanosleep) calls to these functions will need to be eliminated.

The simplest mitigation strategy is to use the L-thread sleep API functions, of which two variants exist,
lthread_sleep () and lthread_sleep_clks (). These functions start an rte_timer against the L-thread,
suspend the L-thread and cause another ready L-thread to be resumed. The suspended L-thread is resumed when the
rte_timer matures.

3.39. Performance Thread Sample Application 235

dpdk, Release 0.11

Infinite loops

Some applications have threads with loops that contain no inherent rescheduling opportunity, and rely solely on the
OS time slicing to share the CPU. In a cooperative environment this will stop everything dead. These kind of loops
are not hard to identify, in a debug session you will find the debugger is always stopping in the same loop.

The simplest solution to this kind of problem is to insert an explicit 1thread_yield() or lthread_sleep ()
into the loop. Another solution might be to include the function performed by the loop into the execution path of some
other loop that does in fact yield, if this is possible.

Thread local storage

If the application uses thread local storage, the use case should be studied carefully.

In a legacy pthread application either or both the __thread prefix, or the pthread set/get specific APIs may have
been used to define storage local to a pthread.

In some applications it may be a reasonable assumption that the data could or in fact most likely should be placed in
L-thread local storage.

If the application (like many DPDK applications) has assumed a certain relationship between a pthread and the CPU
to which it is affinitized, there is a risk that thread local storage may have been used to save some data items that are
correctly logically associated with the CPU, and others items which relate to application context for the thread. Only
a good understanding of the application will reveal such cases.

If the application requires an that an L-thread is to be able to move between schedulers then care should be taken to
separate these kinds of data, into per Icore, and per L-thread storage. In this way a migrating thread will bring with it
the local data it needs, and pick up the new logical core specific values from pthread local storage at its new home.

Pthread shim

A convenient way to get something working with legacy code can be to use a shim that adapts pthread API calls to
the corresponding L-thread ones. This approach will not mitigate any of the porting considerations mentioned in the
previous sections, but it will reduce the amount of code churn that would otherwise been involved. It is a reasonable
approach to evaluate L-threads, before investing effort in porting to the native L-thread APIs.

Overview

The L-thread subsystem includes an example pthread shim. This is a partial implementation but does contain the API
stubs needed to get basic applications running. There is a simple “hello world” application that demonstrates the use
of the pthread shim.

A subtlety of working with a shim is that the application will still need to make use of the genuine pthread library
functions, at the very least in order to create the EAL threads in which the L-thread schedulers will run. This is the
case with DPDK initialization, and exit.

To deal with the initialization and shutdown scenarios, the shim is capable of switching on or off its adaptor function-
ality, an application can control this behavior by the calling the function pt_override_set (). The default state
is disabled.

The pthread shim uses the dynamic linker loader and saves the loaded addresses of the genuine pthread API functions
in an internal table, when the shim functionality is enabled it performs the adaptor function, when disabled it invokes
the genuine pthread function.

236 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

The function pthread_exit () has additional special handling. The standard system header file pthread.h declares
pthread_exit () with __attribute__ ((noreturn)) this is an optimization that is possible because the
pthread is terminating and this enables the compiler to omit the normal handling of stack and protection of registers
since the function is not expected to return, and in fact the thread is being destroyed. These optimizations are applied
in both the callee and the caller of the pthread_exit () function.

In our cooperative scheduling environment this behavior is inadmissible. The pthread is the L-thread scheduler thread,
and, although an L-thread is terminating, there must be a return to the scheduler in order that the system can continue
to run. Further, returning from a function with attribute noreturn is invalid and may result in undefined behavior.

The solution is to redefine the pthread_exit function with a macro, causing it to be mapped to a stub function
in the shim that does not have the noreturn attribute. This macro is defined in the file pthread_shim.h. The
stub function is otherwise no different than any of the other stub functions in the shim, and will switch between the
real pthread_exit () function or the 1thread_exit () function as required. The only difference is that the
mapping to the stub by macro substitution.

A consequence of this is that the file pthread_shim.h must be included in legacy code wishing to make use of
the shim. It also means that dynamic linkage of a pre-compiled binary that did not include pthread_shim.h is not be
supported.

Given the requirements for porting legacy code outlined in Porting legacy code to run on L-threads most applications
will require at least some minimal adjustment and recompilation to run on L-threads so pre-compiled binaries are
unlikely to be met in practice.

In summary the shim approach adds some overhead but can be a useful tool to help establish the feasibility of a code
reuse project. It is also a fairly straightforward task to extend the shim if necessary.

Note: Bearing in mind the preceding discussions about the impact of making blocking calls then switching the shim
in and out on the fly to invoke any pthread API this might block is something that should typically be avoided.

Building and running the pthread shim

The shim example application is located in the sample application in the performance-thread folder
To build and run the pthread shim example

1. Go to the example applications folder

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/performance-thread/pthread_shim

2. Set the target (a default target is used if not specified). For example:

’export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.
3. Build the application:

’make

4. To run the pthread_shim example

’lthreadfpthreadfshim —c core_mask —-n number_of_ channels

3.39. Performance Thread Sample Application 237

dpdk, Release 0.11

L-thread Diagnostics

When debugging you must take account of the fact that the L-threads are run in a single pthread.
The current scheduler is defined by RTE_PER_LCORE (this_sched), and the current Ithread
is stored at RTE_PER_LCORE (this_sched)->current_lthread. Thus on a breakpoint
in a GDB session the current Ithread can be obtained by displaying the pthread local variable
per_lcore_this_sched->current_lthread.

Another useful diagnostic feature is the possibility to trace significant events in the life of an L-thread, this feature is
enabled by changing the value of LTHREAD_DIAG from O to 1 in the file 1thread_diag_api.h.

Tracing of events can be individually masked, and the mask may be programmed at run time. An unmasked
event results in a callback that provides information about the event. The default callback simply prints
trace information. The default mask is O (all events off) the mask can be modified by calling the function
lthread_diagniostic_set_mask().

It is possible register a user callback function to implement more sophisticated diagnostic functions. Object creation
events (Ithread, mutex, and condition variable) accept, and store in the created object, a user supplied reference value
returned by the callback function.

The lthread reference value is passed back in all subsequent event callbacks, the mutex and APIs are provided to
retrieve the reference value from mutexes and condition variables. This enables a user to monitor, count, or filter for
specific events, on specific objects, for example to monitor for a specific thread signaling a specific condition variable,
or to monitor on all timer events, the possibilities and combinations are endless.

The callback function can be set by calling the function 1thread_diagnostic_enable () supplying a callback
function pointer and an event mask.

Setting LTHREAD_DIAG also enables counting of statistics about cache and queue usage, and these statistics can be
displayed by calling the function 1thread_diag_stats_display (). This function also performs a consistency
check on the caches and queues. The function should only be called from the master EAL thread after all slave threads
have stopped and returned to the C main program, otherwise the consistency check will fail.

3.40 IPsec Security Gateway Sample Application

The IPsec Security Gateway application is an example of a “real world” application using DPDK cryptodev framework.

3.40.1 Overview
The application demonstrates the implementation of a Security Gateway (not IPsec compliant, see the Constraints
section below) using DPDK based on RFC4301, RFC4303, RFC3602 and RFC2404.

Internet Key Exchange (IKE) is not implemented, so only manual setting of Security Policies and Security Associa-
tions is supported.

The Security Policies (SP) are implemented as ACL rules, the Security Associations (SA) are stored in a table and the
routing is implemented using LPM.

The application classifies the ports as Protected and Unprotected. Thus, traffic received on an Unprotected or Protected
port is consider Inbound or Outbound respectively.

The Path for IPsec Inbound traffic is:
* Read packets from the port.
¢ Classify packets between IPv4 and ESP.
* Perform Inbound SA lookup for ESP packets based on their SPI.

238 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

 Perform Verification/Decryption.
* Remove ESP and outer IP header
* Inbound SP check using ACL of decrypted packets and any other IPv4 packets.
* Routing.
* Write packet to port.
The Path for the IPsec Outbound traffic is:
* Read packets from the port.
 Perform Outbound SP check using ACL of all IPv4 traffic.
* Perform Outbound SA lookup for packets that need IPsec protection.
* Add ESP and outer IP header.
 Perform Encryption/Digest.
* Routing.

* Write packet to port.

3.40.2 Constraints

* No IPv6 options headers.

* No AH mode.

* Supported algorithms: AES-CBC, AES-CTR, AES-GCM, HMAC-SHA1 and NULL.
* Each SA must be handle by a unique Icore (I RX queue per port).

¢ No chained mbufs.

3.40.3 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/ipsec—-secgw

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.
3. Build the application:

’make

4. [Optional] Build the application for debugging: This option adds some extra flags, disables compiler optimiza-
tions and is verbose:

’make DEBUG=1

3.40. IPsec Security Gateway Sample Application 239

dpdk, Release 0.11

3.40.4 Running the Application

The application has a number of command line options:

./build/ipsec-secgw [EAL options] --—

-p PORTMASK -P —u PORTMASK

--config (port, queue, lcore) [, (port,queue, lcore]
--single-sa SAIDX

—-f CONFIG_FILE_PATH

Where:

-p PORTMASK: Hexadecimal bitmask of ports to configure.

—P: optional. Sets all ports to promiscuous mode so that packets are accepted regardless of the packet’s Ethernet
MAC destination address. Without this option, only packets with the Ethernet MAC destination address set to
the Ethernet address of the port are accepted (default is enabled).

—u PORTMASK: hexadecimal bitmask of unprotected ports

-—-config (port,queue, lcore) [, (port, queue, lcore)]: determines which queues from which
ports are mapped to which cores.

--single-sa SAIDX: use a single SA for outbound traffic, bypassing the SP on both Inbound and Out-
bound. This option is meant for debugging/performance purposes.

—-f CONFIG_FILE_PATH: the full path of text-based file containing all configuration items for running the ap-
plication (See Configuration file syntax section below). —f CONFIG_FILE_PATH must be specified. ONLY
the UNIX format configuration file is accepted.

The mapping of lcores to port/queues is similar to other 13fwd applications.

For example, given the following command line:

./build/ipsec-secgw -1 20,21 -n 4 --socket-mem 00,2048

—--vdev "cryptodev_null_pmd" -- -p Oxf -P -u 0x3
--config="(0,0,20), (1,0,20), (2,0,21), (3,0,21)"
-f /path/to/config_file

~ - -

where each options means:

The -1 option enables cores 20 and 21.

The —n option sets memory 4 channels.

The ——socket-mem to use 2GB on socket 1.

The ——vdev "cryptodev_null_pmd" option creates virtual NULL cryptodev PMD.
The —p option enables ports (detected) 0, 1, 2 and 3.

The —P option enables promiscuous mode.

The —u option sets ports 1 and 2 as unprotected, leaving 2 and 3 as protected.

The —-config option enables one queue per port with the following mapping:

Port | Queue | Icore | Description

0 0 20 Map queue O from port O to Icore 20.
1 0 20 Map queue O from port 1 to Icore 20.
2 0 21 Map queue O from port 2 to Icore 21.
3 0 21 Map queue O from port 3 to Icore 21.

240

Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

e The -f /path/to/config_file option enables the application read and parse the configuration file spec-
ified, and configures the application with a given set of SP, SA and Routing entries accordingly. The syntax of
the configuration file will be explained below in more detail. Please note the parser only accepts UNIX format
text file. Other formats such as DOS/MAC format will cause a parse error.

Refer to the DPDK Getting Started Guide for general information on running applications and the Environment Ab-
straction Layer (EAL) options.

The application would do a best effort to “map” crypto devices to cores, with hardware devices having priority.
Basically, hardware devices if present would be assigned to a core before software ones. This means that if the
application is using a single core and both hardware and software crypto devices are detected, hardware devices will
be used.

A way to achieve the case where you want to force the use of virtual crypto devices is to whitelist the Ethernet devices
needed and therefore implicitly blacklisting all hardware crypto devices.

For example, something like the following command line:

./build/ipsec-secgw -1 20,21 -n 4 —-socket-mem 00,2048 \
-w 81:00.0 -w 81:00.1 -w 81:00.2 -w 81:00.3 \
—-vdev "cryptodev_aesni_mb_pmd" --vdev "cryptodev_null_pmd" \
-—\
-p 0xf -P -u 0x3 --config="(0,0,20), (1,0,20),(2,0,21), (3,0,21)" \
-f sample.cfg

3.40.5 Configurations

The following sections provide the syntax of configurations to initialize your SP, SA and Routing tables. Config-
urations shall be specified in the configuration file to be passed to the application. The file is then parsed by the
application. The successful parsing will result in the appropriate rules being applied to the tables accordingly.

Configuration File Syntax
As mention in the overview, the Security Policies are ACL rules. The application parsers the rules specified in the
configuration file and passes them to the ACL table, and replicates them per socket in use.

Following are the configuration file syntax.

General rule syntax

The parse treats one line in the configuration file as one configuration item (unless the line concatenation symbol
exists). Every configuration item shall follow the syntax of either SP, SA, or Routing rules specified below.

The configuration parser supports the following special symbols:

¢ Comment symbol #. Any character from this symbol to the end of line is treated as comment and will not be
parsed.

* Line concatenation symbol \. This symbol shall be placed in the end of the line to be concatenated to the line
below. Multiple lines’ concatenation is supported.

SP rule syntax

The SP rule syntax is shown as follows:

3.40. IPsec Security Gateway Sample Application 241

dpdk, Release 0.11

sp <ip_ver> <dir> esp <action> <priority> <src_ip> <dst_ip>
<proto> <sport> <dport>

where each options means:
<ip_ver>
¢ [P protocol version
* Optional: No
* Available options:
— ipv4: IP protocol version 4
— ipv6: IP protocol version 6
<dir>
* The traffic direction
» Optional: No
* Available options:
— in: inbound traffic
— out: outbound traffic
<action>
* IPsec action
* Optional: No
 Available options:
— protect <SA_idx>: the specified traffic is protected by SA rule with id SA_idx
— bypass: the specified traffic traffic is bypassed
— discard: the specified traffic is discarded
<priority>
* Rule priority
* Optional: Yes, default priority O will be used
e Syntax: pri <id>
<src_ip>
* The source IP address and mask
* Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
e Syntax:
- src X.X.X.X/Y for IPv4
— src XXXX:XXXX: XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y for IPv6
<dst_ip>
* The destination IP address and mask
* Optional: Yes, default address 0.0.0.0 and mask of 0 will be used

e Syntax:

242 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

— dst X X.X.X/Y for IPv4
— dst XXXX:XXXX: XXXX: XXXX: XXXX:XXXX: XXXX:XXXX/Y for [Pv6
<proto>
* The protocol start and end range
* Optional: yes, default range of 0 to O will be used
* Syntax: proto X:Y
<sport>
* The source port start and end range
* Optional: yes, default range of 0 to O will be used
» Syntax: sport X:Y
<dport>
* The destination port start and end range
» Optional: yes, default range of 0 to 0 will be used
* Syntax: dport X:Y
Example SP rules:

sp ipv4 out esp protect 105 pri 1 dst 192.168.115.0/24 sport 0:65535 \
dport 0:65535

sp ipvé in esp bypass pri 1 dst 0000:0000:0000:0000:5555:5555:\
0000:0000/96 sport 0:65535 dport 0:65535

SA rule syntax

The successfully parsed SA rules will be stored in an array table.

The SA rule syntax is shown as follows:

sa <dir> <spi> <cipher_algo> <cipher_key> <auth_algo> <auth_key>
<mode> <src_ip> <dst_ip>

where each options means:
<dir>
* The traffic direction
* Optional: No
* Available options:
— in: inbound traffic
— out: outbound traffic
<spi>
* The SPI number
» Optional: No

» Syntax: unsigned integer number

3.40. IPsec Security Gateway Sample Application 243

dpdk, Release 0.11

<cipher_algo>
* Cipher algorithm
* Optional: No

* Available options:

null: NULL algorithm

aes-128-cbc: AES-CBC 128-bit algorithm
aes-128-ctr: AES-CTR 128-bit algorithm
aes-128-gcm: AES-GCM 128-bit algorithm

» Syntax: cipher_algo <your algorithm>
<cipher_key>

¢ Cipher key, NOT available when ‘null’ algorithm is used

* Optional: No, must followed by <cipher_algo> option

* Syntax: Hexadecimal bytes (0x0-OxFF) concatenate by colon symbol ‘:>. The number of bytes should be as
same as the specified cipher algorithm key size.

For example: cipher_key Al:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4: Al:B2:C3:D4
<auth_algo>
* Authentication algorithm
¢ Optional: No
* Available options:
— null: NULL algorithm
— shal-hmac: HMAC SHA1 algorithm
— aes-128-gcm: AES-GCM 128-bit algorithm
<auth_key>
* Authentication key, NOT available when ‘null’ or ‘aes-128-gcm’ algorithm is used.
¢ Optional: No, must followed by <auth_algo> option

» Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ‘:’. The number of bytes should be as
same as the specified authentication algorithm key size.

For example: auth_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4: Al1:B2:C3:D4
<mode>
* The operation mode
» Optional: No
* Available options:
— ipv4-tunnel: Tunnel mode for IPv4 packets
— ipv6-tunnel: Tunnel mode for IPv6 packets
— transport: transport mode
e Syntax: mode XXX

<src_ip>

244 Chapter 3. Sample Applications User Guides

dpdk, Release 0.11

* The source IP address. This option is not available when transport mode is used
» Optional: Yes, default address 0.0.0.0 will be used
* Syntax:

— src X.X.X.X for IPv4

— sre XXXX: XXXX:XXXX:XXXX: XXXX:XXXX: XXXX:XXXX for IPv6

<dst_ip>

¢ The destination IP address. This option is not available when transport mode is used
* Optional: Yes, default address 0.0.0.0 will be used
e Syntax:

— dst X.X.X.X for IPv4

— dst XXXX:XXXX: XXXX:XXXX: XXXX: XXXX: XXXX:XXXX for IPv6

Example SA rules:

sa out 5 cipher_algo null auth_algo null mode ipv4-tunnel \
src 172.16.1.5 dst 172.16.2.5

sa out 25 cipher_algo aes-128-cbc \

cipher_key c3:c3:¢c3:c3:c3:¢c3:c3:¢c3:¢c3:¢c3:¢c3:¢c3:¢3:¢3:¢c3:¢3 \

auth_algo shal-hmac \

auth_key c3:c3:c3:¢c3:¢c3:¢c3:c3:¢c3:¢3:¢c3:¢c3:¢c3:¢c3:¢3:¢3:¢3:¢c3:c3:¢c3:¢3 \
mode ipvé6-tunnel \

src 1111:1111:1111:1111:1111:1111:1111:5555 \

dst 2222:2222:2222:2222:2222:2222:2222:5555

sa in 105 cipher_algo aes-128-gcm \

cipher_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \
auth_algo aes-128-gcm \

mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5

Routing rule syntax

The Routing rule syntax is shown as follows:

rt <ip_ver> <src_ip> <dst_ip> <port>

where each options means:
<ip_ver>
* [P protocol version
» Optional: No
* Available options:
— ipv4: IP protocol version 4
— ipv6: 1P protocol version 6
<src_ip>

¢ The source IP address and mask

3.40. IPsec Security Gateway Sample Application 245

dpdk, Release 0.11

* Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
e Syntax:
— src X.X.X.X/Y for IPv4

— src XXXX:XXXX: XXXX: XXXX: XXXX: XXXX:XXXX:XXXX/Y for IPv6

<dst_ip>

* The destination IP address and mask
e Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
* Syntax:

— dst X.X.X.X/Y for IPv4

— dst XXXX: XXXX: XXXX: XXXX: XXXX:XXXX: XXXX:XXXX/Y for IPv6

<port>

* The traffic output port id
» Optional: yes, default output port 0 will be used

* Syntax: port X

Example SP rules:

rt

ipv4 dst 172.16.1.5/32 port O

rt ipv6 dst 1111:1111:1111:1111:1111:1111:1111:5555/116 port O

Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

3.1 Packet Flow

3.2 Kernel NIC Application Packet Flow

3.4 Performance Benchmark Setup (Basic Environment)

3.5 Performance Benchmark Setup (Virtualized Environment)
3.6 Performance Benchmark Setup (Basic Environment)

3.7 Performance Benchmark Setup (Virtualized Environment)

3.3 Encryption flow Through the L2 Forwarding with Crypto Application

3.9 A typical IPv4 ACL rule
3.10 Rules example
3.11 Load Balancer Application Architecture

3.13 Example Data Flow in a Symmetric Multi-process Application

3.14 Example Data Flow in a Client-Server Symmetric Multi-process Application

3.15 Master-slave Process Workflow

3.16 Slave Process Recovery Process Flow

3.17 QoS Scheduler Application Architecture

3.18 Pipeline Overview

3.19 Ring-based Processing Pipeline Performance Setup

246

Chapter 3

. Sample Applications User Guides

dpdk, Release 0.11

Fig. 3.20 Threads and Pipelines

Fig. 3.21 Packet Flow Through the VMDQ and DCB Sample Application
Fig. 3.25 Test Pipeline Application

Fig. 3.26 Performance Benchmarking Setup (Basic Environment)

Fig. 3.27 Distributor Sample Application Layout

Fig. 3.28 Highlevel Solution

Fig. 3.29 VM request to scale frequency Fig. 3.30 Overlay Networking. Fig. 3.31 TEP termination Framework
Overview

Fig. 3.32 PTP Synchronization Protocol

Fig. 3.12 Using EFD as a Flow-Level Load Balancer
Tables

Table 3.1 Output Traffic Marking

Table 3.2 Entity Types

Table 3.21 Table Types

3.40. IPsec Security Gateway Sample Application 247

dpdk, Release 0.11

248 Chapter 3. Sample Applications User Guides

CHAPTER 4

YmtEiam

4.1 FH

AP RIGE R, TP LA TR -
H RGN Bl B AT g BB X 2on i, 182 DPDK7RBIF FIER -
ARGEMETRERFF—REE, %20 DPDKAIIEHE -

411 XREHAE

PATN & — 103 U 34 32 U DPDK 2 %% SR 31 5% -

- RARH REFERTHRRNEE, QI CRNDIEE. REl. BEONE, CannEEs. it
Sb, SELIFAQUT TR ML T # L o R AR -

o ANI'H68 « HBWMA M EDPDK; SEMBIH A RE EF.

» FreeBSD* A [1#8 8 : DPDKI1.6.0Ml &N Z J5 ¥ fil T FreeBSD**F & EDPDKA [18 F - B * W
{EFreeBSD* | Z3EFI BEDPDK, 15 75X 30 -

« GARETREE (ASCH): AT RN
- BB T e (SRFIAEE) |, AR AELinux IR P RO %

~ DPDRAETNE, FUHIE (6457 LUAEDPDKIR B R Makefile i HIE T BAAIS AL 19
&) R

- B GER, DUIGHTIT R R 25 B — e ft -
WFRME T SO ERRIARTER -
« APIZ% . {RAVERDPDKIIAE - BRI E MhgmReSE i FRAIE S, -

« REIRFRPTERE . A T AR . SIETHA T DR, RoR T BEEMIhEE, HRETHE
KARfaT Gt ~ AT AN E AR -

249

dpdk, Release 0.11

4.1.2 fHEXFY

DUR OB k5 5 FIDPDK T % S FH R P AR 5E 115 B
¢ Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide

B MR

4.2 WA

ARETI4E T DPDKEE A — 12 R BHlA «

DPDK == 2 FbRAt2 220 B T DRodt i SO L A 3R (i — Ay (EUR SEBERORESR TP AT Ll AU A
R PR — oK, AR B DN AR BRI B DR - P H AT U DPDK e fit i)
JER AL BRI 3T -

i BRI 5 ZEAL, DPDKMEZR A& MFERAVEASE O Ti217 % - X DI R R X KRR)
R, B makeMECE CF, FELinuxF P 2 B4 5ER . — BEALFERIESERL, P AT Lodid B B 28
PEARAEE Ciapp . FRITIAEMGZ, (&5 —SLHMZE, GFRAREE . RKITREE . SIP&ME -
DPDK#& it 1 —E2app HI il FH A7 S 40 fr] (56 FH X LA PR 1) 2 H LRI AR -

DPDKZLHE T run-to-completefl SN FRARAY | F40E M AbFRAE £ VA F 2 B T Se s EC i BB RO SRR, HAE
FNPATERITETTS5ZHE% 0L . XFERHARAE, B Mg =ihm . AEHE W7
S R R A W b R I T RE TS -

TENRTCHERL B &, i i 8 Fring £E AN [R]core 2 [A] 528 1 SCRIVA 2., 3 AT LUK B SCAb 2)i 7K 2 A 7
(pipeline) - J/KLARTL RAFEAED B BOMT, EEZ AR HUTH AT REE AL

4.2.1 JFRIFIE

DPDKY H 3 Z K LinuxEA 5 KA R TR, fFlin— P82 1M wiELE . ILWEF - make LE - JrfEas
N DPDKZH #2212 -

) PR NGRS B R G R, X SRR AT U T O RA T B CAOEUR AL ERT -

B Linux H 7 25 [Blapphf, FFZHFlglibc/E . %7 TDPDP app, L/FHM 2 F/AEAHEZE (RTE_SDK &
RTE_TARGET) , XMW 28 &V E S iFapp L (B L& 1T

export RTE_SDK=/home/user/DPDK
export RTE_TARGET=x86_64-native-linuxapp-gcc

WATLIZ# DPDK 18R AARBUE ZE@IT AR HIEE. -

4.2.2 IEERCZEAL
PR IE D2 (Environment Abstraction Layen)$& it 118 F B2 CORFEE T EIMEA0TY, 15 RappMEL TR
IXEELHYT . EALIRMEAIIRSS A -

« DPDKIINEFNE BN

o ARZEBMEZHBEHITHH

o CPUFEAMMRE

o RGUNAE T BLANRE T

o RFHME

250 Chapter 4. 4it2#5r

dpdk, Release 0.11

o« ENER5IH
* PCLE AT [H]
o BREFAIVAIXZhEE
* CPUFHESR 5
o PITALE
o BEEME
- NHEEH
EALMH SEEE R IR TE SR Environment Abstraction Layer.

4.2.3 BOHM

BOHEM FE—RINME, AT et cERFREMEUINITE . OHG REZ BRI T
Firos:

Fig. 4.1: Core Components Architecture

N2 i [X & (librte_ring)
RingBUR EMIRE T — MM EZETEH, ZHEHTENFFOXRAHED - ML ITTWEAIIL TR T & T
ERASHE, EE5KREMNEE, MEAER. RingEZE Memory Pool Manager (librte_mempool) H A FE|,

1M Hringi? F T AR 2 (A 8 2 B A% B A3 BT 2 [I8 (E - RingZZ A7 WL S H A AT LS % Ring
Library »

TN 77 %5 # (librte_mempool)
N7t & 2) E BRSOt R EE N A7 A BL¥8 B3 H 3T 2 FIPOOL - B:1"POOL LA FRRME—HRIR, F¢ HAFH

—Pring RAFREZS IR AT B9 5 o Eabffit T — L H AR AR SS AnS B0 s ARG A 1y Gk A7 S B EhX T LLIRILE
TR ENLTBENFEE L. WA ECER RTINS Mempool Library -

W48 e L% 1 [X & B (librte_mbuf)
WU B E AR T 005 - BRI RIEE S, DPDKR FRE T 1 AT BEA# FH X Lo AR U B AR R A2 BT B -

T VH JE.38 5 7E 72 5 7 1R 5 38 1S DPDK FIMEMPOOLE B - 774 - BUFFEESR AL T #R SO iEREAUHAPL, 8
HIH Bbuff A TRAEEHE, IRICbuffF TRAFEMBIRIL . IR FEFSH Mbuf Library -

TN 255 B (librte_timer)

XA EADPDKHUT B ITTIR M T &R ARSS, NRERPHUTIR S - ERT 28 n] LU E BB R A A —
K. FREALSRME AR OREUERE ERTeh, H B ES M ERIEFREDGIL . BAES%E Timer Library o

4.2.4 DUKM R HIX IR

DPDKHJPMDIXEN L FF1G ~ 10G -~ 40G - [DPDKEE ML T LRI IR Mg, it adER2, ETH
WrAIEEZC o FEHHINZ 2% Poll Mode Driver o

4.2. ik 251

dpdk, Release 0.11

4.2.5 X FEIEFF

DPDK#E it T W54 (librte_hash) ~ S BIZKIEALAT (librte_lpm) FVEFEA T XRFEK LA - HFHNEEE
Hash Library #1 LPM Library -

4.2.6 MZPHE(librte_net)

XA EER ML T IPPIL A — L 5E X, DL — S)22 . Xlﬂﬁ SE X HBE T FreeBSD IPH RIS, 3 HA &
RIS, IPAHEZEE XL, IPVAFIIPV6 L ERLE L 55

4.3 A ERLZEAL

ERSEEAH G 2 O RS2 SR A AR A1 A0 DAY A7 2 (R) D7 (mIR B 1 0 o X A A 1 D9 APPAIIZE RS T AN RIEASE
HIRFIRYE - BALTSTIIA L R BCBEUR (A7 - PCIRA - FERTES - HHI 6 %55%) -

EALSE LA AR 55 -
* DPDKAINERIES): DPDKAEE FIRE FRERE AL — ML FIERE, DR =00

« CPUFANMEM S ECAL2E: DPDKAR (AL IR HAT BITH e B E Itz L, s gl — DTy —
o

o RGINFFAACL: EALSEILT ANFE XIS, Flanng & DRt TN g -
 PCIMEHEFHER . EALFEHE T X PCIHbIE 2 [B]) D5 [R)42 O

- REVARIIAE: HEREE, HERITH . REEESSE

o AHThEE: AT FRMElb AR AL BIERT - RIS

« CPUFHERHA: FTHRECPUIZTTI B —LERFIRINAE, TRIE HHICPUSCHRFHIAFME, DUYR NS BRI —
PEISCH -

o FRUWTALEE. SR O T I P A R A [R R -
HEINRE: SeftE O T E/BGHTE € FIEAE M B TS0 AL

4.3.1 Linux £ T HEAL

FELinuxH /7 25 (B EA35% , DPDK APPiE idpthread B /EH — 4 P SRR FZ 1T - K& HIPCHE B A bhiReA]
W /sys NAZHE O 2 N AZ 3R Wluio_pci_genericBligh_uiodf & BUARELM - linux N A% S0 EPUIOEFEE . W
IUIOfE B A& TEAE A A F mmap B ET ST A -

EAL# 1 %Fhugetlb{# Fdmmap3% [3 52 B BE PN 77 B 40 B - SX BB 4> TN 2 B BE 46DPDKAR S5 2, W Mempool

Library -

P&, DPDKARSS Z AT ISERHIIATL, HBEE SR EERERME AR, 810 HUTRICE S 9B AR ERZ
%, P—"Tuser-levelE 2 &L FEIETT -

TE RS 2328 1 CPURIES [BT 2028 TSC a3 18 i mmap Vi FH N A% BTHPET A 40 #% 1 S0 H) .
WAL FB T

WIUE AL BB 5 MglibeHI FF IR R B EUAT T - RE WAV RIS BRI, BT HRIEEE Xk #F
HIZEHE 7% @ A& ARCPURT L HE Y, AR5 A FF 46 Y FmainkRi £ - Core) ¥ 4 4L #1132 17 B Erte_eal_init()#

252 Chapter 4. 4it2#5r

dpdk, Release 0.11

O EHATE (ZBAPIIKY) - B3 X pthread I A (B B & UL 2 pthread_self(), pthread_create(),
Fpthread_setaffinity_np(BEEL) -

Fig. 4.2: EALZELinux APPERSE ARG ATHA L -

Note: W ZRMWIIAIL, FIANIAFEX A ~ ring~ NFFM -~ IpmF BihashF 55, WAERNBENREFFIIIRILH—FF
7, RPN . QEMPIR XL RREANE S AREZ 2N, B2, —BWRIsEms, X
KA G A LIME N 22588517 -

EDivS &

Linux FAPPICHHE SR — M B 2 #ARRISITE, BES% Multi-process Support -

N7 RS RN A7 93 B

REELL YN A7 5 BB BT hugetlbfs VRSP RGN - EALSEME T AR A O T HIBREA T
WRESENAFZEA] o XD APLFRII &KX BOESEZS A AR (B2 F AR -

Note: [PN77FIER {3 FHrte_malloc# R, &t Ehugetlbfs T REER TR -

Xen DomO3E KB 1T H#F

MEFNFEEBEEE TLinux NIZFKTIVLE, 981, Xen DomOFF ALK, Fr AER — NETHINZE
Hirte_dom0_memfN#E b, DUEEEF XN FRH -

EALf#FHIOCTL#% M H T8 & Linux A% Hirte_mem_dom02: FHETE E K/ NIAAZSR, F ML A R B
FFEHIEE - EAL{E FIMMAPEE FOORBREHX B NTE o« W T ISR A B, 78 0 T4 1049 28 3 o0 2 i 45
), ERSEPRE, BEfEHhE A AE2MINESE .

PCI iJ[a]

EAL{E FLinux N A% $& it B S0 R 45 /sys/bus/pei SR HATPCLE & EIINE - N AZ A Hluio_pci_genericH it
T IdeviuioX & & S Re/sys B0 MRS B IR SCAE B T U5 [RIPCIE & - DPDKAFA High_uiofS Rt 52 5t 1 4 [F] #Y
IR TPCUEZ & RIIIR] « X MRS EIRET A 2] T Linux NAZSE HE B uioFe i -

Note: ZHZmR AL HEZHZHEEATT, FRMEEIROVEE I 28 -

AEBERBOANMIE - 2R R RSNl AR A R BORTLS R LI, ERM T &1k
REAHAF R AT RE -

4.3. IAEALZEAL 253

dpdk, Release 0.11

H&

EALRRM T HEFEED - EBiIAR, fElinux MAEFH, HEE B L% syslogflconcoleH - 498, H
FARI LLE S (5 AN R A B S ALEIE B DPDK) H A DI RE -

B 5)

Glibc ML T — Lo KA THTENHERR(E B - Rte_panicEEA] LIF* 4 — 1 SIG_ABORTE &, X MEEH]
DA & 7= Hecore SCHE, AT LLIE TS gdboAe Nz s -

CPU %R 51

EALR] LUIZEZTTR EIRCPUIRA (ff Hrte_cpu_get_feature()F% 1) , HTHREH NCPUR -

PP 22 18] A i S

o TREAP I S B R AN A
EALBE— P A8 H TR INUIOB & AR ST LU I A I - AT LOE IS EALSE 09 B RO 5 R 1 i 3 F
CEM /R Bl R, B R EE AR PR P A - BALIRII - A RINICH I AR S B] FH [452 bR

Note: 7EDPDKIPMDH, T4k FGHERRAS S R I E], a0k £ BT I RIS -

o RX FHlT M

PMDJe (f R STICR AR e 8 A RURSIT B SR T IIT - 8 7 &N Eit & T RIBHR N CPUB RN
%, EERWF S AR EN MR FE . B TR R RIS, HiAR
ME—F

EAL#R it 7 FH - I sh # 0AH 2 AUAPL . DALinux APPR), HSEHARE Tepoll UK « &R A DL %
— PepollZL il , T 75 S5 F AT LAV N BT A 75 22 fwake-up S 4 SO FAR BF o S 40 SO AR 75 O @ IR AR
JEUIO/VFIOR i B L 21| € A h i m & £ . XS TBSD APP, 7] LUt FkqueuesRUE, (H& H HI AR K
.

EALAJIG L AT 1] B AT S SO RART Z R RIBRES R AR, [RIF R DS A 0 aa (e AR I 1] B AIRA S 2 (A R 5%
F, XFE, BALSEPR EHANFEETSE M & LR N, BRI sl 1 ST BB -

Note: - PRXFMWrHFIAI HFFVFIOR T, VFIOZHFL IMSI-X[A & - FEUIOAF , W H A H Al it
H=rmE, Fit, HRXFMIMLSC GEEREEEE) PHTFER L AR, REREHEERS -

RXH W7 FHAPT (rte_eth_dev_rx_intr_*) SESCER#E] « fEE - XA - HPMDANZHFEAS, X LEAPHR B &
W o Intr_conf.rxgFRIFFH THT 8% & FIRX T -

RAH

EAL PCI& & A 2B 4 BT RE & F TARRH ENICH; 1, LAFEDPDK ZMS % 1 - A LU FHPCle i & bk #fiik
% (Domain:Bus:Device:Function) % R L dRic B4 B .

254 Chapter 4. 4it2#5r

dpdk, Release 0.11

Misc Tt

FFEBIAIE T IR1E (1686F1x86-642844) -

4.3.2 NHEBHMNFF X H
PV N F BRI E IS EALBIX M IESEIRR) - DB AR 2 [T RERANESER), FrE N e — 1
AR TERE, HEMRRTER — SN BN 1F -

T, NFEXSRDESHTERBR RIED BE] — SRR BN AF X S8 KBRS 90 e H SRR 2 F —
— I F AR -

Rte_memzone i FF L FERCE G5 R, 7] LUE T rte_eal_get_configuration()#z 1 RFREL - @ 4 F i Al — 1
PR X 3R 223K [RGB A A7 DX R R A AT

N7 BE AT LUMTR € T B it AN 57 75 R 0 BE. (BRIAZcache line K/INKFTF) 57—t DL2BIRFE A
1), FHHANTO4FITRTE - AR AT DUE2MELE IG R/ NN T, X P& RO SR -

4.3.3 Z5&E
DPDKGE % il i fEcore L FIARE LUBE R AESSER EUIHEROTT 8 - iXEATIERERIRTE, (EAERERH,
Hikz RIE -

R YR B E S BRAICPURE AT IR R FE T CPUR TARRCR - M98, FeAT 1 AT Ll 7850 R FHCPURY =5 R /&
HAAARTIROR

il cgroupBR, CPURIEAE R LIRTT R BL, X fit a5 2RIt CPUttRE, (HRXES
I, DPDKUA B &R MR LR A LN Sk -

BEFELZMRENE, ERERERNCPURFINEREN CPUE AT AZCPUT -

EAL pthread and Icore Affinity

The term “Icore” refers to an EAL thread, which is really a Linux/FreeBSD pthread. “EAL pthreads” are created
and managed by EAL and execute the tasks issued by remote_launch. In each EAL pthread, there is a TLS (Thread
Local Storage) called _Icore_id for unique identification. As EAL pthreads usually bind 1:1 to the physical CPU, the
_lcore_id is typically equal to the CPU ID.

When using multiple pthreads, however, the binding is no longer always 1:1 between an EAL pthread and a specified
physical CPU. The EAL pthread may have affinity to a CPU set, and as such the _Icore_id will not be the same as
the CPU ID. For this reason, there is an EAL long option ‘—Icores’ defined to assign the CPU affinity of Icores. For a
specified Icore ID or ID group, the option allows setting the CPU set for that EAL pthread.

The format pattern: —lcores="<lcore_set>[@cpu_set][,<lcore_set>[@cpu_set],...]’
‘Icore_set’ and ‘cpu_set’ can be a single number, range or a group.

A number is a “digit([0-9]+)”; a range is ‘“‘<number>-<number>"; a group is “(<num-
berlrange>[,<numberirange>,...])”.

If a ‘@cpu_set’ value is not supplied, the value of ‘cpu_set’ will default to the value of ‘lcore_set’.

For example, "--lcores='1l,2@(5-7), (3-5)@(0,2),(0,6),7-8"" which means start,
—9 EAL thread;

lcore 0 runs on cpuset 0x41 (cpu 0,6);

lcore 1 runs on cpuset 0x2 (cpu 1);

lcore 2 runs on cpuset 0xeO (cpu 5,6,7);

4.3. FIEIERZEAL 255

dpdk, Release 0.11

lcore 3,4,5 runs on cpuset 0x5 (cpu 0,2);
lcore 6 runs on cpuset 0x41 (cpu 0,6);
lcore 7 runs on cpuset 0x80 (cpu 7);
lcore 8 runs on cpuset 0x100 (cpu 8).

Using this option, for each given Icore ID, the associated CPUs can be assigned. It’s also compatible with the pattern
of corelist(‘-1") option.

JEEALKIZFE S FF

LR P %E (non-EALZETE) EHUTDPDKIES E RN - Fnon-BEALZEARER | lcore id T84 R
LCORE_ID_ANY, EFRH—"Tno-EALZLEIERL - ME—1 _lcore_id - —E&ZE] GESfF H — 1 ME—IDE
R, —SeFEE R, ALEBIRGETIE, (HESZEIRE (ERSSMNFmE) .

PAX LR A R0 R) BT iR)

AIEEAPI
DPDKN % & # E 5 N T W 1~ & APl rte_thread_set_affinity() i

rte_pthread_get_affinity (). HMATEEMLRE LT XCHIEBR, BRRE&ESE R F
fE(TLS) -

IXLETLS 6135 _cpuset F _socket_id:
o _cpuset 1P1if T 5EFEFERERFICPUALIA -

e _socket_id T7fi# T CPU setfT7E FINUMAT &, - ISRCPU setH Hcpuld T A [E FINUMAT 5., _socket_id
Fi% E NSOCKET_ID_ANY -

EL0 I+ 7

* rte_mempool

rte_mempool fEmempool F 1 Fper-lcore’% 77 - X Tnon-EALZ 2 , rte_lcore_id() JC %K [H
— N EEME - It , Hrte_mempool5non-EALZL 12 — & fff B B, put/geti® 1F K5 58 i BL A
HJmempool%Z 77, X 155 M E ¥ & A E BB 28 - 45 & rte_mempool_generic_put ()
rte_mempool_generic_get () A] LAFEnon-EALZAEH 5 H H P #E FISMRE T -

* rte_ring

rte_ring SCFF A7 B NN Z TH B8 5 HEABRIE - ORI, IXREIEIR 1Y, 3X (15 rte_mempool#/EH &
eI Y -

Note: “JEiB 5" BIRE:
— TE45 7€ Wring LA\ A #RVE HIpthread N RERE 75— 1 7E R — P ring_E A PA Bpthread?t 5
— TE4A REring b5 HE G R B pthread IS BERY 575 — 1 7E [F] —ring L 8 H BA A pthread?t

GEd AR T REE RS — MR B eSS, FIESE— DR FRGORE Ik - soh, WRE -1
FERM SRR A I LR 30, B A REE AL -

XHANBEREAEEAE, FEY, HF—Dcore LRIZ LIRS, FFEAH NIFHENL .
I ERTLHTE— R A& EE R —HRERIEDN -

256 Chapter 4. 4it2#5r

dpdk, Release 0.11

2. BRI LNHZ AT H/ZHTE], ZRAE RIS # 2 SCHED_OTHER(cfs) - FI P #525705E T i

AEHLZK: -
3. ‘EANREH A SR ES & SCHED_FIFO 5 SCHED_RRFIZ AL 7= /% 18 H & -
e rte_timer

A AVFFEnon-EALRFE IE1T rte_timer_manager () - B2, iFFnon-EALZFE [8 & /5 IFERS
E

* rte_log
FEnon-EALZFE [, %A per thread loglevel Fllogtype, {E Eglobal loglevels] LAf# A -
* misc

TEnon-EALZFE AN Ffrte_ring, rte_mempool Flrte_timer A JE IR G 1TE B, -

cgroup#= il

PLUR RcgrouptZ HE (5 F AO T BLOR B, £E R — M2 (SCPU) L MR F2 (10 and tHHUTEIE G0 - FATHAE H
H50%ICPUTHFEEEUE BIIO%RIE L -

mkdir /sys/fs/cgroup/cpu/pkt_io
mkdir /sys/fs/cgroup/cpuset/pkt_io

echo S$cpu > /sys/fs/cgroup/cpuset/cpuset.cpus

echo $t0 > /sys/fs/cgroup/cpu/pkt_io/tasks
echo $t0 > /sys/fs/cgroup/cpuset/pkt_io/tasks

echo $tl > /sys/fs/cgroup/cpu/pkt_io/tasks
echo $tl1 > /sys/fs/cgroup/cpuset/pkt_io/tasks

cd /sys/fs/cgroup/cpu/pkt_io
echo 100000 > pkt_io/cpu.cfs_period_us
echo 50000 > pkt_io/cpu.cfs_quota_us

4.3.4 NEFHIE

EALFEME T — P malloc APIH T HiE(EE K/ NNTE -

XAPIFY H 2 FR BE2R LlmallocAIThEE, LA #F Mhugepage T 53 BE N A7 /7 N A2 748 - DPDK APIZ
EFM 48 T HKIDIGE -

WE, XERRB P ELAROZ ARG A AT, RO E T EE, 7 BAE D BOARE U 12
RO T BERIE . (B, M1 IERCE R A -

¥ 258 E S W DPDK APIZZ% Tt Hirte_malloc() bR ELFHIA -
Cookies

4 CONFIG_RTE_MALLOC_DEBUG H &K, S EMANFEEERFFE, XFBH TR BNR A% X i
T

4.3. IEERLZEAL 257

dpdk, Release 0.11

X FF AINUMAA) 3R

2 Orte_mallocOff A—1MXFF 550, %S EUH T KA ZAE AR BB X 57 B9 N A7 X 386X B 20 70 22)
7)o

E L FNUMAR R 58 £, Xfrte_malloc()%Z 1 i F R 3R [B] 78 8 F 28 2L W core T 78 B 36 18 b 4 B RO TN A7 -

DPDKIL ML T A —2HAPI, LA FAENUMATEE F BERE B9 NE, 53 90 A — TNUAMEE /Y
N

ek

XA APLETE IR ML 7 225K (lmalloc DI REF R IR IR A «
N T BT LR CEE, AN AR PR BRAE T, RO AR -

Malloc/ZE H PR BB 5 A P FhER 4510 2R 2 .
* struct malloc_heap - FA T 7E 518 L BREZ AT B N7 25 1A]
« struct malloc_elem - J& A3 43 BE AR A2 (B ER BR O AN BL

Structure: malloc_heap

HEsE I malloc_heapH TEH G MG LAVF HNFZE - ENE, B 1PNUMAT GH— PSR, Xn
VFRATTIRIE L ARRIZ T FINUMA T AoV AR P ECN Y - BIRIXFF ANBERIEAENUMAT G LER A, B2
EFHA AT S A B SR T R B R

HELEHY S H R T BO DR R a0 T

* lock - T ZBOR F AR HERI VT R] BUE (I BERRERBRE R 0T 8], Ff TR/ ZE— Bk EZ A
LRAE R AL PIZBE SR

« free_head - T8[71X > mallocHE)%= R4S R BER I — P ILHE

Note: 3ftsHimalloc_heapt R2IRERERMIAESR, B KT ERRBERAIZS, fI1R2 8,
EERAT, S R SRS L fres AL -

Fig. 4.3: Malloc/Z "+ malloc heap F1 malloc elements -

Structure: malloc_elem

HdEsE i malloc_elem HIIER N FFERADE L4540 - ELL=FARIBT M, 1 EEPR:
L AR — DR HENFERILER - IEH FEH]
2. AEANAFRNFETE .
3. fE NS RERRE

258 Chapter 4. 4it2#5r

dpdk, Release 0.11

LE) P EL B B 5 VA 40 T BT

Note: IR —PFBUYHE LR = ANHEZ —H AL, WA LUBSON N F B 0L N B AR E LHE. §
, WFHEFREL, HF “state” F “pad”FE EHHBNE -

* heap - ;X MEEHRIA TIZNFFRNIB RS . EHRATEFRONGFR, SMBITHRE, KB
HIER IS INEIHERI S R S A

* prev - XN FRE TR A R EUX 4 Bimemseg UK TLHE « MR — DNFFIRES, ZfREHHAT5IH E—1
AR, REE—PHREGHRETW - WREH, MRS R E FE R AR -

* next_free - X MEHH TR ZWRINZERAE R . THTEFRNAFR, £ malloc() HAHFHT
=P EERZHRFE LR, 1E free () WEFHTRHANFIRFINE]SHEER -

o state - ZFEALIE = AIE(H: FREE, BUSY BY PAD . B D EIERIEH NEROSECRE, BEEH
TR RGN RS IR E TS R RIS, B, BETX5FRRA], BN AEEE s Rt 7 NE
ARG FFIR4L -

FEXFIEOLT, padsk HT € MR A EFRmallocTEE 3k -

XTEERALEN, X DFEER BUsY , ERRA LR EHRBIL memseg 45 R LI HE
BRg H B R 2 R -

o pad - X PNFEOVRIFIREIIEFTERE - FEIEFIKEMEO T, ERRmE kMM E, b R
JEIXET st Bl Emalloc b & EIRHbAE . FEHTERIKERRS, FREMERKIE, HAELLLE R
b 2 SERR R SL R R -

o size - BURRHIAN, BIFELTAES . W THEREN, XMRNFEREEN0, BRMRMEH . T
IEERAIE R AR, AR AMEEN “next” F8ET, DIRRTN —PMRIVFENE, 7 FREE 150
N, ATLAEFHP R

HIE T

On EAL initialization, all memsegs are setup as part of the malloc heap. This setup involves placing a dummy structure
at the end with BUSY state, which may contain a sentinel value if CONFIG_RTE_MALLOC_DEBUG is enabled, and a
proper element header with FREE at the start for each memseg. ‘‘FREE** T & #75 I EmallocHE 125 A 51 H -

XN AR F A A 2K {LlmallocTh B B bR B HT , mallochl Z08F & 45 N H L B2 K 5] lcore_config 44
T, I E 1% &2 FINUMAT & - NUMAT 5 R E RN S 8015 45 heap_alloc() "M%, AT RIS
‘“malloc_heap GEAH - Z5R5ISEHEF R/ KRB WF XA A SEL
PREL heap_alloc () FHMEMEMSMER, 2B —MEH TINERPIAR/AD « W55 77 N FH R AR AN
Tk
YOZRFIHAENZRITEN, TR MG H AR . RIRIEZIEH Z TN F R a1 TE
7T — T malloc_elem3k&B . HTHFFRAANER, LR LANERTRSASHNZE, XKSFHD
TR

1. *@Eﬁfﬁﬁﬁégﬂ o WREIAEEWA, Flan> 128 F7, HMASHITERFHSHE . B, UXZEE

RTR=E]) o
2. BT R WBAMIZE - RERGHEEIRDN, <=128 F71, BAFHERL, XESZHEBEIR
o HE, WRSEARK, LR TERE S -

MNIVE TLZ P RBA RN SN TFEAESNER, SHERTIE TENER/NE, FEBE
HTTE A “prev” FEHEE MBIF QRPN TEMNE -

4.3. IAEALZEAL 259

dpdk, Release 0.11

BB
SREIUNAE, ReE AR OT IR AR EH %8 A free B - MIZIEET FIME malloc_elem SEHAIA/N, LUK
BNFRITE LI - WX KERRELE paD, A2 —BiHEpad K, DURGEE N RAVIEFITE L -

MIXATEERK A, BATIRIGR A 3R B 7 Be BOHE B0 T8 B Sl ORI A L B, LUSCFS [i — D TR AIFRET,
Hilidsize 7B, AR T —PICRIFRE - XEWRERNTKEASE W M AELEE FREE AR, Bh
fEATER S A FH R — R -

4.4 Ring %

MR IXSCHRFAINE TR - rte_ringd P ANEEH LRANOEER, EEAWTEE:

o JeitsE (FIFO)

o RAK/NEE, TRETFEERT

o TCPISEIR

o ZIHTEBATH B E HARIE

o ZAEFEEEAETE ANBAERIE

o SLEMPA - WRAT, FIEEHERTR LN, Bl 2 AT

o HLEAPA - WA, RIEEBMERTREAIN, B 2 HAM

o A PN - nERTERE HECHE HIBARIN, TUPRF B R AT R B 6 5 HiPA

o WRNBA - IERFEE OB H AR, PR K AT ARAEL B X R AR
TR, X PEIREMR ST

o HR, HFFE—sizeof(void *)HJCompare-And-Swapf§ <, M EL W E L g4

o 5E2TWINIIEE

o BN ALE AN HEAERIE . BOTEE RAFMEAR TR, B2 DR RETH R A& 7= 4 T HEREA S A —
FEZ Hcache miss - MHN, & HBARARFFE AL B0 SR A -

B
« K/NEE
o KEringfHHLTHER, HREZHIANRE, DringE B S0 MEE -
R AEH T AF B I A2 7= 38 AT 2R SRR AN IE E T 7R T — DA MRS Fring «

Fig. 4.4: Ring 4514

4.4.1 FreeBSD* # Ring HISLH 5%

FreeBSD 80705 740 MUH, HRHE] T LMK ERWTEFF (2 DInter WS FRA T) -
* bufring.h in FreeBSD
* bufring.c in FreeBSD

260 Chapter 4. 4it2#5r

http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/sys/buf_ring.h?revision=199625&view=markup
http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/kern/subr_bufring.c?revision=199625&view=markup

dpdk, Release 0.11

4.4.2 Linux* FHTCH A& X

S Linux Lockless Ring Buffer Design.

4.4.3 KHhnzhee

Name

B ringfEME— R4S . H P ANTTRESIEM 1 B A ME & fring (4051 2508 Frte_ring_create)iX 1
fi&, FHREINULL) -

4.4.4 FHZHE

Ring & i FH T AL 3 -
 DPDK app 2 [A] % H.
o T NG FE

4.4.5 Ring Bufferf#tr

RTT S Wring bufferfi217 773 - RingZE5H0H WAL RBIRFHEM, —HWETERWH, —HBEHERE R -
PR B8 #FR N prod_head - prod_tail - cons_head }¥ cons_tail -

BAEUCE Tring®I @ IR, B—MENZS . A TEONEER ETTFRR, RingfEHRNAERT
WEZE

L-NE V- ANUN

KFTNET —DEFE MAINR I R AE 0 EARF, 247 % LR F5 ¥ (prod_head and
prod_taiD#ER, HE—PMEFE .

WA S R prod_head F1 prod_tail ¥& 7] 4 [F] AL -

ANBREE—2

B4, ring->prod_head F ring->cons_tail ¥2 H| B KM B H o *prod_next KM EIG W F—1TTHE, B

&, MERMENRE, 8 TILPITER -
WA Rring FH R BE RS A A RE TR A0 GBI K B cons_tailRFARE), LR EFEIR -

Fig. 4.5: Enqueue first step

NN ;2

I RIEMEF B ring->prod_head, LA¥E1A]5 prod_nextfH[FIALE -
¥R RIS G TR £ 4 A I 2 ring - -

4.4. Ring JE 261

http://lwn.net/Articles/340400/

dpdk, Release 0.11

Fig. 4.6: Enqueue second step

N e —F

— BN RIS ring® , ringZEH Y ring->prod_tail FHAEL, 81815 ring->prod_head FAFRIFIMLE - A
PARRAESERL -

Fig. 4.7: Enqueue last step

BAVH B35 HBA

EFINB—E T E Mring FEH ST S AVE O - FEARFIH, HETE T E L ETa%t(cons_head and cons_tail)#
B, RE—1HETRE .

IR &2 Rrcons_head F cons_tailfi& Al HH[F i & -

HEAE—

B4, ¥ ring->cons_head T ring->prod_tail*SH| | HEZEF - *cons_next AH A FEIRMERI T —"1TC
£, WAEEMEHNB TR TILITTE -

W ring i H BRI S T HEAGE ISR Eprod_tail), FFIREIEHR -

Fig. 4.8: Dequeue last step

HEASE =

PR B ring 54 ring->cons_head, LL¥S W cons_nextHH[E AU E -
Fe1m] HBAKT 52 (obj1) FOTRET# B HIEH F ¥8 € FFeEHH -

HBA e —
&5, ring™ Hring->cons_tail B ¥ M ring->cons_head H[F I & - HIFAIRIESEAL -

ZHEFE N

2R 1 B R A AR T 2 RS Al ring R NS RAB L o EEAREIHF, UBECAE 7R L B $8 T (prod_head and
prod_tail)

WA IR A A2 R prod_head F1 prod_tail ¥ [A] AH[F] AU & -

262 Chapter 4. 4it2#5r

dpdk, Release 0.11

Fig. 4.9: Dequeue second step

Fig. 4.10: Dequeue last step

ZHETENE—
FEETFHBIW core L., ring->prod_head . ring->cons_tail # L E HIE|FERE & - HERAL & prod_next¥s]

=1, SEEMEAER N RR L TE -
W Rring F%E £ RS [AT ABNGEE R Eeons_tail), FfiREIFE R -

Fig. 4.11: Multiple producer enqueue first step

ZHEFEANNBE D

P R Kring55) H ring->prod_head , FE [Fprod_nextfH R FIALE - HLERVESTH L BRI R HR(CAS)FE
4 IR A LUETFHEAIER T 20U T DU N 1E:

* W1 ring->prod_head 57 #1 27 FEprod_head N[F, MICASHRIERNL, HARESE —SEFHE -
o &, ring->prod_headi% B} A M AL & prod_next, CASHEVEALTHHAREL N — Db .
EEH, corelUITHIN, core2 EHTED) -

ZEFHENNE=H

Core 2fACASTRIER TN E A -
Core 1 H 1 —1"%1 5 (obj4)Ering - - Core 25 H1—1> % 5 (0bj5)Ering b

ZHETE AN

B core 7L EBAE BE T ring->prod_tail - Hring->prod_tail&§ T prod_head KHIZF &, core A REFFIE - Al
A core IR, #HiFEFEcore 1 52 -

ZHEENNRE—F

— Hring->prod_tail#fcore 15155, core 2t R 551, ARVFFEHF - Core 2 L FERL T #4E -

32-bit B & 5|

FERIH AR, prod_head, prod_tail, cons_head 1 cons_tail B 5| HET L FR - (HRE, FELPRSLEIAH, XL(E
~2BEEOF size(ring)-1 Z 8] « RFMELE 0 ~ 2732 -1 2 (8], HFA U5 IF]ring AN S, FoAl T BRRG AT TAOME -
32bitIE A R IRE QN SR I 32bitITE X R G HRER: B ehHidT2/32 1% .

LURREM BT, T B AR R 5 | (B0 T fEring FP A -

4.4. Ring JE 263

dpdk, Release 0.11

Fig. 4.12: Multiple producer enqueue second step

Fig. 4.13: Multiple producer enqueue third step

Note: 7 7 f{LUEEH, M 16bIGRIE, T AE32bite FIL, WP ES|HEE X H16bitTHFS8E, 552
150 R FI32bit AT 58U I -

X ring 1,8 110005 5 -
X ring 151253615 4

Note: Jy | (T HEfF, Fofi17E LG T P £ FHR65536#1E . FEEPRBUTHEO T, XMEBERIERZ R
M, E2, S BT

HADIELPRAUELE F= 2 FITH B0 8 Z (A BE RS 7RO ~ size(ring)- 12 18] o FETHXANEME, FATAT LI R 5B
TIE, A2 R H A1

FEATIBOL T, ringH BIRF SAN S KRS RERLE 0 ~ size(ring)-1.2 8], B — M EERIEC S H:

uint32_t entries = (prod_tail - cons_head);
uint32_t free_entries = (mask + cons_tail -prod_head);

4.4.6 %KY

e bufring.h in FreeBSD (version 8)
e bufring.c in FreeBSD (version 8)
e Linux Lockless Ring Buffer Design

4.5 Mempool /%

TR 2 [GE /N R AT BL S - ZEDPDKHY, B HAMME—RIA, I B F mempool # 1/ 5 17 i 25 PRI
o BN mempool BRI EEE Tringf) - EHeHt T —LEA[1 AIIRSS, Wper-coreRAFFIN TR, DABRALRAS 5
WHETE, 7R 5) Y 2 IDRAMEUDDR3#EE L -

IXANE R Mbuf Library £ -

4.5.1 Cookies

7 i #% ,(CONFIG_RTE_LIBRTE_MEMPOOL_DEBUG is enabled)™ , ¥f 7€ Bt 1 JF 3k 1 45 BB &b iR
flcookies - A ECHINT SE & RIPFEL, DA B SR Ih X i H -

Fig. 4.14: Multiple producer enqueue fourth step

264 Chapter 4. 4it2#5r

http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/sys/buf_ring.h?revision=199625&view=markup
http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/kern/subr_bufring.c?revision=199625&view=markup
http://lwn.net/Articles/340400/

dpdk, Release 0.11

Fig. 4.15: Multiple producer enqueue last step

Fig. 4.16: Modulo 32-bit indexes - Example 1

4.5.2 Stats

7 18 i1 #% 20 (CONFIG_RTE_LIBRTE_MEMPOOL_DEBUG is enabled)¥, M i/ R BU/BE A58 THE BT
FEmempool & R H o BEiHE B &per-lcore), #ERH L VR GETITEES -

4.5.3 NEXFFAR
WRIERE AR B, W] LUSE ERT G 2 AR IS o 7o KK R . HE MR RG-S S 6T
REIEREE b, FENERHES], DUESCIl TG 85 56 .

P M EATLIRE R B o R, SRR T N E R « B (U5 R SCHORT64B, BRI AT LU L AEAN R
HIEE Z A9 et AR ia it I AR T BE -

DIMM .| Arank®% H & 7] 15 7] DIMM 52 B 58 07 70 fO M - DIMM & & FIEE - T 1t AR %R
Hrank NEEWE R ZE 0] - DIMM_EFIDRAME A FI4FR AT & 0 55 S rank 3 B AH ¢ -

2z fTapphf, EALATATIEIR ML 1IN A 7738 E Mrank %Y H HIRE

Note: it & T IASE E AL BER I N B EEH -

R RIDIMMAA SRR 7 BI N E BT Fig. 4.18 X Fig. 4.1 -
EXFE T, BISIEFfE 4B AL T -

Intel® 5520:0: H4HE =M, Wi, ZERZSEE N T, NWRZEAFTFEET - (BT KN Hn x 3 x 64BH)
Hr)

SO EBE, AT LLTE R A LT EE -

4.5.4 KHZTF

HECPUMH R A HE, HTE T Ecompare-and-set (CAS)HRIE, BT LA A5 7] 77 b A 23 PR % 1o [X Rl A
P S o N T BERNT NAE Hiring BV IRIE SR K S, N7 ML BiL a8 AT LAZE$ per-core cache, Ff i SLFR A 771t
r B RDEE RIS AN N ring AT HEEE K - B X F T, B core®B AT LADTIA] B O 25 RN R4
7GR | NENERFETE, WA TEE LS KX G E AU 22 b itiring, B0E HEFZR, M
LRt HR R ECE 2 X5

RIRIXFIRE —Lbuffer] BEFE R Lcore IR AF LT ZEHPRAS, {HZcoreP] LBV M H B %R A T
PEBE L AR TT .

AR — N E@per-core%&ﬁﬁ&#éﬂﬁ o A LATE Q@S 5 FH /25 P LR A7
SAFR/PDIBRARERFSEE, FEHENE LHI(CONFIG_RTE_MEMPOOL_CACHE _MAX_SIZE) -
Fig. 420 B8 T —MEF#HE

Fig. 4.17: Modulo 32-bit indexes - Example 2

4.5. Mempool 265

dpdk, Release 0.11

Fig. 4.18: Two Channels and Quad-ranked DIMM Example

Fig. 4.19: Three Channels and Two Dual-ranked DIMM Example

AN [A] Fper-lcoreN #F 2% 77, N FH 2 F 7] L@ i ¥ 0 rte_mempool_cache_create()

rte_mempool_cache_free () Fl rte_mempool_cache_flush() G| EHIFEZHF - XL
F’Tﬁﬁﬁﬂ"}?ﬁﬁﬁf DAk B LA rte_mempool_generic_put () 0 rte_mempool_generic_get () o

O rte_mempool_default_cache () IREIEBOANTEF - SEINRFMER, APEN GRS E L
FHIEEALZTEfFH -

4.5.5 Mempool fJ#k

X VPN RS, WM 08 E B AR G AN 7 i B B 5 DPDK — &2 8 H -
mempool A EELFE P 77T :

o INIIHT I mempool B EFCHD « 31X 2 13 8 llmempool opsfUiY, F1#] MEMPOOL_REGISTER_OPS 7%
HRSLHLAY -

o [HFFTFIAPIA A rte_mempool_create_empty () X rte_mempool_set_ops_byname () T
BIEEFT A mempool , FF il xE F P 2248 FH A AE -

FE[F]— N R P o] ge 2 48 LA B fmempool b < AT LUfFFH rte_mempool_create_empty ()
Bl if/l\%ﬁlﬂ"]mempool, SRIGH rte_mempool_set_ops_byname () Ffmempoolf§ 7] #H 5% H mempool Zb F
[EE (ops) LEFMA

RN HBEREFARSHREMF HIHA rte_mempool _create() APIF B, B BIAfF H #
TringfJmempool {bFH - X LENT FHAE P F5 EE IR #T i mempool Ah 3 «

X T ffF rte_pktmbuf_create () O A I =R = 5 — 1 B B#& &
‘B (RTE_MBUF_DEFAULT_MEMPOOL_OPS), FiFR R 5 — 1 mempoolZbFE -

4.5.6 FHI

TR EERERI TR D ECAS ROZE A SE B . DUN 2 — e 55471
* Mbuf Library
* Environment Abstraction Layer

s EMFEERFHOEERE RIS, FRHEARRFE I AR

4.6 Mbuf /%

MbuffZE #& it T H 1% A1 B ltmbufs) T i, DPDKRL 2 /7 15 F X Lbuffer 7 i V8 B & 1 - 1H B & i 77 if
fEmempoolH, 5 Mempool Library -

Fig. 4.20: A mempool in Memory with its Associated Ring

266 Chapter 4. 4it2#5r

dpdk, Release 0.11

B L5 rte_mbuf] DU W 44 B8R flbufferal 2 18 F#2 #7H S buffer(FHCTRL_MBUF_FLAGYfS§7R) - 3 A] LA
PR HARA . rte_mbufk¥ MR AT 6E/N, HET A HW N RA T, *EHNFEATE - MRET
W

4.6.1 Packet Buffer ixit

F T FREEURE O BRI UELER), R T MO !
1. fEE N EfEbuffer ik Ametadata, 5 H IR E SR AL EUE E 2 /N X 45,
2. FymetadataFIFR SCEIE 7 B3 FH A 2 F A7 i buffer -

F— MR LR M AT E - M RER B RIEOE BB iR . B, FMTEEMRE,
F A VFR TR I 7 Bl S RO & X AL SE 2 0

DPDKIEFE [55 —F777% « Metadataf 38 AITH B R, KB, SIEGERIT LR E BSFESHIEE, LR
AP B AR I mbuf S5 TR ET -

FH T M 28 508 B buffer fOTH B 2R 0 AT LU BTG 22 DR DORRF 52 BEIR B RIE I . rEEd F—1
F B AL — I mbufZH A jumbolil, X FHIE L -

XT84 BE Fmbuf, EE 146 59 X 48 EbufferZ j5 RTE_PKTMBUF_HEADROOM F- i N &, X ZELB X!
5T - Message buffers o] LAZE RETH FIANE SRR HIE B, RO, FHHFEE . Message bufferstd A] LU
FH#bufferfg B 2R48 m HAth 1 8 2% b AOEUE 7 By el A B PR 4544 -

Fig. 4.21 and Fig. 4.22 &/ T R P—E35% .

Fig. 4.21: An mbuf with One Segment

Fig. 4.22: An mbuf with Three Segments

Buffer ManagerSZ 8l | —2HAH 2 FRifEAbuffer s[RIV E SRR M 48 E0E 6. -

4.6.2 F#fiE7EMempool+ ff)Buffer
Buffer Manager 1 | Mempool Library 3 H ibuffer - PR T BPR B Sk R A o A B E B b A

TL30EE - mbuf P B & —1NFB, ATERRENI N BRIEFHRE . HHH rte_ctrlmbuf_free(m) B,
rte_pktmbuf_free(m), mbuf#FEHE|FERATHA -

4.6.3 13 K%L
Packet J% control mbuff43& BRELFH APt - 2 Orte_pktmbuf_init() & rte_ctrlmbuf_init() #4Hmbuf45#4 # [

FUF R XEFE—HAEEASHA B (WmbufR B . JF - PR htEs) - R EUE
BIFERF/E Frte_mempool_create() BRI £ AT A HE R ELLA H -

4.6.4 HiF NEEIH mbufs

S — S HTmbuf TR EH PR E M N o T EERH B Ambuf, TEE— 1B, KENO. &t
X B ERE MR B e H, LUEFESbuffer 25 —%F 77 (RTE_PKTMBUF_HEADROOM) Hheadroom -

4.6. Mbuf J# 267

dpdk, Release 0.11

T Titmbu 5 R & 5 H %[5 B R 1A Afmempool - - Zmbuff] N &8 7E — M (1E 2 — > = 1H BJmbuf)
B, mbuffSNEASPIEE - FAEIE R BRI I6 1 B BN ZAEmbuf 7 BCE BET 4R 1L -

BRI & 2 A B EdE Embufhy, ABATTEHRE, HREIF] IS mempool «

4.6.5 #1E mbufs

XD FER ML T — LE R RO B mbuf VR DIRE - 4.
o REEHEKE
o FREUIE M B T 16 7 B HFEFT
o HoEHIE AL
o BUEZ R INETE
o JHIBRGR X I3k B (rte_pktmbuf_adj())
o MHIBRZE I X R B B (rte_pktmbuf_trim()) FE4H(E E1E S %] DPDK API Reference

4.6.6 TTHIEE S

15 B H MW 4 X SN A2 750 R H 708 fEmbuf i {F S AL BB R B - 540, VLAN-~ RSSHE A 455 I Poll
M()dc Drwc or) XIS AR B S ES -
mbuf D E S AR TG O AR SCEEF mbufE H - X T AImbuf, RIS — P mbuf F X N TTE R -

B4, XFTIEEEISSSEIE (L, RXMIFEXFHEH, B EEMLE, VLANVRMCFIPRISAHAE ETX, N
AT IR LU — Lo bR R FEAATE 4 - 0, PKT_TX_IP_CKSUMAGRE U EIEIPvAR IS AT

PLF 7 4571 15 B A] ZEvxlandsf 28 e pEUHE &2 LB E AR PITXETEL: out_eth/out_ip/out_udp/vxlan/
in_eth/in_ip/in_tcp/payload

o i Eout_ipAIRTIS A

mb->12_len = len (out_eth)

mb->13_len = len(out_ip)

mb->0l_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM
set out_ip checksum to 0 in the packet

Bl EDEV_TX_OFFLOAD_IPV4 CKSUM S #E{Efd {315
o 1T ®Hout_ip F1 out_udp ARG FN:

mb->12_len = len (out_eth)

mb->13_len = len(out_ip)

mb->0l_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM | PKT_TX_UDP_CKSUM
set out_ip checksum to 0 in the packet

set out_udp checksum to pseudo header using rte_ipv4_phdr_cksum/()

Bt EDEV_TX_OFFLOAD_IPV4_CKSUM H1 DEV_TX_OFFLOAD_UDP_CKSUMZFF7ERE ¢ Fit 5 .
o I Ein_ipHIAE A

mb->12_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->13_len = len(in_ip)
mb->o0l_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM

set in_ip checksum to 0 in the packet

268 Chapter 4. 4it2#5r

dpdk, Release 0.11

XLIEGELL, BRI2 lenRFE - BLEDEV_TX_OFFLOAD_IPV4 CKSUMY fEMITHE . F&E, A
B INLAR IS AN OB 7 A] LT AE -

o it&in_ip 1 in_tcp AR FA:

mb->12_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->13_len = len(in_ip)
mb->0l_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM | PKT_TX_TCP_CKSUM

ERSCFBE in_ipIRAIHO
i rte_ipv4_phdr_cksum () ¥ in_tcpRIEFEE NHL

X 5 F HM2x ®, {H ZER2.lenfA [. F EDEV_TX_OFFLOAD_IPV4_CKSUM #
DEV_TX_OFFLOAD_TCP_CKSUMFFEMFSCIN - F5, HASMBLAREF N0 BE TAE -

» segment inner TCP:

mb->12_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)

mb->13_len = len(in_ip)

mb->14_len = len(in_tcp)

mb—->0l_flags |= PKT_TX_IPV4 | PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_TCP_SEG;

R Ein_ 1ipEFH0
Frin_tepfIFREE NSLES, MAFEH P KE

fil EDEV_TX_OFFLOAD_TCP_TSOSZFFif L - FE, FALAREAIHOR A FETIE -
« it%Hout_ip, in_ip, in_tcpAIFCIEH:

mb->outer_12_1len len (out_eth)

mb->outer_13_len = len (out_ip)

mb->12_len = len(out_udp + vxlan + in_eth)

mb->13_len = len(in_ip)

mb->0l_flags |= PKT_TX_OUTER_IPV4 | PKT_TX_ OUTER_IP_CKSUM | PKT_TX_IP_CKSUM | _,

—PKT_TX_TCP_CKSUM;
WHE out_ip WEFIHNO
WE in_ip EHMHNO
f#frte_ipv4_phdr_cksum () X &Ein_tcpBEF RN HhLER

fic EDEV_TX_OFFLOAD_IPV4 CKSUM, DEV_TX_OFFLOAD_UDP_CKSUM H
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM 3 ##fi {523 -

Flagetn it (& X #Embuf AP #(rte_mbuf.h) FH FM A - B Z1FE 4 E B L 7] LA testpmd 7657 7l

s&csumonly.c) »

4.6.7 EH¥: K |6#; Buffers

HIERMWX BRI ERMAL . EEZM X AT AR TEREZWX, B XTEH MR e &R
W5 — P BRI X EEE - XERIEEFEE SIS0 BB N RIRERK, By R X itE
k2 i X B AR R R B AR 1O B -

YN rte_pktmbuf_attach () BRECRZ M XN EREZ XY, 5% X 28 ARl i X .
PMRMXE -5 AT B, Y ERRPXHIN— AR X, B X BRI
o KUK, BUREEEMXHEORN, BEREMX BRG] ATHERE - RERS| T EE 0,
HERZ MR, FoAEANEER -

WHE ARG X A FEES LGRS . &%, EESWXMAAHIE R — RS HX . Z R
XA i gl R e XB (BB IIEICLE T) |, Rifif5rte_pktmbuf_attach() HEPRFAMIIZICE - HIK, H
T X AR X, E5FITEE T, W E AR A — N EEEXEI . &E,
AIRERF BRI X BRI E WX (RIFEEEHOET) -

4.6. Mbuf J# 269

dpdk, Release 0.11

IR AT LU B #E 2 AOrte_pktmbuf_attach () Flirte_pktmbuf_detach () PRECE VA N/ 9 E#EIE, HEW
15 F o 1 2 Hrte_pktmbuf_clone () PREL, X PREUA BRI ELR P X B IERRRIGAIL, Al e EA £ B
ZRIIX .

T A 2 i X AN RO SE PR R AR T, (2R 1 X A N A N B E DD TR B D RO A TH FE - AT UAE L
%ﬁ%ﬁjﬁﬁﬁ?qﬂﬁﬂﬁﬁ?I‘Eﬂ%?ﬁ‘@ XA (AR R XA GIRE]) BTt toRGl, Flinpvad
BN AR R -

4.6.8 Vi

VAR (CONFIG_RTE_MBUF_DEBUG/##E) N, mbufZE T REAEARATH/E 2 BT S B MR AT (an g v
XIEE .« RAEIRE) .

4.6.9 FH A
BT 99 4% 7 FEL A PR R FF mbufs 3K (456 P 48 BUR 6 -

4.7 BiEIKE)

DPDK 3% Gigabit - 10Gigabit 32 40Gigabit A1 HULIOF I IKEH AR T
IR BhAR 7 (PMD) HE 1T 76 P 23 (R 2 1T OBSDIK SR (L MAPIAH AL, DARCE %)4 H IPAF -

HAh, PMDERS A RX A1 TX #5A%F, BEASHEEM PR (FEERSESRW RSN 724, XA DURIEZE
F P23 (8 N AR s B, AR R AR AL . AR BPMDRIE SR « B RN S R e, FH 043
T LA M PMD RN 41 F API -

4.7.1 B3R R fBis 544

DPDKINE SCRF AR AR B0 B, RTCHfipipeline:

o TE run-to-completion T=CH, 3B VA APDREF 18 & i O FIRXTHIARF URBUGRSC . 'BiE, 7EF—
core FAMEIRIL, FRiE I APTA FPRAR SO O BITX A FF A1 DURE RO -

* 1E pipe-line T H, —Peoreft) — 1 ELE 2 O AIRXHAFF LUREUR SC - 985 i 42 Hring # H:
fbcore b3 - HAthicore FT LIRS IR SC, SRk U B TXHART o AR A H 2 -

7E[A] 2% run-to-completion B0, & MZHANALFREIR G AR GG DL IR
o JEITPMDIR SN APIRARBUR 3L
o MR EANEERIRSC, BIIRAME
o JEITPMD A& B APLRF R SU A i Hi 2%

MR, R HpiplinetisU, —SBMFRER [THTHREGROC, HhaZ B i T 40 2w s 9k
3o WCBIREE BT R ring FE B BB 2 [AIZ2#e - BUR BN LSRR AR LU T B3R

* BT PMDHYT R APTER HUR 3L

o R EUR G TR AL IR SRR F B B
R 0 0 R EAE LT P

o NEEE @IS R BEURE &

o EBWEIMEIRE, BRERAEHE

270 Chapter 4. 4it2#5r

dpdk, Release 0.11

N T EREFRALER PRI, BUTIEAN SR RS . B ERRZE, RIZREMSE
Fring k5 BEIEE. -

EZHIMNER AR AR — D REAE . h T HEIGXARE, PMD &R A e FH & core FIAAE B
R Fltn, PMDE: M 4 S core M AU FHIPAS - [RIFERYT, ¥ O B BRIBAT I #HE 7 BL2s 52112
HEAZIFHRERIA -

N TIEANUMAZEN, NEEHESENSMEEZSE A (HREEE) FH% A%, D& KREM
DR N A IR] o BOHR AR R BB B % % R EIDIMMs - channels 1 ranks55 K Z P N 284 . B A
e AR AE N A7 ML AR 25 A& S5 . BAKINE S W Mempool Library -

4.7.2 it RN

Ethernet* PMDsFAPIFIZEAE 5 1T 8% FEE LR R -
PMDs REWHE B B Z WM Sl & R FISReg - ez, AREFHIEELWIRS -2 N A SEHE -
B4, PMDRA AR R ECER A K & B SCEH AT TR E2 1 - B TRTCAOER MU S AR 125
TEIAEBS B S B e SR E AT .
o MRMERU, AbHEHDAFRRE T S IRIE A EIR AL .
o RA[REPTIENER B, NELEITEERIRE, HAE.
s BN ENRRENRIRE, SEBREIER, B, &EFENEEaeL AR L.
KT SEM MR, TEE BRI EFEMA TR, 5 W H BRI R T R
(WICPURAFEME « B&HEE - NIC PCIH TE55) HITH R FH - IROUER A0S DL =2 28 & MR 4 ik
PR R (AT (Rl R — N« EWIERTEL T, PMD RAES H— rte_eth_tx_one BREL, LAFEAEL EIFA
I E—kfE— IR . REZELSE, 7 LURRIIE— rte_eth_tx_burst K%L, TEEAH rte_eth_tx_one
PR U — IR BRI 2 MR R - IR, PMDAERMSEIL T rte_eth_tx_burst BREL, LS DL NSRS/ ML
BRI Bh R (5 TN -
o EZNEURAZ A FEZ A rte_eth_tx_one BERAUAAEREES LA -
o J8 M rte_eth_tx_burst K%L LAF| Fburst-oriented T R4 (R A EIETIEL « FHINICL/BHfies) Dl
WMMEBNEIREFICPURIAEL, Flan, @it e e &R AL ZER R Fas b, 5
B RS PG VT S R R AT RN TR EH LA -
« {8 Hburst-oriented XA AR BREMAVERIELS IR, WringR 5| AR -
3@ APIS| A T Burst-oriented B AL, XL pRELAEPMD ARG HH &R T - 33X L2 bR £URR A13& F TNIC ring 94%

X ECEs, TSR M — R BLRE L I X DI EE - B0, — 1> mbuf_multiple_alloc &£ B — 1>
] rte_mbuf Z&if XHFEFECH, © R LAE [ringS 0 2 DA R IEPMD YRS H THEE -

4.7.3 ZHEE - WHELMFEASIHIE R

X 0T 2R BB AL AN O A H A A2 65, DPDKIRHENUMAS Ry, USRS IFAOERE - Bk, 5K
HPCIEHE M AH 5K Bmbuf 73 BL N ASH N 77 B RN 77 i P BEE - A2RATRE, SR X ROZ PR B AEA AL
HEE ELURBUREENERE, H B8 FH MARH A 77 0 5 BiC A mempool 1 FH 3% A mbu R B FER XA TX S it X fif ik
G

NREE QBRI EAEA N, MARTEEAHEEENF ., NRTCHER D 22175 B . A8
BEAPZEZA TR — 03828 b, pipelinef&8 ¥ A5G 17 AITERE -

P BB AR 5 O BRI AR AT, BRODIX R E L2/ LBURYT, S 2 EaE T iE -

4.7. BB 271

dpdk, Release 0.11

4.7.4 XEWMRKECE
BEFRA
HANICH O A/ < % & - ThAY) B EPCIFRIR M — 38 E - %PCIIT IR 25 TEDPDKY] 16 14 I HHUAT
HIPCTHEMIACETHRE S TR - ARYEPCIFTIREF, NICH: DA T i E b 321
o —ANES|, FIT7EPMD APIS: H HOFTA BB S ENICH: [

. ﬁﬁ%;%ﬁﬁ(, MATHEEHHEEPEER D, EEATEEMBKERN . HTETHER, Ym0 &R
HZ5l -

WEECE

BNICH; O FIRLE A5G LT P 5.
« S PCI BR
o RREAE AL R A SRR VCIRES
o« WEPHYMIHER
o YIRS ITEES
PMD APLA /15 Hi AU T2 sh/2% b3 F 2 ERERBTIRE, HF B AT ITEIR = T iR BB I B -

S A S D RE A AT e R HOIC B2 R i D W AR (L BRBE B - i, R4 (RSS) i
L (DCB) ThEERLEXFME L -

B &

FrE Al LRI R s ks Thie (RIS LIRRE) . CRPMD APDRESH «
P e B2 R PCIAT A7 2 MRS b it AESRBHRE 7 2 SME F AT IR 1 e BOR BL B SE X LU Th E -

Jit, PMD APIS: i — R B AT F TR AN R P AN BRI B 45 T IR & DV RER IR B A RER P B F R - X
L5 B ESEPCILRN FIFR RS, PCOR&EVMRAF, PCIIX & 2717 85 MBStk DL S AR Bh AR e 44 77 -

ORI R EEA SR T DL A FEAPDR G - BLE - (F X R S ThRE -

B, testpmd i A2 7 H Y T4 IR @82576 T JK LA 9 44 il s F1 S 45 /R @82599 77 2K LA W] 92 il 2 14 i
HIIEEE1588 LI RERLE -

AT LAAFE R B 77 U EC B 1 BIL3 / L4 5-Tuple (LIS BTN RESS M ThaE - LIKMREE CEriEmi) wl LIZE S i
O F#HTEE . BREMEER, 1ESWtestpmdlf LS . tbsh, HEEIEEmbuf X EIEH, B0 LI
e B3 M RHL4 (UDP/TCP/SCTP) WISAIEIH: - FHFRFEMEE, 152 ‘Hardware Offload*_ -

(53 T

B REIASEMALEE T LUNME R
o RIFEW EHIATTELE
o NUMAZEH T, FHTHRIRMNIB T socket IIDMATE i X 43 BLE HiEA AR IR
o EHIFAF Y Prefetch, Host & Write-Back B {E ¥ £ 58 H{H

o RO R NEI(E - S A TSGR E AT AE BT B ER, NMRAEMAEES UEE
EEEREHATRF . FETXPAFIEL B[R 7 LULEBE0, LIS RN FHBIAE - tx_free_threshAIEAE
32 IXFERPMDANE BIGRSERMATHHAT, EEINICEZ S IALHE T 32 MR -

272 Chapter 4. 4it2#5r

dpdk, Release 0.11

« RSOLE/DNEIME - EAARRFT PR EIREIRE (RS) M2 BT 2 &/ N AR A ETER,
WS EE A Tintel 10 GOEMZEACES - W MK G — RSO B G AT EE (EFIH
TR EFIRERE— N HRRF) B & ERSALBIE (tx_rs_thresh) , MIRSHI#S EAEHA T A XEURE
Hif e — MR L . BWME 2, WSEUEH ML E B R L M i AR 5 | =N - ZETXPA
B e B A R AT LUR SR (E N0, LAFE/RRME FHEVAME - tx_rs_threshFIERIAE H32 « IXHAIRTE W 4515 Bir 28
0] 5 e 3f A5 FH PO 7 2 B 22 /DR R 32 N A ST o« SX A AT LUTT 4 TXHEAR 15 [B] 5 B 7= A2 1 L iiFPCle #7
o BEMETEE, Y rs_thresh KT, RBETXEEFE (TX wthresh) %E N0 . H R FE L4
f5R., BSRIRR®82599 /7 JK LI W 4% il 2 23 F- Mt -

3 Ftx_free threshffitx_rs_thresh, 707 & L NAIR

o tx_rs_thresh 2T KTF0-

o tx_rs_thresh D/ INT IR R/ INEE2 -

o tx_rs_threshi2 /T B % T tx_free_thresh -

e tx_free_thresh A1 ATF0 -

o tx_free_thresh M/ INT IR A /INBES -

o BT RIGHAEMRE, Htx_rs_thresh KT 15, TX wthresh % & M0 -
TXERH B — MR A VRIS e OB S R 1 e o i, R R B K B {ELRR)

Note: HFACEDCBERIERT, 7Ed DATIAILES, KX S BT EI AT B AT E 9128 -

B Tx &1

VFZ AN B AR e 0 150F 7R R0 6315 % /5 3L B R mbu 8 75U B #lmempool B AR 2 77 7 - M/, i TR mbuf
FETxHF, HFEETENFEA, 53 tx_rs_thresh EEBIF, HUTHLERER

N AR IERIREHFE BT B 0 rte_eth_tx_done_cleanup () BEHU#E AP mbuf- « ZAPUEKIESNFEF
FERCN T8 F fImbufs, TANE “tx_rs_thresh** & O - B WA L2 615 N AR o] GEAR 2 7 Rk
ﬁﬂ(mbuf:

c MATFEMHEAFERZINEZNEWNRED (N TEERZHEIELE) - —MHFHE
EEHBECLHEEHNFTEREMNEIECLLTE. F—FMAZEEL2HEL, RERE
rte_eth_tx_done_cleanup () O BBIRICGIHBERE . B IR, XK AT LLAER] T —
MNEMED . N AR A TTEEANE B iR O Z B TR AR EOE e, B LB AEIEE
il o ZAPUMN. THUREEFHEILEET, HEmbuf NEHE DA -

o« —LN RO T2 GETT, WEEEEREY . N T it RERA -, NAERF
Al REA HER MBIT Z B EHTE N IEIRE, E A B mbufsER R [E Emempool - EIXFE T,
TR UNECHFHE D BRED W rte_eth_tx _done_cleanup () API UEKR BB ETE # H
Hmbuf o

B E KB P 2 5 S FFZAPL, 18K Network Interface Controller Drivers XX F4H B * Free Tx mbuf on
demand * ThRE -

R 1 3

RHE rte_eth_dev_info_get () FEMAIKEIFEFINEE, PMDA] RESCRAEFEIEThAEE, WK FITCP 4B
BiVLANTE A o

4.7. BB 273

dpdk, Release 0.11

X L FEIE T BE) SR B E R T RS AL AIE 7 B i Blrte_mbufER 4549, DU & PMD S i #%
W/ & A Th eI M AL FE - bRiCF1 R SR HAE IR & L AEmbuf APIXCHYS)2 Mbuf Library H “Meta Information”
7 .

4.7.5 PMD API

B

BOANTEOL R, PMDIR LR BT A ShaE sl AUES 2 TR AL, XS B BUE AL R — H ARt LA S HARR)E
fcore EFATIHM - Bilan, PMDEMRECNRER M 2% LTI, LIRCIRARTR N 0 BOHE FIRXEAS «
SR, XA R LU A R IRXEAS B A FE AL TR - RS RO CRIESRHIHTIX 5
U

WHRFE, ZMBEZE TSR TR A LGB &1 TRELMS0R BRI, XEne mEUE &7
TEMN B TEBIAPIZ AT -

SGDEEE "8 E . o
HE B B EIESH re_mbuf R, X E—NE G A LEEBREH TR . XE(E R AR SR
AEARN B) 7 BRI AL, anIPL RN VLANARZE RIS -

HARLE rte_mbuf F145 LUE 7 2 E0R R P SR LA RE (DI REX LA 7 BL . X THRIAKIE L, rte_mbuf
HIRER 5 7 BUAFHPMDARIA TS, ELERIHARF FRIER - M, N THHEEEE, rte_mbuff K77
Bt FHIPMD % 52 bR B TH0I6 10 A & A7 -

BAREEH mbuf WU 2R, 1ES 08 Mbuf Library E77 -

PAA 585 API

PLA I PMDER B 5 H B LUK f93 8 APTE 2] DPDK API Reference fik -

RISt API
T RAIST AP N AL PMD S H —HME—FISTHE R - NIRRT EN DUR B RER U)X L 453
31/—'_1%‘1%\:

e rte_eth_xstats_get: AT BSITEEBET struct rte_eth_xstat 4 -

* rte_eth_xstats_get_names: R BT AR EREEER struct rte_eth_xstat_name
EH

> struct rte_eth_xstat A& —PR-EHX], B struct rte_eth xstat_name & — /M FfHFH .
struct rte_eth_xstat ﬁ?ﬁﬁéﬂﬁpﬁqfé/l*ﬁiﬁﬁﬂ‘ﬁﬁ: struct rte_eth_xstat_name ﬁ?ﬂz

HBAHFE—IIBEA -

FIREF, FBERRGETA R RKAPRANT - I XEARIRART LR E Y RETTTEORTEIZ 1T R DA RFFAS
e WER, TRSOMERINRITRIEEFRER, B, ST AR REA—

KT RESLAPIZ PIRHITAT S, FAE—Tma TR X2N T AFAPHREUBNBIER - a8 7 RIE
M TR ER T BRETR, h:

e direction
e detail 1
e detail 2

274 Chapter 4. 4it2#5r

dpdk, Release 0.11

e detail n
* unit
RGO REIFAT RIS, M6 EEITE:
* rx_bytes
* rx_Crc_errors

e tx_multicast_packets

BT R BN R, EA] LR G BRSO FA B AEE . LT RFIVEA T 4 /7R rx_packets
PIER - EXNEFH, FRBWSRAIAE . F—1 rx FRGITHE B SNICHHEIRE R . B
™ packets i%%@”%%fﬁ%ﬁjﬁ@ °

—PEAE IR TR tx_size_128_to_255_packets o EXMHIFH, tx FRfEFH, size®HE—
DT, 128 HERRELZAIMT, packets FrriXam— MR ITEES -

TEEE) — L RN T T

o MRE—FTBINTFE rx W tx , FUHHHEESEESBICAHER -

« WRFBZHSHFE - DFEEE g XD g FIR—1ET, WX GOt R 5 €SI —5R 5 -
ﬁﬁ%ﬂ%ﬂ@%%ﬁﬂ?: tx_qg7_bytes RARMGIEREHTIINE7, HERRZNI LIEREEOT T

4.8 5@HI%E API (rte_flow)

4.8.1 LA

BEAPHR (T — 7 FH A0 7 SR B B A 4 LAVCACHT 7€ A Ingress B Egress it &, MRYE M /-~ AL E AL
PO AR E B A R -

F B APUFFH RITZR rte_flow , TE3HF rte_flow.h F1E L.
o A LOSHRSCEHR AP SCKER . 80D SR SUB AN KRB Em O, AR & IDS)PUAT ILHEL -

. i?é?/g?%1?@?ﬁ%ﬁ?ﬁ%, FHREEMBERES] - I & s, BUTRRERES . Sntric
SEHE .

E{tm@ﬂ%ﬁiﬁﬁéE@f?éﬁiﬁi)ﬁ*@%&%rkﬁ‘%, DL BA R B04T 0 B X BT PRCIRIR 2 I SRR e S 3 4E B A B
BiEREO .

TREINE N R BLMOITIERE AP migration FH IR «

4.8.2 JHLM
ik

TR B LB A B AN SR A & - FALA A T BEAPIF S «

— DHAI AT LR JU AR RS EORAER 20 B € A 2R € RS Z BT TR, B35, fRESess i),

TANRAREE LN SEILX BN, L FFE P R B AR A0 RE 1 SE AN 9 RN P AT -

AP T ET MM AR R SCFE, Flan, HRSCIEH- PRI, SRESE TR E AN - SR, T
IR MR RIIREN:, X —FRABERIE - SRR, AR R AR E F R, X2 Ak w] A
18 1 PMDs AE B P S BRCnsa ot A e RN AT ABEILER AR B PR B A0) -

4.8. B API (rte_flow) 275

dpdk, Release 0.11

T RATBERFF ST, BOAEOL T TR MNE SO O B ER IR, XEREESAN (H1
PR ML IBERILECR,) Z (AR 2R € LAY -

PMD] DA ZE B LR MBI T (B, bt IR B T 58) AR R T QR E AN
mj.

R, srFaemiedt, s RAGeE T FEEMNALI, EFrEHIUR LERE 2T -

TR AT LA, FAN e € T el rIAE . Bk, fEdFRIFrERMNER —HZ sz
JE AT AL -

?E':?E%MUJ&%%ﬁ\E%VEﬂ DAFEAEBRIARE A OS2 Z BT N ERSEBL, BRI L > Th RE AT BEASRE R R FH T R FH R
¥

E R AR A/EEE S N RERATAE, H HRFSEAIE KB RERES, R T N FEER
ERASIUELS MM i -

XFE, FERSHEERREZ AT, MR A UG E A IR (I 2 5 SCRp AT R ORISR A « %5 K AT LABB A
A, HEME—ZRERZAAEMNI TR BR (Flan, NESCEE BPRRXEAS) -

BANE RN S FPMDE B) AE I ARRAR SRR, B FRRF T SR 4E9 E - X L8R AT T R AN AL
B, PRI R s B R B E AT -

T B PMD T H R BTRMR, FERROHE S BTIR (G F A) 28T, N AR IR S AR A -
AN & IENLERT
o BYE (H struct rte_flow_attr Fom): MANIAENME, HIanET7 M (IngressaiEgress) FAMLIEL -

« BAKH (H struct rte_flow_item #/R): IEACRZNH—HR 7y, IEACH: E R B ER IR RS
Mo WA AR R S B 1, fnf i DRAL -

o ILHCSH: BRMEN, AaEErE.
. HIfE (EE struct rte_flow_action i‘%/%)t B 5RO R TR BT 3R E -

JE
B H

AT DUs e S H i — A RA SR - BIRREE BRI ES - HoRERELENR -

RRENER), EREWN AT R AT RN 28, LliaenaMAEFDsE (Flim, e
FERERIRS (B0, AEET A REARIFRIRDMEARE) -

HER, FARIESHFE M4 -
J@ it LS

A LR S B LA AN - B Group—FE, BARAMER R m LR, 0 KIE -
BHMIEROIGroup STLAN, JESETFEGroup OTLSEHMS I SEL 2 5 7 VERL -

Qﬂﬂlfjﬁ'ﬁfﬁm@%ﬁ’] BUR TR HREF, TNIATFERZEER, UAFENFLE, HEE2HAEERSFT
5, HHETReZ B EUE RAL AR o

ﬂﬂ%%/\?&ﬁtf 28 B SE AN Group FHUL AL ILEL, AR ALEFRARE L) - ER LRBUE MR, 7]
EEE, HESENITIKERHIR -

BER, ARERESHF L —MLER -

276 Chapter 4. 4it2#5r

dpdk, Release 0.11

JBE: FE T E

UM AT LAN A T A F/E H G iR (Ingress/Egress) o
Z RS BRI AR, ATUED TR - [BELMEDIEE— 1T -
HEEN 25 B —RAEE P T7 1), ABAEDEUESL T rTRER A (Flandt=it4Es) -

HAKHE

WA H 4 25
o DUERPDICELER MR CEE (ANY, RAW, ETH, VLAN, IPV4, IPV6, ICMP, UDP, TCP, SCTP,, VXLAN, MPLS,
fasay

=3
o DLEL TGRS ST 43 (END, VOID, INVERT, PF, VF, PORT%%) .

& Eiﬂ;@iﬁd‘@ﬁﬁ?@@ﬂ%ﬂ?& (B HEYE) FRREE . RSN FEARTE — PR LHERA
PR REK -

AT AN E 5% B &R 2% E = MHE R R B AV 4510 -
» spec: BILELAIEUE (iIpv4ttiit) -
o last: AR BME R B YE] _ERR -
 mask: N T specHllastFI i #S (ANICECIPvAIbEFIHTER) -
fo FH PRI FIHAEE AT -
* %H spec BXE mask Bl last &R -
o BRI last HUW0EEET spec KA, MMITAREFEIEE - AFHRT spec BIFEOE -

o W& spce FIF[IEH] last , MAEE mask & FEPMDF H1Z 5% HE LB masks (€ L H
rte_flow_item_ {name}_mask W&) . NXEMIIHEY THRAESEEICH .

o NEEMATHES THRA S B ILAL -

« B ZEAT spec M last MR BRI, WRANOFEH, FTRRSTEBEENINLE
B Bt XFFIpvab it F B, spectE£10.1.2.3, lasth #£10.3.4.5, 5 5255.255.0.0, A0 H
910.1.0.0~10.3.255.255 -

DCFC LUK] Sk 5% H 7= -

Table 4.1: Ethernet item

Field | Subfield | Value
src 00:01:02:03:04
spec | dst 00:2a:66:00:01
type 0x22aa
last | unspecified
src 00:ff:£f£f:££:00
mask | dst 00:00:00:00:££
type 0x0000

TR EIAL AT DUCEER FMEE RS 2), UACKERE B N EHICEE S
® src: ?22:01:02:03:27

e dst: ?2?2:272:722:272:01

4.8. B API (rte_flow) 277

dpdk, Release 0.11

e type: 0x?27?27?27?

PERCAE =
BT E LB NRZHBUT IR IEEC A B - SORHE S IR S F T AT DUSCE AR AL E T AR LA R
JLEkH -
TR G 15k &S -
BIF:
Table 4.2: TCPv4 as
L4

Index | Item

0 Ethernet

1 1Pv4

2 TCP

3 END
Table 4.3: TCPv6 in
VXLAN

Index | Item

0 Ethernet

1 1Pv4

2 UDP

3 VXLAN

4 Ethernet

5 IPv6

6 TCP

7 END
Table 4.4: TCPv4 as
L4 with meta items

Index | Item

0 VOID

1 Ethernet

2 VOID

3 1Pv4

4 TCP

5 VOID

6 VOID

7 END
278 Chapter 4. 4it2#5r

dpdk, Release 0.11

TP FERT — NI E, SR SR ICEC S R, R EMATRFHESER - S5RICRKS
“TCPv4 as L4” 5 E A

Table 4.5:
UDPv6 any-
where
Index | Item
0 IPv6
1 UDP
2 END

GARPMDCFF, W BRG] (BRADLURMMYE) | ZESHERKEE — P EE MU, oI DE SR EdE aF
HIE AT

TR SCFFE S (BIAIVXLANE ZGEAT) & & @ XL, It is unspecified whether the payload of sup-
ported encapsulations (e.g. VXLAN payload) is matched by such a pattern, which may apply to inner, outer or both
packets.

Table 4.6: Invalid,

missing L3
Index | Item
0 Ethernet
1 UDP
2 END

The above pattern is invalid due to a missing L3 specification between L2 (Ethernet) and L4 (UDP). Doing so is only
allowed at the bottom and at the top of the stack.

Meta item types

They match meta-data or affect pattern processing instead of matching packet data directly, most of them do not need
a specification structure. This particularity allows them to be specified anywhere in the stack without causing any side
effect.

ltem: END

End marker for item lists. Prevents further processing of items, thereby ending the pattern.
* Its numeric value is O for convenience.
* PMD support is mandatory.

* spec, last and mask are ignored.

Table 4.7: END
Field | Value
spec | ignored
last | ignored
mask | ignored

4.8. B API (rte_flow) 279

dpdk, Release 0.11

Item: vOID

Used as a placeholder for convenience. It is ignored and simply discarded by PMDs.
e PMD support is mandatory.

* spec, last and mask are ignored.

Table 4.8: VOID

Field | Value

spec | ignored
last | ignored
mask | ignored

One usage example for this type is generating rules that share a common prefix quickly without reallocating memory,

only by updating item types:

Table 4.9: TCP, UDP or ICMP as L4

Index | Item

0 Ethernet

1 1Pv4

2 UDP VOID | VOID
3 VOID | TCP VOID
4 VOID | VOID | ICMP
5 END

Item: INVERT

Inverted matching, i.e. process packets that do not match the pattern.

* spec, last and mask are ignored.

Table 4.10:
INVERT
Field | Value

spec | ignored
last | ignored
mask | ignored

Usage example, matching non-TCPv4 packets only:

Table 4.11: Anything

but TCPv4
Index | ltem
0 INVERT
1 Ethernet
2 1Pv4
3 TCP
4 END
280 Chapter 4. ZifE+5r

dpdk, Release 0.11

Item: PF

Matches packets addressed to the physical function of the device.

If the underlying device function differs from the one that would normally receive the matched traffic, specifying
this item prevents it from reaching that device unless the flow rule contains a Action: PF. Packets are not duplicated
between device instances by default.

¢ Likely to return an error or never match any traffic if applied to a VF device.
* Can be combined with any number of /tem: VF to match both PF and VF traffic.

e spec, last and mask must not be set.

Table 4.12: PF

Field | Value
spec | unset
last | unset
mask | unset

Item: VF

Matches packets addressed to a virtual function ID of the device.

If the underlying device function differs from the one that would normally receive the matched traffic, specifying
this item prevents it from reaching that device unless the flow rule contains a Action: VF. Packets are not duplicated
between device instances by default.

¢ Likely to return an error or never match any traffic if this causes a VF device to match traffic addressed to a
different VF.

* Can be specified multiple times to match traffic addressed to several VF IDs.
* Can be combined with a PF item to match both PF and VF traffic.

* Default mask matches any VF ID.

Table 4.13: VF

Field | Subfield | Value

spec | id destination VF ID

last | id upper range value

mask | id zeroed to match any VF ID
Iltem: PORT

Matches packets coming from the specified physical port of the underlying device.

The first PORT item overrides the physical port normally associated with the specified DPDK input port (port_id).
This item can be provided several times to match additional physical ports.

Note that physical ports are not necessarily tied to DPDK input ports (port_id) when those are not under DPDK control.
Possible values are specific to each device, they are not necessarily indexed from zero and may not be contiguous.

As a device property, the list of allowed values as well as the value associated with a port_id should be retrieved by
other means.

4.8. B API (rte_flow) 281

dpdk, Release 0.11

* Default mask matches any port index.

Table 4.14: PORT
Field | Subfield | Value
spec | index physical port index
last | index upper range value
mask | index zeroed to match any port index

Data matching item types

Most of these are basically protocol header definitions with associated bit-masks. They must be specified (stacked)
from lowest to highest protocol layer to form a matching pattern.

The following list is not exhaustive, new protocols will be added in the future.

Item: ANY

Matches any protocol in place of the current layer, a single ANY may also stand for several protocol layers.
This is usually specified as the first pattern item when looking for a protocol anywhere in a packet.

* Default mask stands for any number of layers.

Table 4.15: ANY

Field | Subfield | Value

spec | num number of layers covered

last | num upper range value

mask | num zeroed to cover any number of layers

Example for VXLAN TCP payload matching regardless of outer L3 (IPv4 or IPv6) and L4 (UDP) both matched by
the first ANY specification, and inner L3 (IPv4 or IPv6) matched by the second ANY specification:

Table 4.16: TCP in VXLAN with wildcards

Index [Item [Field | Subfield | Value
0 Ethernet

1 ANY ‘ spec ‘ num ‘ 2

2 VXLAN

3 Ethernet

4 ANY ‘ spec ‘ num ‘ 1

5 TCP

6 END
ltem: RAW

Matches a byte string of a given length at a given offset.

Offset is either absolute (using the start of the packet) or relative to the end of the previous matched item in the stack,
in which case negative values are allowed.

If search is enabled, offset is used as the starting point. The search area can be delimited by setting limit to a nonzero
value, which is the maximum number of bytes after offset where the pattern may start.

282 Chapter 4. 4it2#5r

dpdk, Release 0.11

Matching a zero-length pattern is allowed, doing so resets the relative offset for subsequent items.
* This type does not support ranges (1last field).

* Default mask matches all fields exactly.

Table 4.17: RAW

Field | Subfield Value
relative | look for pattern after the previous item

search search pattern from offset (see also 1imit)
reserved | reserved, must be set to zero

spec | offset absolute or relative offset for pattern
limit search area limit for start of pattern
length pattern length

pattern byte string to look for
last | if specified, either all O or with the same values as spec
mask | bit-mask applied to spec values with usual behavior

Example pattern looking for several strings at various offsets of a UDP payload, using combined RAW items:

Table 4.18: UDP payload matching

Index | Item | Field | Subfield | Value

0 Ethernet

1 1Pv4

2 UDP
relative | 1
search 1
offset 10

3 RAW | spec Timit 0
length 3
pattern “foo”
relative | 1
search 0
offset 20

4 RAW | spec Timit 0
length 3
pattern “bar”
relative | 1
search 0
offset -29

5 RAW | spec Timit 0
length 3
pattern “baz”

6 END

This translates to:
* Locate “foo” at least 10 bytes deep inside UDP payload.
* Locate “bar” after “foo” plus 20 bytes.
* Locate “baz” after “bar” minus 29 bytes.

Such a packet may be represented as follows (not to scale):

4.8. B API (rte_flow) 283

dpdk, Release 0.11

Note that matching subsequent pattern items would resume after “baz”, not “bar” since matching is always performed
after the previous item of the stack.

Item: ETH

Matches an Ethernet header.
* dst: destination MAC.
* src: source MAC.
* type: EtherType.

* Default mask matches destination and source addresses only.

ltem: VLAN

Matches an 802.1Q/ad VLAN tag.
* tpid: tag protocol identifier.
e tci: tag control information.

¢ Default mask matches TCI only.

Item: 1PV4

Matches an IPv4 header.
Note: IPv4 options are handled by dedicated pattern items.
¢ hdr: IPv4 header definition (rte_ip.h).

* Default mask matches source and destination addresses only.

Item: 1IPV6

Matches an IPv6 header.
Note: IPv6 options are handled by dedicated pattern items.
e hdr: IPv6 header definition (rte_ip.h).

* Default mask matches source and destination addresses only.

284 Chapter 4. 4it2#5r

dpdk, Release 0.11

Item: ICMP

Matches an ICMP header.
¢ hdr: ICMP header definition (rte_icmp.h).

¢ Default mask matches ICMP type and code only.

Item: UDP

Matches a UDP header.
* hdr: UDP header definition (rte_udp.h).

* Default mask matches source and destination ports only.

Item: TCP

Matches a TCP header.
¢ hdr: TCP header definition (rte_tcp.h).

* Default mask matches source and destination ports only.

Item: sCcTP

Matches a SCTP header.
¢ hdr: SCTP header definition (rte_sctp.h).

* Default mask matches source and destination ports only.

Item: VXLAN

Matches a VXLAN header (RFC 7348).
e flags: normally 0x08 (I flag).
* rsvd0: reserved, normally 0x000000.
e vni: VXLAN network identifier.
e rsvdl: reserved, normally 0x00.

* Default mask matches VNI only.

ltem: MPLS

Matches a MPLS header.

e label_tc_s_ttl: label, TC, Bottom of Stack and TTL.

* Default mask matches label only.

4.8. B API (rte_flow)

285

dpdk, Release 0.11

Item: GRE

Matches a GRE header.
e c_rsvd0_ver: checksum, reserved O and version.
* protocol: protocol type.

* Default mask matches protocol only.

Actions

Each possible action is represented by a type. Some have associated configuration structures. Several actions combined
in a list can be affected to a flow rule. That list is not ordered.

They fall in three categories:

» Terminating actions (such as QUEUE, DROP, RSS, PF, VF) that prevent processing matched packets by subse-
quent flow rules, unless overridden with PASSTHRU.

* Non-terminating actions (PASSTHRU, DUP) that leave matched packets up for additional processing by subse-
quent flow rules.

e Other non-terminating meta actions that do not affect the fate of packets (END, VOID, MARK, FLAG,
COUNT).

When several actions are combined in a flow rule, they should all have different types (e.g. dropping a packet twice is
not possible).

Only the last action of a given type is taken into account. PMDs still perform error checking on the entire list.
Like matching patterns, action lists are terminated by END items.
Note that PASSTHRU is the only action able to override a terminating rule.

Example of action that redirects packets to queue index 10:

Table 4.19: Queue

action
Field Value
index | 10

Action lists examples, their order is not significant, applications must consider all actions to be performed simultane-
ously:

Table 4.20: Count

and drop
Index | Action
0 COUNT
1 DROP
2 END

286 Chapter 4. 4it2#5r

dpdk, Release 0.11

Table 4.21: Mark, count and redirect

Index | Action Field Value
0 MARK mark 0x2a
1 COUNT

2 QUEUE | queue | 10

3 END

Table 4.22: Redirect to queue 5

Index | Action [Field | Value
0 DROP

1 QUEUE \ queue \ 5

2 END

In the above example, considering both actions are performed simultaneously, the end result is that only QUEUE has
any effect.

Table 4.23: Redirect to queue 3

Index | Action Field Value
0 QUEUE | queue | 5

1 VOID

2 QUEUE ‘ queue ‘ 3

3 END

As previously described, only the last action of a given type found in the list is taken into account. The above example
also shows that VOID is ignored.

Action types

Common action types are described in this section. Like pattern item types, this list is not exhaustive as new actions
will be added in the future.

Action: END

End marker for action lists. Prevents further processing of actions, thereby ending the list.
* Its numeric value is O for convenience.
* PMD support is mandatory.

» No configurable properties.

Table 4.24:
END

Field
no properties

4.8. B API (rte_flow) 287

dpdk, Release 0.11

Action: vOID

Used as a placeholder for convenience. It is ignored and simply discarded by PMDs.
e PMD support is mandatory.

» No configurable properties.

Table 4.25:
VOID

Field

no properties

Action: PASSTHRU

Leaves packets up for additional processing by subsequent flow rules. This is the default when a rule does not contain
a terminating action, but can be specified to force a rule to become non-terminating.

» No configurable properties.

Table 4.26:
PASSTHRU
Field

no properties

Example to copy a packet to a queue and continue processing by subsequent flow rules:

Table 4.27: Copy to queue 8

Index | Action [Field | Value
0 PASSTHRU

1 QUEUE | queue | 8

2 END

Action: MARK

Attaches an integer value to packets and sets PKT_RX_FDIR and PKT_RX_FDIR_ID mbuf flags.

This value is arbitrary and application-defined. Maximum allowed value depends on the underlying implementation.
It is returned in the hash. fdir.hi mbuf field.

Table 4.28: MARK
Field | Value

id integer value to return with packets

Action: FLAG

Flags packets. Similar to Action: MARK without a specific value; only sets the PKT_RX_FDIR mbuf flag.

* No configurable properties.

288 Chapter 4. 4it2#5r

dpdk, Release 0.11

Table 4.29:
FLAG

Field
no properties

Action: QUEUE

Assigns packets to a given queue index.

* Terminating by default.

Table 4.30: QUEUE

Field Value
index | queue index to use

Action: DROP

Drop packets.
» No configurable properties.
¢ Terminating by default.
* PASSTHRU overrides this action if both are specified.

Table 4.31:
DROP

Field

no properties

Action: COUNT

Enables counters for this rule.

These counters can be retriecved and reset through
rte_flow_query_count.

¢ Counters can be retrieved with rte_flow_query ().

» No configurable properties.

Table 4.32:
COUNT

Field
no properties

Query structure to retrieve and reset flow rule counters:

rte_flow_query (),

S€e

struct

4.8. B API (rte_flow)

289

dpdk, Release 0.11

Table 4.33: COUNT query
Field I/O | Value
reset in | reset counter after query
hits_set out | hits field is set
bytes_set | out | bytes field is set

hits out | number of hits for this rule
bytes out | number of bytes through this rule
Action: DUP

Duplicates packets to a given queue index.

This is normally combined with QUEUE, however when used alone, it is actually similar to QUEUE + PASSTHRU.

* Non-terminating by default.

Table 4.34: DUP

Field Value
index | queue index to duplicate packet to

Action: RSS

Similar to QUEUE, except RSS is additionally performed on packets to spread them among several queues according
to the provided parameters.

Note: RSS hash result is stored in the hash . rss mbuf field which overlaps hash. fdir. lo. Since Action: MARK
sets the hash. fdir.hi field only, both can be requested simultaneously.

* Terminating by default.

Table 4.35: RSS

Field Value

rss_conf | RSS parameters

num number of entries in queue[]

queue [] queue indices to use
Action: PF

Redirects packets to the physical function (PF) of the current device.
» No configurable properties.

¢ Terminating by default.

Table 4.36: PF
Field

no properties

290 Chapter 4. 4it2#5r

dpdk, Release 0.11

Action: VF

Redirects packets to a virtual function (VF) of the current device.

Packets matched by a VF pattern item can be redirected to their original VF ID instead of the specified one. This
parameter may not be available and is not guaranteed to work properly if the VF part is matched by a prior flow rule
or if packets are not addressed to a VF in the first place.

¢ Terminating by default.

Table 4.37: VF

Field Value
original | use original VF ID if possible
vE VF ID to redirect packets to

Negative types
All specified pattern items (enum rte_flow_item_type) and actions (enum rte_flow_action_type)
use positive identifiers.

The negative space is reserved for dynamic types generated by PMDs during run-time. PMDs may encounter them as
a result but must not accept negative identifiers they are not aware of.

A method to generate them remains to be defined.

Planned types

Pattern item types will be added as new protocols are implemented.

Variable headers support through dedicated pattern items, for example in order to match specific IPv4 options and
IPv6 extension headers would be stacked after IPv4/IPv6 items.

Other action types are planned but are not defined yet. These include the ability to alter packet data in several ways,
such as performing encapsulation/decapsulation of tunnel headers.

4.8.3 Rules management

A rather simple API with few functions is provided to fully manage flow rules.

Each created flow rule is associated with an opaque, PMD-specific handle pointer. The application is responsible for
keeping it until the rule is destroyed.

Flows rules are represented by struct rte_flow objects.
Validation

Given that expressing a definite set of device capabilities is not practical, a dedicated function is provided to check if
a flow rule is supported and can be created.

int

rte_flow_validate (uint8_t port_id,
const struct rte_flow_attr xattr,
const struct rte_flow_item pattern|],

4.8. B API (rte_flow) 291

dpdk, Release 0.11

const struct rte_flow_action actions]],
struct rte_flow_error *error);

While this function has no effect on the target device, the flow rule is validated against its current configuration state
and the returned value should be considered valid by the caller for that state only.

The returned value is guaranteed to remain valid only as long as no successful calls to rte_flow_create () or
rte_flow_destroy () are made in the meantime and no device parameter affecting flow rules in any way are
modified, due to possible collisions or resource limitations (although in such cases EINVAL should not be returned).

Arguments:

e port_id: port identifier of Ethernet device.

* attr: flow rule attributes.

* pattern: pattern specification (list terminated by the END pattern item).

* actions: associated actions (list terminated by the END action).

* error: perform verbose error reporting if not NULL. PMDs initialize this structure in case of error only.
Return values:

¢ 0 if flow rule is valid and can be created. A negative errno value otherwise (rte_errno is also set), the
following errors are defined.

e —ENOSYS: underlying device does not support this functionality.

e —~EINVAL: unknown or invalid rule specification.

e —ENOTSUP: valid but unsupported rule specification (e.g. partial bit-masks are unsupported).
e —EEXIST: collision with an existing rule.

e —ENOMEM: not enough resources.

* —~EBUSY: action cannot be performed due to busy device resources, may succeed if the affected
queues or even the entire port are in a stopped state (see rte_eth_dev_rx_queue_stop () and
rte_eth_dev_stop()).

Creation

Creating a flow rule is similar to validating one, except the rule is actually created and a handle returned.

struct rte_flow =«

rte_flow_create (uint8_t port_id,
const struct rte_flow_attr =xattr,
const struct rte_flow_item pattern|[],
const struct rte_flow_action xactions]([],
struct rte_flow_error *error);

Arguments:
e port_id: portidentifier of Ethernet device.
e attr: flow rule attributes.
* pattern: pattern specification (list terminated by the END pattern item).
* actions: associated actions (list terminated by the END action).

e error: perform verbose error reporting if not NULL. PMDs initialize this structure in case of error only.

292 Chapter 4. 4it2#5r

dpdk, Release 0.11

Return values:

A valid handle in case of success, NULL otherwise and rte_errno is set to the positive version of one of the error
codes defined for rte_flow_validate ().

Destruction

Flow rules destruction is not automatic, and a queue or a port should not be released if any are still attached to them.
Applications must take care of performing this step before releasing resources.

int
rte_flow_destroy (uint8_t port_id,
struct rte_flow xflow,
struct rte_flow_error xerror);

Failure to destroy a flow rule handle may occur when other flow rules depend on it, and destroying it would result in
an inconsistent state.

This function is only guaranteed to succeed if handles are destroyed in reverse order of their creation.
Arguments:

e port_id: port identifier of Ethernet device.

e flow: flow rule handle to destroy.

* error: perform verbose error reporting if not NULL. PMDs initialize this structure in case of error only.
Return values:

* 0 on success, a negative errno value otherwise and rte_errno is set.

Flush

Convenience function to destroy all flow rule handles associated with a port. They are released as with successive calls
torte_flow_destroy ().

int
rte_flow_flush (uint8_t port_id,
struct rte_flow_error *error);

In the unlikely event of failure, handles are still considered destroyed and no longer valid but the port must be assumed
to be in an inconsistent state.

Arguments:

e port_id: port identifier of Ethernet device.

* error: perform verbose error reporting if not NULL. PMDs initialize this structure in case of error only.
Return values:

* 0 on success, a negative errno value otherwise and rte_errno is set.

Query

Query an existing flow rule.

This function allows retrieving flow-specific data such as counters. Data is gathered by special actions which must be
present in the flow rule definition.

4.8. B API (rte_flow) 293

dpdk, Release 0.11

int
rte_flow_query (uint8_t port_id,
struct rte_flow «flow,
enum rte_flow_action_type action,
void +data,
struct rte_flow_error xerror);

Arguments:

e port_id: port identifier of Ethernet device.

* flow: flow rule handle to query.

* action: action type to query.

* data: pointer to storage for the associated query data type.

* error: perform verbose error reporting if not NULL. PMDs initialize this structure in case of error only.
Return values:

* 0 on success, a negative errno value otherwise and rte_errno is set.

4.8.4 Verbose error reporting

The defined errno values may not be accurate enough for users or application developers who want to investigate
issues related to flow rules management. A dedicated error object is defined for this purpose:

enum rte_flow_error_type {
RTE_FLOW_ERROR_TYPE_NONE, /++< No error. «/
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, /##< Cause unspecified. #*/
RTE_FLOW_ERROR_TYPE_HANDLE, /##< Flow rule (handle). */
RTE_FLOW_ERROR_TYPE_ATTR_GROUP, /*#< Group field. =%/
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, /##< Priority field. #*/
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, /##< Ingress field. */
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, /#+< Egress field. =/
RTE_FLOW_ERROR_TYPE_ATTR, /##< Attributes structure. =*/
RTE_FLOW_ERROR_TYPE_ITEM_NUM, /x#< Pattern length. x/
RTE_FLOW_ERROR_TYPE_ITEM, /##*< Specific pattern item. =*/
RTE_FLOW_ERROR_TYPE_ACTION_NUM, /#*#*< Number of actions. =*/
RTE_FLOW_ERROR_TYPE_ACTION, /##< Specific action. */

bi

struct rte_flow_error {
enum rte_flow_error_type type; /##*< Cause field and error types. x/
const void *cause; /#*#< Object responsible for the error. */
const char *message; /#*< Human-readable error message. */

}i

Error type RTE_FLOW_ERROR_TYPE_NONE stands for no error, in which case remaining fields can be ignored.
Other error types describe the type of the object pointed by cause.

If non-NULL, cause points to the object responsible for the error. For a flow rule, this may be a pattern item or an
individual action.

If non-NULL, me ssage provides a human-readable error message.

This object is normally allocated by applications and set by PMDs in case of error, the message points to a constant
string which does not need to be freed by the application, however its pointer can be considered valid only as long as
its associated DPDK port remains configured. Closing the underlying device or unloading the PMD invalidates it.

294 Chapter 4. 4it2#5r

dpdk, Release 0.11

4.8.5 Caveats

* DPDK does not keep track of flow rules definitions or flow rule objects automatically. Applications may keep
track of the former and must keep track of the latter. PMDs may also do it for internal needs, however this must
not be relied on by applications.

* Flow rules are not maintained between successive port initializations. An application exiting without releasing
them and restarting must re-create them from scratch.

» API operations are synchronous and blocking (EAGAIN cannot be returned).

* There is no provision for reentrancy/multi-thread safety, although nothing should prevent different devices from
being configured at the same time. PMDs may protect their control path functions accordingly.

* Stopping the data path (TX/RX) should not be necessary when managing flow rules. If this cannot be achieved
naturally or with workarounds (such as temporarily replacing the burst function pointers), an appropriate error
code must be returned (EBUSY).

* PMDs, not applications, are responsible for maintaining flow rules configuration when stopping and restarting a
port or performing other actions which may affect them. They can only be destroyed explicitly by applications.

For devices exposing multiple ports sharing global settings affected by flow rules:

¢ All ports under DPDK control must behave consistently, PMDs are responsible for making sure that existing
flow rules on a port are not affected by other ports.

¢ Ports not under DPDK control (unaffected or handled by other applications) are user’s responsibility. They may
affect existing flow rules and cause undefined behavior. PMDs aware of this may prevent flow rules creation
altogether in such cases.

4.8.6 PMD interface

The PMD interface is defined in rte_flow_driver.h. It is not subject to API/ABI versioning constraints as it is
not exposed to applications and may evolve independently.

It is currently implemented on top of the legacy filtering framework through filter type RTE_ETH FILTER _GENERIC
that accepts the single operation RTE_ETH FILTER_GET to return PMD-specific rte_flow callbacks wrapped inside
struct rte_flow_ops.

This overhead is temporarily necessary in order to keep compatibility with the legacy filtering framework, which
should eventually disappear.

* PMD callbacks implement exactly the interface described in Rules management, except for the port ID argument
which has already been converted to a pointer to the underlying struct rte_eth_dev.

* Public API functions do not process flow rules definitions at all before calling PMD functions (no basic error
checking, no validation whatsoever). They only make sure these callbacks are non-NULL or return the ENOSYS
(function not supported) error.

This interface additionally defines the following helper functions:
* rte_flow_ops_get (): get generic flow operations structure from a port.
e rte_flow_error_set (): initialize generic flow error structure.

More will be added over time.

4.8.7 Device compatibility

No known implementation supports all the described features.

4.8. B API (rte_flow) 295

dpdk, Release 0.11

Unsupported features or combinations are not expected to be fully emulated in software by PMDs for performance
reasons. Partially supported features may be completed in software as long as hardware performs most of the work
(such as queue redirection and packet recognition).

However PMDs are expected to do their best to satisfy application requests by working around hardware limitations
as long as doing so does not affect the behavior of existing flow rules.

The following sections provide a few examples of such cases and describe how PMDs should handle them, they are
based on limitations built into the previous APIs.

Global bit-masks

Each flow rule comes with its own, per-layer bit-masks, while hardware may support only a single, device-wide bit-
mask for a given layer type, so that two IPv4 rules cannot use different bit-masks.

The expected behavior in this case is that PMDs automatically configure global bit-masks according to the needs of
the first flow rule created.

Subsequent rules are allowed only if their bit-masks match those, the EEXI ST error code should be returned otherwise.
Unsupported layer types

Many protocols can be simulated by crafting patterns with the Item: RAW type.

PMDs can rely on this capability to simulate support for protocols with headers not directly recognized by hardware.
ANY pattern item

This pattern item stands for anything, which can be difficult to translate to something hardware would understand,
particularly if followed by more specific types.

Consider the following pattern:

Table 4.38: Pattern with ANY

as L3
Index | Item
0 ETHER
1 ANY ‘ num ‘ 1
2 TCP
3 END

Knowing that TCP does not make sense with something other than IPv4 and IPv6 as L3, such a pattern may be
translated to two flow rules instead:

Table 4.39: ANY replaced with

1PV4
Index | ltem
0 ETHER
1 IPV4 (zeroed mask)
2 TCP
3 END

296 Chapter 4. 4it2#5r

dpdk, Release 0.11

Table 4.40: ANY replaced with

IPV6
Index | ltem
0 ETHER
1 IPV6 (zeroed mask)
2 TCP
3 END

Note that as soon as a ANY rule covers several layers, this approach may yield a large number of hidden flow rules. It
is thus suggested to only support the most common scenarios (anything as L2 and/or L3).

Unsupported actions
e When combined with Action: QUEUE, packet counting (Action: COUNT) and tagging (Action: MARK or
Action: FLAG) may be implemented in software as long as the target queue is used by a single rule.

* A rule specifying both Action: DUP + Action: QUEUE may be translated to two hidden rules combining Action:
QUEUE and Action: PASSTHRU.

* When a single target queue is provided, Action: RSS can also be implemented through Action: QUEUE.

Flow rules priority
While it would naturally make sense, flow rules cannot be assumed to be processed by hardware in the same order as
their creation for several reasons:

* They may be managed internally as a tree or a hash table instead of a list.

¢ Removing a flow rule before adding another one can either put the new rule at the end of the list or reuse a freed
entry.

* Duplication may occur when packets are matched by several rules.

For overlapping rules (particularly in order to use Action: PASSTHRU) predictable behavior is only guaranteed by
using different priority levels.

Priority levels are not necessarily implemented in hardware, or may be severely limited (e.g. a single priority bit).
For these reasons, priority levels may be implemented purely in software by PMDs.

* For devices expecting flow rules to be added in the correct order, PMDs may destroy and re-create existing rules
after adding a new one with a higher priority.

* A configurable number of dummy or empty rules can be created at initialization time to save high priority slots
for later.

* In order to save priority levels, PMDs may evaluate whether rules are likely to collide and adjust their priority
accordingly.

4.8.8 Future evolutions

¢ A device profile selection function which could be used to force a permanent profile instead of relying on its
automatic configuration based on existing flow rules.

* A method to optimize rte_flow rules with specific pattern items and action types generated on the fly by PMDs.
DPDK should assign negative numbers to these in order to not collide with the existing types. See Negative
types.

4.8. B API (rte_flow) 297

dpdk, Release 0.11

» Adding specific egress pattern items and actions as described in ‘Attribute: Traffic direction®_.

» Optional software fallback when PMDs are unable to handle requested flow rules so applications do not have to
implement their own.

4.8.9 API migration

Exhaustive list of deprecated filter types (normally prefixed with RTE_ETH_FILTER_) found in rte_eth_ctrl.h
and methods to convert them to rte_flow rules.

MACVLAN to ETH — VF, PF

MACVLAN can be translated to a basic Item: ETH flow rule with a terminating Action: VF or Action: PF.

Table 4.41: MACVLAN conversion

Pattern Actions
spec | any
0 | ETH | 1ast | N/A | VE PF
mask | any
1 | END END

ETHERTYPE t0 ETH — QUEUE, DROP

ETHERTYPE is basically an Item: ETH flow rule with a terminating Action: QUEUE or Action: DROP.

Table 4.42: ETHERTYPE conversion

Pattern Actions
spec | any
0 | ETH | 1ast | N/A | QUEUE, DROP
mask | any
1 | END END

FLEXIBLE t0 RAW — QUEUE

FLEXIBLE can be translated to one Item: RAW pattern with a terminating Action: QUEUE and a defined priority
level.

Table 4.43: FLEXIBLE conversion

Pattern Actions
spec | any
0 | RAW | last | N/A | QUEUE
mask | any
1 | END END

SYN to TCP — QUEUE

SYN is a Item: TCP rule with only the syn bit enabled and masked, and a terminating Action: QUEUE.

298 Chapter 4. 4it2#5r

dpdk, Release 0.11

Priority level can be set to simulate the high priority bit.

Table 4.44: SYN conversion

Pattern Actions
spec | unset
0 | ETH | last | unset QUEUE
mask | unset
spec | unset
1 | IPV4 | mask | unset
mask | unset
spec | syn | 1
mask | syn | 1

END

2 | TCP
3 | END

NTUPLE to IPV4, TCP, UDP — QUEUE

NTUPLE is similar to specifying an empty L2, Iltem: IPV4 as L3 with Item: TCP or Item: UDP as L4 and a terminating
Action: QUEUE.

A priority level can be specified as well.

Table 4.45: NTUPLE conversion

Pattern Actions
spec | unset

0 | ETH last | unset | QUEUE
mask | unset
spec | any

1 | IPV4 last | unset

mask | any
spec | any END
2 | TCP,UDP | last | unset
mask | any

3 | END

TUNNEL to ETH, IPV4, IPV6, VXLAN (or other) — QUEUE

TUNNEL matches common IPv4 and IPv6 L3/L4-based tunnel types.

In the following table, lrem: ANY is used to cover the optional L4.

4.8. B API (rte_flow) 299

dpdk, Release 0.11

Table 4.46: TUNNEL conversion

Pattern Actions
spec | any

0 | ETH last | unset QUEUE
mask | any
spec | any

1 | IPV4,1PV6 last | unset
mask | any
spec | any

2 | ANY last | unset END
mask | num \ 0
spec | any

3 | VXLAN, GENEVE, TEREDO, NVGRE, GRE, ... | 1ast | unset
mask | any

4 | END

FDIR to most item types — QUEUE, DROP, PASSTHRU

FDIR is more complex than any other type, there are several methods to emulate its functionality. It is summarized for
the most part in the table below.

A few features are intentionally not supported:

The ability to configure the matching input set and masks for the entire device, PMDs should take care of it
automatically according to the requested flow rules.

For example if a device supports only one bit-mask per protocol type, source/address [Pv4 bit-masks can be
made immutable by the first created rule. Subsequent IPv4 or TCPv4 rules can only be created if they are
compatible.

Note that only protocol bit-masks affected by existing flow rules are immutable, others can be changed later.
They become mutable again after the related flow rules are destroyed.

Returning four or eight bytes of matched data when using flex bytes filtering. Although a specific action could
implement it, it conflicts with the much more useful 32 bits tagging on devices that support it.

Side effects on RSS processing of the entire device. Flow rules that conflict with the current device configuration
should not be allowed. Similarly, device configuration should not be allowed when it affects existing flow rules.

Device modes of operation. “none” is unsupported since filtering cannot be disabled as long as a flow rule is
present.

“MAC VLAN?” or “tunnel” perfect matching modes should be automatically set according to the created flow
rules.

Signature mode of operation is not defined but could be handled through a specific item type if needed.

300

Chapter 4. HTEEE

dpdk, Release 0.11

Table 4.47: FDIR conversion

Pattern Actions
spec | any
0 | ETH, RAW last | N/A | QUEUE, DROP, PASSTHRU
mask | any
spec | any
1 | IPV4, IPv6 last | NJA | MARK
mask | any
spec | any

2 | TCP, UDP, SCTP | last | N/A
mask | any
spec | any | END
3 | VE PF (optional) | last | N/A
mask | any

4 | END

HASH

There is no counterpart to this filter type because it translates to a global device setting instead of a pattern item.
Device settings are automatically set according to the created flow rules.

L2_TUNNEL to VOID — VXLAN (or others)

All packets are matched. This type alters incoming packets to encapsulate them in a chosen tunnel type, optionally
redirect them to a VF as well.

The destination pool for tag based forwarding can be emulated with other flow rules using Action: DUP.

Table 4.48: L2_TUNNEL conversion

Pattern Actions
spec | N/A

0 | VOID | 1ast | N/A | VXLAN, GENEVE, ...
mask | N/A

1 VF (optional)

2 END END

4.9 Cryptography Device Library

The cryptodev library provides a Crypto device framework for management and provisioning of hardware and soft-
ware Crypto poll mode drivers, defining generic APIs which support a number of different Crypto operations. The
framework currently only supports cipher, authentication, chained cipher/authentication and AEAD symmetric Crypto
operations.

4.9.1 Design Principles

The cryptodev library follows the same basic principles as those used in DPDKs Ethernet Device framework. The
Crypto framework provides a generic Crypto device framework which supports both physical (hardware) and virtual

4.9. Cryptography Device Library 301

dpdk, Release 0.11

(software) Crypto devices as well as a generic Crypto API which allows Crypto devices to be managed and configured
and supports Crypto operations to be provisioned on Crypto poll mode driver.

4.9.2 Device Management
Device Creation

Physical Crypto devices are discovered during the PCI probe/enumeration of the EAL function which is executed
at DPDK initialization, based on their PCI device identifier, each unique PCI BDF (bus/bridge, device, function).
Specific physical Crypto devices, like other physical devices in DPDK can be white-listed or black-listed using the
EAL command line options.

Virtual devices can be created by two mechanisms, either using the EAL command line options or from within the
application using an EAL API directly.

From the command line using the —vdev EAL option

—-—vdev 'cryptodev_aesni_mb_pmd0, max_nb_qgueue_pairs=2,max_nb_sessions=1024, socket_id=0

'
—

Our using the rte_eal_vdev_init API within the application code.

rte_eal_vdev_init ("cryptodev_aesni_mb_pmd",
"max_nb_queue_pairs=2,max_nb_sessions=1024, socket_id=0")

All virtual Crypto devices support the following initialization parameters:
* max_nb_qgueue_pairs - maximum number of queue pairs supported by the device.
* max_nb_sessions - maximum number of sessions supported by the device

e socket_1id - socket on which to allocate the device resources on.

Device ldentification

Each device, whether virtual or physical is uniquely designated by two identifiers:
* A unique device index used to designate the Crypto device in all functions exported by the cryptodev APL.

* A device name used to designate the Crypto device in console messages, for administration or debugging pur-
poses. For ease of use, the port name includes the port index.

Device Configuration

The configuration of each Crypto device includes the following operations:
¢ Allocation of resources, including hardware resources if a physical device.
* Resetting the device into a well-known default state.
* Initialization of statistics counters.

The rte_cryptodev_configure API is used to configure a Crypto device.

int rte_cryptodev_configure (uint8_t dev_id,
struct rte_cryptodev_config xconfiqg)

302 Chapter 4. 4it2#5r

dpdk, Release 0.11

The rte_cryptodev_config structure is used to pass the configuration parameters. In contains parameter for
socket selection, number of queue pairs and the session mempool configuration.

struct rte_cryptodev_config {
int socket_id;
/#*#+< Socket to allocate resources on #*/
uintl6_t nb_queue_pairs;
/#*#+< Number of queue pairs to configure on device #*/

struct {
uint32_t nb_obijs;
uint32_t cache_size;
} session_mp;
/#*#+< Session mempool configuration */

}i

Configuration of Queue Pairs

Each Crypto devices queue pair is individually configured through the rte_cryptodev_queue_pair_setup
API. Each queue pairs resources may be allocated on a specified socket.

int rte_cryptodev_queue_pair_setup (uint8_t dev_id, uintl6_t queue_pair_id,
const struct rte_cryptodev_gp_conf xgp_conf,
int socket_id)

struct rte_cryptodev_gp_conf {
uint32_t nb_descriptors; /#x*< Number of descriptors per queue pair x/

}i

Logical Cores, Memory and Queues Pair Relationships

The Crypto device Library as the Poll Mode Driver library support NUMA for when a processor’s logical cores and
interfaces utilize its local memory. Therefore Crypto operations, and in the case of symmetric Crypto operations, the
session and the mbuf being operated on, should be allocated from memory pools created in the local memory. The
buffers should, if possible, remain on the local processor to obtain the best performance results and buffer descriptors
should be populated with mbufs allocated from a mempool allocated from local memory.

The run-to-completion model also performs better, especially in the case of virtual Crypto devices, if the Crypto
operation and session and data buffer is in local memory instead of a remote processor’s memory. This is also true for
the pipe-line model provided all logical cores used are located on the same processor.

Multiple logical cores should never share the same queue pair for enqueuing operations or dequeuing operations on
the same Crypto device since this would require global locks and hinder performance. It is however possible to use a
different logical core to dequeue an operation on a queue pair from the logical core which it was enqueued on. This
means that a crypto burst enqueue/dequeue APIs are a logical place to transition from one logical core to another in a
packet processing pipeline.

4.9.3 Device Features and Capabilities

Crypto devices define their functionality through two mechanisms, global device features and algorithm capabilities.
Global devices features identify device wide level features which are applicable to the whole device such as the device
having hardware acceleration or supporting symmetric Crypto operations,

4.9. Cryptography Device Library 303

dpdk, Release 0.11

The capabilities mechanism defines the individual algorithms/functions which the device supports, such as a specific
symmetric Crypto cipher or authentication operation.

Device Features

Currently the following Crypto device features are defined:
e Symmetric Crypto operations
* Asymmetric Crypto operations
¢ Chaining of symmetric Crypto operations
* SSE accelerated SIMD vector operations
e AVX accelerated SIMD vector operations
* AVX2 accelerated SIMD vector operations
e AESNI accelerated instructions

* Hardware off-load processing
Device Operation Capabilities
Crypto capabilities which identify particular algorithm which the Crypto PMD supports are defined by the operation

type, the operation transform, the transform identifier and then the particulars of the transform. For the full scope of
the Crypto capability see the definition of the structure in the DPDK API Reference.

struct rte_cryptodev_capabilities;

Each Crypto poll mode driver defines its own private array of capabilities for the operations it supports. Below is
an example of the capabilities for a PMD which supports the authentication algorithm SHA1_HMAC and the cipher
algorithm AES_CBC.

static const struct rte_cryptodev_capabilities pmd_capabilities[] = {
{ /% SHA1l HMAC x*/
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
.auth = {

.algo = RTE_CRYPTO_AUTH_SHA1l_HMAC,
.block_size = 64,

.key_size = {
.min = 64,
.max = 64,
.increment = 0
}I
.digest_size = {
.min = 12,
.max = 12,
.increment = 0
}I
.aad_size = { 0 }
}
}
}I
{ /% AES CBC */

.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,

304 Chapter 4. HTEEE

dpdk, Release 0.11

.sym = {
.xform_type = RTE_CRYPTO_SYM XFORM_CIPHER,
.cipher = {
.algo = RTE_CRYPTO_CIPHER_AES_CBC,
.block_size = 16,
.key_size = {
.min = 16,
.max = 32,
.increment = 8
}I
.iv_size = {
.min = 16,
.max = 16,
.increment = 0

Capabilities Discovery

Discovering the features and capabilities of a Crypto device poll mode driver is achieved through the

rte_cryptodev_info_get function.

void rte_cryptodev_info_get (uint8_t dev_id,

struct rte_cryptodev_info xdev_info);

This allows the user to query a specific Crypto PMD and get all the device features and capabilities. The

rte_cryptodev_info structure contains all the relevant information for the device.

struct rte_cryptodev_info {
const char xdriver_name;
enum rte_cryptodev_type dev_type;
struct rte_pci_device xpci_dev;

uint64_t feature_flags;
const struct rte_cryptodev_capabilities
unsigned max_nb_gueue_pairs;
struct {
unsigned max_nb_sessions;

} sym;
bi

xcapabilities;

4.9.4 Operation Processing

Scheduling of Crypto operations on DPDK'’s application data path is performed using a burst oriented asynchronous
API set. A queue pair on a Crypto device accepts a burst of Crypto operations using enqueue burst API. On physical
Crypto devices the enqueue burst API will place the operations to be processed on the devices hardware input queue,
for virtual devices the processing of the Crypto operations is usually completed during the enqueue call to the Crypto
device. The dequeue burst API will retrieve any processed operations available from the queue pair on the Crypto

4.9. Cryptography Device Library

305

dpdk, Release 0.11

device, from physical devices this is usually directly from the devices processed queue, and for virtual device’s from a
rte_ring where processed operations are place after being processed on the enqueue call.

Enqueue / Dequeue Burst APIs

The burst enqueue API uses a Crypto device identifier and a queue pair identifier to specify the Crypto device queue
pair to schedule the processing on. The nb_ops parameter is the number of operations to process which are supplied
in the ops array of rte_crypto_op structures. The enqueue function returns the number of operations it actually
enqueued for processing, a return value equal to nb_ops means that all packets have been enqueued.

uintl6_t rte_cryptodev_enqueue_burst (uint8_t dev_id, uintlé_t gp_id,
struct rte_crypto_op **ops, uintl6_t nb_ops)

The dequeue API uses the same format as the enqueue API of processed but the nb_ops and ops parameters are
now used to specify the max processed operations the user wishes to retrieve and the location in which to store them.
The API call returns the actual number of processed operations returned, this can never be larger than nb_ops.

uintl6_t rte_cryptodev_dequeue_burst (uint8_t dev_id, uintlé_t gp_id,
struct rte_crypto_op **ops, uintl6_t nb_ops)

Operation Representation

An Crypto operation is represented by an rte_crypto_op structure, which is a generic metadata container for all nec-
essary information required for the Crypto operation to be processed on a particular Crypto device poll mode driver.

The operation structure includes the operation type and the operation status, a reference to the operation specific data,
which can vary in size and content depending on the operation being provisioned. It also contains the source mempool
for the operation, if it allocate from a mempool. Finally an opaque pointer for user specific data is provided.

If Crypto operations are allocated from a Crypto operation mempool, see next section, there is also the ability to
allocate private memory with the operation for applications purposes.

Application software is responsible for specifying all the operation specific fields in the rte_crypto_op structure
which are then used by the Crypto PMD to process the requested operation.

Operation Management and Allocation

The cryptodev library provides an API set for managing Crypto operations which utilize the Mempool Library to
allocate operation buffers. Therefore, it ensures that the crytpo operation is interleaved optimally across the channels
and ranks for optimal processing. A rte_crypto_op contains a field indicating the pool that it originated from.
When calling rte_crypto_op_~free (op), the operation returns to its original pool.

extern struct rte_mempool =

rte_crypto_op_pool_create (const char rname, enum rte_crypto_op_type type,
unsigned nb_elts, unsigned cache_size, uintlé6_t priv_size,
int socket_id);

During pool creation rte_crypto_op_init () is called as a constructor to initialize each Crypto operation which
subsequently calls __rte_crypto_op_reset () to configure any operation type specific fields based on the type
parameter.

306 Chapter 4. HTEEE

dpdk, Release 0.11

rte_crypto_op_alloc() and rte_crypto_op_bulk_alloc () are used to allocate Crypto operations of
a specific type from a given Crypto operation mempool. __rte_crypto_op_reset () is called on each operation
before being returned to allocate to a user so the operation is always in a good known state before use by the application.

struct rte_crypto_op *rte_crypto_op_alloc(struct rte_mempool *mempool,
enum rte_crypto_op_type type)

unsigned rte_crypto_op_bulk_alloc (struct rte_mempool *mempool,
enum rte_crypto_op_type type,
struct rte_crypto_op **ops, uintl6_t nb_ops)

rte_crypto_op_free () is called by the application to return an operation to its allocating pool.

void rte_crypto_op_free (struct rte_crypto_op *op)

4.9.5 Symmetric Cryptography Support

The cryptodev library currently provides support for the following symmetric Crypto operations; cipher, authentica-
tion, including chaining of these operations, as well as also supporting AEAD operations.

Session and Session Management

Session are used in symmetric cryptographic processing to store the immutable data defined in a cryptographic trans-
form which is used in the operation processing of a packet flow. Sessions are used to manage information such as
expand cipher keys and HMAC IPADs and OPADs, which need to be calculated for a particular Crypto operation, but
are immutable on a packet to packet basis for a flow. Crypto sessions cache this immutable data in a optimal way for
the underlying PMD and this allows further acceleration of the offload of Crypto workloads.

The Crypto device framework provides a set of session pool management APIs for the creation and freeing of the
sessions, utilizing the Mempool Library.

The framework also provides hooks so the PMDs can pass the amount of memory required for that PMDs private
session parameters, as well as initialization functions for the configuration of the session parameters and freeing
function so the PMD can managed the memory on destruction of a session.

Note: Sessions created on a particular device can only be used on Crypto devices of the same type, and if you try to
use a session on a device different to that on which it was created then the Crypto operation will fail.

rte_cryptodev_sym_session_create () is used to create a symmetric session on Crypto device. A sym-
metric transform chain is used to specify the particular operation and its parameters. See the section below for details
on transforms.

struct rte_cryptodev_sym_session % rte_cryptodev_sym_session_create (
uint8_t dev_id, struct rte_crypto_sym_xform xxform);

Note: For AEAD operations the algorithm selected for authentication and ciphering must aligned, eg AES_GCM.

Transforms and Transform Chaining

Symmetric Crypto transforms (rte_crypto_sym_xform) are the mechanism used to specify the details of the
Crypto operation. For chaining of symmetric operations such as cipher encrypt and authentication generate, the next
pointer allows transform to be chained together. Crypto devices which support chaining must publish the chaining of
symmetric Crypto operations feature flag.

4.9. Cryptography Device Library 307

dpdk, Release 0.11

Currently there are two transforms types cipher and authentication, to specify an AEAD operation it is required to chain
a cipher and an authentication transform together. Also it is important to note that the order in which the transforms
are passed indicates the order of the chaining.

struct rte_crypto_sym_xform {
struct rte_crypto_sym_xform *next;
/**< next xform in chain =*/
enum rte_crypto_sym_xform_type type;
/*#+< xform type */
union {
struct rte_crypto_auth_xform auth;
/*%< Authentication / hash xform x/
struct rte_crypto_cipher_xform cipher;
/*#+< Cipher xform #*/
i
bi

The API does not place a limit on the number of transforms that can be chained together but this will be limited by the
underlying Crypto device poll mode driver which is processing the operation.

Symmetric Operations

The symmetric Crypto operation structure contains all the mutable data relating to performing symmetric crypto-
graphic processing on a referenced mbuf data buffer. It is used for either cipher, authentication, AEAD and chained
operations.

As a minimum the symmetric operation must have a source data buffer (m_src), the session type (session-based/less),
a valid session (or transform chain if in session-less mode) and the minimum authentication/ cipher parameters required
depending on the type of operation specified in the session or the transform chain.

struct rte_crypto_sym _op {
struct rte_mbuf *m_src;
struct rte_mbuf *m_dst;

enum rte_crypto_sym oOp_sess_type type;

union {
struct rte_cryptodev_sym_session *session;
/*+< Handle for the initialised session context =/
struct rte_crypto_sym_ _xform xxform;
/*#+< Session-less API Crypto operation parameters #*/
}i

struct {
struct {
uint32_t offset;
uint32_t length;
} data; /#+#< Data offsets and length for ciphering #*/

struct {
uint8_t +data;
phys_addr_t phys_addr;
uintlé6_t length;
} oiv; /#+#< Initialisation vector parameters */
} cipher;

308 Chapter 4. HTEEE

dpdk, Release 0.11

struct {
struct {
uint32_t offset;
uint32_t length;
} data; /#+#+< Data offsets and length for authentication x/

struct {
uint8_t xdata;
phys_addr_t phys_addr;
uintl6_t length;
} digest; /##< Digest parameters x*/

struct {
uint8_t xdata;
phys_addr_t phys_addr;
uintlé6_t length;
} aad; /**< Additional authentication parameters x/
} auth;

4.9.6 Asymmetric Cryptography

Asymmetric functionality is currently not supported by the cryptodev APIL.

Crypto Device API

The cryptodev Library API is described in the DPDK API Reference document.

4.10 $5 48 EPMD

BT BT ER A S PR R RS i B IR BN AR (PMD) 2 4h, DPDKGL G HE — N, Al 24N
FEPMD4 & 7£ — L LA G BB FHEPMD -

Fig. 4.23: Bonded PMDs

Link Bonding PMDJ%E (librte_pmd_bond) 3¢ 7 4% & A 7] 3 5 F A T frte_eth_deviii H 4H, DLEZ it 28 {1
FLinuxBEWNEFHRINEE, DAFREZD (NE) NICRE RS ST PR BB HEED -
WRIa, FHER G FIPMDRRIEFE E M #R BRSO B S e O, DISCHRFIT R EER, , A5 A0/ A 8 #5551
HE -

librte_pmd_bondE S H—1CIEF APL, &M TOIEHEXFMAPL, LUKHELEFIE L E i N E %
FHHIAPIL -

Note: EBX 40 EPMDE BN B M T A M B B X HF B A, W LGET X
‘E CONFIG_RTE_LIBRTE_PMD_BOND = n{ B #14#1¥DPDK 24 Fi% 7 -

4.10. BERXSREPMD 309

dpdk, Release 0.11

4.10.1 R e A

HHI, Link Bonding PMDJZ 3#7 LL T M K40 E 1=
« Bl (8E=X0)

Fig. 4.24: Round-Robin (Mode 0)

R g NS — AT & B R e — DI R Rk 6, DUR B BCP B A es - R a2 M
BRI, IRJ5 DR T AR MRS - ZMEREURREREEWEIRIR R TP, MM ZEELL
BELFEIEE -

- sy (BEX) -

Fig. 4.25: Active Backup (Mode 1)
AT, FEARMAET] R — D AR & TESPIRE, 2 B SEiERMR & & E RN, RE M
WEASEIE, WM AR AR A - B BEHE RO KIMACHIE R BEE—PNIC (fiH) AR
AT, DLBER RS A HRYEYE - to avoid confusing the network switch.

o AR

Fig. 4.26: Balance XOR (Mode 2)

B CIR A ek A Bt (BT ATk A mEns) MAs - BOAER (ayer2) & TIRSCRAIRAMH
PRMACHI L) fa] B8 LR S8 8 508 AT TR B MR & IVRE,, SRR (0 R B e s &t AT ki - b
SRR B SRIE R L2 + L3, XRFIPYRAN B bRtk A F % Mo D AT 3R, AR ZSCRF A0SR 2 L3 +
L4)Z, X {EFHIPYEFT B Rttt LU TCP / UDPIEAT B s [#E A Ti15 -

Note: FRICHIE (25 TIRA I BEEE i (R SR T S AN F L 0 25

o JTRESRHE:
o FERERA802.3AD:
o &5 R BRI RS

4.10.2 SEILAHTY

librte_pmd_bond4 i€ % & 5 DPDK APIZ 7% H iR B LK I PMD S Hi 1 LUK 9 1% & APTHEZS -

HE 1% 90 FE S FF EEALW) UG 10 A 18] 6 B R P JE B B A B —vdev 3% T DL A E S CHE E APIEE 1
rte_eth_bond_create BRE LAGRFE 77 2B RGP E BN -

UL E IR S FFH R O rte_eth_bond_slave_add / rte_eth_bond_slave_removeSEHN S SRINAIRZ Bk -

TERB MBS NINEN S B 85, MR & Frte_eth_dev_stopf& 1k, SR /5 {# Frte_eth_dev_configurei?F 47 & Hrid
B, tr] LUff Hrte_eth_tx_queue_setup / rte_eth_rx_queue_setup B FHT AL ERXFITXINSY, HELEH TE BHE
WENSE . MREHEREIRSS, MU R Wl R A HTEE - RBERATREEHE
FIRSSHIZ NSRS, HZE 2 BEARSSTIEE, HIHAE M EE#HS EEER D . sl BEREHTX -
Ui I8, F AR 7 SE LA M b _E FIRSSHLE: -

WERFIIEE B CRSSIEMA, HIRETA, RSSEFMACHIRSSHH, HTREEMKE - XutiEh
TRHEREMRSSECE NS SUE N BME (Eh— 1 870) MIRECE, MAERETMNENE . &
B OR— B BRI -

310 Chapter 4. 4it2#5r

dpdk, Release 0.11

Fig. 4.27: Broadcast (Mode 3)
IXFRIE B 7R AT R &l O R AR RS B

Fig. 4.28: Link Aggregation 802.3AD (Mode 4)
AR IR ES02. 3ad VT IR Mt T BN SHERE IR & - T {50 F AT e 3 1y 120 455 3% a0 SRS SHE ol 7o 7R 1 40 L =] 5o 5
WILHENRAE, LUPFEHORE -
IXFRIE T T DPDK SE PN B FFE P4 it T — LeBm o sk
1. T Hrte_eth_tx_burstflirte_eth_rx_burst, [B]F@ATE/NF100ms -
2. irte_eth_tx_burstHI iV FH L2/ BN X K/, HANE ML X RLACPI TR 12
& . BINLACPEIBEE M B EESIHERT, HASIREANHARET -

F T 9878 ¥ & WIRSSHUS eR KU £, 2 BT 40 7€ M ol STHF HIRSSHA 7 bR KUY B K% & « RETAK/INEH
HRETAR/NIGCD, [HILE]fE NJBRETAR K/, Bt AT DUt A (EER B AT 0 it . ansRix
AR EB I ERSSHE, MIFENSE LA, FH HAHR&E BN ER -

FrE R BRI 0 H APDAFT B, HIREH— D RfEE (NBEEIN) -

BRI EZ T 51

BE BRI 8 R A SCRPBE IR S B U mI AT Y, 4 Frte_eth_dev_callback _register¥ 1, 40 & AR K
A, CRER L R BT AR - B, EREIMMRERIHERET, LA ML AEERR,
BERHIRASZ NDOWN, & — P NI &Z R IHSRAER, BERRASHZNUP. = B & HHCREHF A
AR SERT SRR, R EVEER - R P A AR i, M E T2 AT B 5 % IS EE A R
I

BB EELIHFALHAER RSN TAIHLLEN RS, X 28T MHHE
M rte_eth_bond_link_monitoring_seti% & I J& 3 #1815 & 55 MR SR SL B AT, BRIAES 18 (8] B& H10ms - 24
BEVE M ZRINE S E XS, [HRTE_PCI_DRV_INTR_LSCHR: & i 1K & 12 3035 A 2 8 710
e U5 PR EE IR

BRE PR

I 5 B SR T B A T e VB O MR B SR AR (R — DR i e - S0 Bt NI BN e sl A
AR — MESI I & EARGX B, IRIEIRINEI R E 5 & HIFTH HAb MR & AT RRX 55 -
PWERXEARGBNZHE], LHEDL—PNEE .

TR E YR E R F BN SRSSECEIRE, 107 TR M N I B ARSSREN FISCFFH), 2AF
— MBS R AT T EANT . VR = BT B SCRAR R H 28 /NS 4 AT LU EGRS S 8 -

T BT RSN T A R A AT E, — BRSNS E X &, RSSELE N iE i 41 7€ 1%
FAPLHATEH, MAZERZANSE LHITEH .

T%E?f%gPMD%‘i , PMDS TR DI EEARZ TR RE, BUE NS ENFZEZ L EHAT I UBRIER
—HR 5 -

Fig. 4.29: Transmit Load Balancing (Mode 5)

PR AL H B R U8 - AR TR AU s S B MU 2 A - LAL0Oms Y 18] B Wi SR 5T 14k
B, B 10msPEHE—IR -

4.10. HERYEPMD 311

dpdk, Release 0.11

ERZIEEH)Z . PMDIEEWIHEEE B CEFNAE X & 25 NROZ BRI & EHORA . FOVEREMN
MBS ER AN AT T8 8 B i -

[

B B 4T B 1% 25 1 Frte_eth_bond_create APIO#E , ZAPIFHREZ AM—INX &L, HFERKXMEEFIDFR S
TR e 1 s I BEIR - eI EM AL E SRR EMEZE, N, AP E XEMACH KL, &L T
P X ORI D 75 B8 B FH A% B SRS

NS

YR B SRR R AW T &, xR E WRTE_MAX_ETHPORTS - & DL % & AT LIAE 9 A&
BIRINB R EZ — MIERE L MREEWINAL E R &I E I E NI ENEE .

G 5 PR UERF R & FIMACHI IR IR 18] 51 HL SRR (A -
EMN

FENRAATE U ERELT E &t (RN I EHRBOIAN O . 2 B0 287 3235 1 SRR,
A AR D - RAPEEREEmA, ME RIS E &S — iR -

MACH: 11t

G e s AT LABCE A P 16 € FOMACHIIE , 123 R i S L8 s B A MBS A IR TR BR (R - QiR & i
TEH&EHEN, WAEFEREEGHFIEENMAC, FTE H MM &R OR E H R IAMACHEE - 7R
70,2349, FrA NS s #REC & T 48 5E i FIMACHEL -

ARRARSE SR P E LEIMACHELE, T4 RE % & RO B = M BEMACHE A -

K5 XORMET 1% i S

K TSI BEXORBEA TsIT I E &, B3NSR mEn . 22, R2+3, B3+4-

* Layer 2: BRIARI(E RSB LUK B TMACHIIE AU B 50 - X6 ATRMACHAEF] H AIMACHE 41
fERE A RXORITR, R ITEZERNEL, LT ERZE AR R A& -

* Layer 2 + 3: LUKMMACH! 1A TIP3 41k A5 85 SIS 68 FHVR/ H AIMACHE AU 6 YR/ B ROIPHE 1L
H A AR E BE B B s A i

* Layer 3 + 4: IPHUIEMIUDPZ: T i [FR)2 685 S (5 FH R/ H ATk AN £ £ RO RSE 61 1078/ H FIUDP
I HZH & AR E R R 1 & B B A sE i 1

JITH X LL SRR HR 2 77802.1Q VLAN LUK MR L, 18 #FIPv4, IPv6FAIUDPHIGHAT A7 1H -

4.10.3 {8 SP B x5

librte_pmd_bond 32 7 i s £ BIEEREEC, 7S H S BEHIC APIE i FIEAL i <17 7 R AR Fe A s S D
ERERRAE A . HBALEI, ATLLEMM AR E IR, AT EEAPIEEEIR, Flan, ATl
FEFXFIDIRER I ETIRE (WEBh& D) BINEIAN T BEERAIE AR L -

312 Chapter 4. 4it2#5r

dpdk, Release 0.11

R 7 H i R A A BE 5

{# Flibrte_pmd_bondZEAPI,] LLTEARART N AR T N B SO E B B 1x & - BRI Ex &
Frte_eth_bond_create APIB %, ZAPIFREM —HXELW, ATWHREEEMERBSERES, LUK
BEHESBEEXERIRMEZFTID. ERDCBREREZE, LOUFE B LUK M Z & EAPT
rte_eth_dev_configures KAt B, R J5 1# Frte_eth_tx_queue_setup/rte_eth_rx_queue_setup¥f 2= {# FH AFIRXFITXEA
G FHITIRE -

] LAf# Frte_eth_bond_slave_add/rte_eth_bond_slave_remove APIX & B 48 B & & oh S o b Mk &, B
FEf#H Frte_eth_dev_start/5 S EE A B & Z BT, WE/DIRIN—1 MK & -

S0 E LA B BE IR AS FH H MBS A O BE BRSO E , ISR AT WA BE IR S E G i, B B st
BERRADE VLR PIER, TR E B OBE RIS U DOWN -

AT LU 3L Arte_eth_bond_mode_set/ get, rte_eth_bond_primary_set/get, rte_eth_bond_mac_set/reset7FlJrte_eth_bond_xmit_p(

H B/ B AR E B A TR R SR BCE -

FEEAL A AT P {5 I BE RS SR e 8L A

S B 40 8 B] LUTE N B AR 7 8 BB Bl —vdev EAL AT 1RO - 1% %5 2 FR 2070 LAnet_bonding fif 25
Sk, EREFSFES .. BPRERNEWDIUEE—F . BMEETEZ %0, LLHES 2R -
7] L IR A B —vdevii B ZHELS % & 8 -

WALV R IZ 5 08, a0 N FTs:

SRTE_TARGET/app/testpmd -1 0-3 -n 4 —--vdev 'net_bond0,bond_opt0=..,bond optl=.."'--
—vdev 'net_bondl,bond _optO=..,bond_optl=.."
B B 90 € EALIET

SEGESFLUN BRI, AT AN 2R SO = &

o JRHLT — PR A R, R Junet_bondingX, HAXALUERRT RIS T BIOEREE, IR
RFRDFH -

o BOE R E SRR D Nt -
o RBLT P BRI E B A MR ER .
AR HE T L F

o W B SORE A EHAREEUE . BHESORER0,1,234,5 (TBEF, Tah&ln, P, 7, BER
Re, hwngsat) -

mode=2

o WK BICEENMNKERINEGEIXSHIPMDX & - 7] LEZOEREIET, &M &EEN MK
FUNIN o WP A N AT HPCIHBIEFE E , #%3X°h domain:bus:devid.function -

slave=0000:0a:00.0,slave=0000:0a:00.1 ‘

o ik EXENAWIESBATES & HE, DEELIETX / RXATHARHEFEMNL . 2L
Uit AR R P RE U, 23 O B TR B M IMACHEHE . WSRRIRE %R &, MIBIARIRINE%
FRE—DIRE - ERFLAEIE R EHINBE -

primary=0000:0a:00.0

4.10. HERYEPMD 313

dpdk, Release 0.11

o Socket_id: F[IEZEL, FTIRFENUMAIK & 54 E98 & % & IR BT .

socket_id=0

« Mac: FlESEL, EFEBERADE B A IIMACHITE, ORI 3 IR HIME -

’mac:OO:le:67:ld:fd:1d

|

* xmit_policy: 7€ i3t 7 40 T ¥ 15 U 5@ SUI% M SR g i) a2 50 - i RIE P fEE, IBOA
2 (2R) ek, HAMFTRRRESRIS 123 (E2243/2) B4R (3+4/2)

’xmitipolicy2123

|

* Isc_poll_period_ms: F[I%EZEL, FTE XA Flsc W% & L0 AL R ARG, ik &5
FIRHIZRAL -

’lsc_poll_period_mszloo

* ups delay: FIEZHL, N TR FHERCRSEERER (DB hac) AR TZSHEANE -

’upﬁdelay:lo

|

M

o down_delay: FI3EZ%L, DIZMOMEAL, R &sis I -SDOWNRIERH#EER, BOAEIL T, %SE0y

<L

’down_delay:50

58 FH S

DU B — MRS, D& I EPCIBIETEE

SRTE_TARGET/app/testpmd -1 0-3 -n 4 —--vdev 'net_bond0,mode=0, slave=0000:00a:00.01,
—slave=0000:004:00.00" -- ——-port-topology=chained

ARSI B — g s, E AP il f HPCI AN B S5 MACHBIEFE € :

SRTE_TARGET/app/testpmd -1 0-3 -n 4 —--vdev 'net_bond0,mode=0, slave=0000:00a:00.01,
—~s1lave=0000:004:00.00,mac=00:1e:67:1d:£fd:1d"'" —-- —--port-topology=chained

Create a bonded device in active backup mode with two slaves specified, and a primary slave specified by their PCI
addresses:

SRTE_TARGET/app/testpmd -1 0-3 -n 4 —--vdev 'net_bond0,mode=1, slave=0000:00a:00.01,
—slave=0000:004:00.00,primary=0000:00a:00.01" -- —--port-topology=chained

PR T A — e RS, HAR N NS EPCHIETEE, 263 + 4Z E RN

SRTE_TARGET/app/testpmd -1 0-3 -n 4 —--vdev 'net_bond0,mode=2, slave=0000:00a:00.01,
—slave=0000:004:00.00,xmit_policy=134"' -- —--port-topology=chained

4.11 ENESE

FEI #RE A DPDKHVT TR E I 25 IR S5, S HUIT ST m] LA P R R R T [E1 R pR - 7 I 2 2 BRI
W

314 Chapter 4. HTEEE

dpdk, Release 0.11

o SERTER AT DUREHAT, e IgUT—Ik.

o ERER A IE— ML OIEHES — % OHUT - B2 E R Hrte_timer_reset)FIEE T -

o ERERIRMEEE (BURTREARMAZ O ENR 252 B M rte_timer_manage() IR FHMZE) -

o MBS AREFARE, WLIEGRFN A EN S, 3 BAEFH R Frte_timer_manage()I2E AL

SE I 2% 22 {3 Fiirte_get_timer_cycles QK BURI % LS €I &% (HPET) EUCPUR A BIT¥eEs (TSC) FRHEHAT
2% -

WERRAE TN, MIBRFIE S 5 € as IEE 0 - APIEE T BSD callout(), SH-BER . FMIES %

callout manual.

4.11.1 SEPLAHTY
SERTEE DU AB B B M AT IR, — B A AT R R ERT 8, R E A S I
AN BRER EEAB L -

FRff FHBRER R E T 12, BHFENFEHLUANIBERERESNEL - Le%ﬁﬂ?ﬁ%ﬁﬁwi’f?
FOEH, BAMFEFMNEZERETE 2, BIMFINEKBEETHENZ, % . RN, XBWKE
MIB R () G B 2891 26 FR R I AN BR 55 H AT LA log()B R N 525, %4 A 10055 H ., BB B BN
1,000,000 T 25 -

ERT SR & — DR ISR B, R ENZHIRA (stopped, pending, running, config) MEFTH
% (lcoreid) HIERAE . MIFER PR, AT LIELE € 23 A E B EET IR

« STOPPED: &HFTE#H, NHEEERT .

 CONFIG: HH—"MZH%FH, HMZHMZAGEEN, E'T\T TET BER T BOR T LART PR
 PENDING: Hi—"MBHZFrE, HMZBIENREN, BEAE TR BORT LTS -
« RUNNING: H—"MZHEEFE, HMZEAAGRBn, E:.T TETBER P EUR T LA IR -

AN A VR 1 T8 B 2% 40 T CONFIGERUNNINGHR 25 B & 037 51 45 15 78 B 2% o 18 20CE B 28 RS e, N AF
FCAPTE SRR SELIRIE CRE+PTEE) 2R FIRIE.

fErte_timer_manage() R AU, BEERFEIENHMAEER, B ER S A TR 285 HiUFH0ZEBEFRIET,
BHEER M ARAEZE NI . HIRPESRE, HE2REEMEEHERN SRR, N TRE MR, 5B
— N ERT 2845 B BRI HAR B AR ES NS EATE 237 KRG AR G INER - E6afi P& L, TUEERE
Al , TETXNENERFTHE . (BTRNAR B4R 64N B, FTLUERMNFE B EEZE T
TR, MAERH (CAS) feL RS, Kb, —BEEIRSWH LB, LAY R Bk -)
f64ﬂﬁﬂ32ﬂ$‘ﬂ: R AT 2SR NSRBI, Xrte_timer_manage () AR EHHR
BT AHFATHUE -

4.11.2 A
SERTESEEE T SR, WSS LR SHL (ARP, M%)

4.11.3 &%

o callout manual - MLEETHEE, $RALER SI2HPUTHIThEE
« HPET - R EMEE S EREy (HPET) HIEE -

4.11. ERESFE 315

http://www.daemon-systems.org/man/callout.9.html
http://www.daemon-systems.org/man/callout.9.html
http://en.wikipedia.org/wiki/HPET

dpdk, Release 0.11

4.12 M7 E

DPDKFE Mt T — AT OIEMGARARAE, 164 R DA THEEL . WA R —H 5% BT #Rm
ALEEIRESHY, B4 HHME—KeybRii - v T 32 PERE, DPDKF& 7 ZR TR HIKey (HEH 50 7 O 2
TEE R T TR -

4.12.1 "5 7 APIEAR

a7y AL B S AT
« IBHFHEY (BHAETR) -
s Keyl)FT4L -
e 7A SRVFEL B — LRSS IAE R 24
o RiKey*& i M ia A MR 5 [E MG 7 B
a7 RS I BT IR A
o HHKeyERNZRH: Key[EENMIASE . WFFFHBENEMETE EKeyHIla A H, BECEHRE
EKeyE/‘J% B, WHRENZS B RACE - REBIETD), FlindTER AP MSE, MHhRE 7
o [EFHKeyMIBRScH: KeyEERHBIAZE . R A PRI BETEEKey 5% H ., M2 WA A iH R
é% B, HRENZFEBES A P HREIAE . RRA PIRE TR EKeyl5k B AR, WhRE—1 17

« FEfAKeyEH A H: KeyEIFNMASE . MRAERE (AfRGT) THREBEHEEKeyIFRE, MR
[BRME, BNERE (ERREGH) —PDifE-.

PR TIXEETTIE, APDERA IR T =%
o ffHKeyfprecomputed hash R EHARM/MIERSE H: Key M Hprecomputed hash#ERHIA o X SL1FH F
FRHHATERNE, RS 8 T -
o i FKey M AR AR BB NK H 18 HKey-valuelE W HEIA < X ¥ H AU #Key, 38 7] LU
fifi8byte I B2 — MEM AN EER 1785 (BRI 8byte) -
o FIRPIAETIIE S FF A LI HiKey - precomputed hashE{ Zdata -
oAb, APIELE —FMTE, AVAFERATERSIEH, LU ERENFEESMERE, ERAZRETE
5% 1R BRENTIRT -8, EEFRTLEANFETR . FER, HINEEHSTNRE @i
Br2skB) Miiks, HEEFEE N R EHAZRD8 M %E -
581 Key M RERASEFREIE AT LU A A H SRR T B, IR RIRIES SR ERENE I FEN
FrERRBIEAR, LU TR RAGIFIR, S8, WAEEFEEGRRAS .
L2 / L3%% & 7~ L FARE 7 v B PE A RARYE H LT A B bR iR BRI G SORF IR B R BN 0w 1 - 98
M, %FLF] DA TEERIFE, IR DR ERIR DT R 2 H A D REFIBH{E -

4.12.2 ZHBIHF

WMAEUESZHARBRSESFH, AEEREEL LA . HaefE B AR T 6 H 00— K £
fErte_hash_set_cmp_func(), BXEHE 1 HE LHIHEIIEE, SES— NREFRH (HILEZ #HEET
ANIFF) -

316 Chapter 4. 4it2#5r

dpdk, Release 0.11

4.12.3 SCHLAHTT

G RA M ER:

 BoARE-HEKE, #-DoA, BT EAEHERRENELIERE - FMFEEETER
%8 EKey M EZEFNRERS] (W NFNk) MEZANRIRSI -

o BIARBAFEERE TR T BFTE Key EUEH M H 5% Key M R EXAEUE -

I 75 & i F Cuckoo hash (Fi 5 S US1) T7iERMRR PR o X FAEME AKey, HM DA RERIM (EEFK
BRRAE) | HAiZKeyd] LIFFEERDH, FIRE S BiKey A HFEREMPHIRE o Sild%mt
TS| A E &% B BEATTIEM R, (@R AL 4% B SRR D29 e 7 T R 4% B Bok D> 24
s BB LIS R - e (R AL (FTECE) R AKey#e i 47 TiKey &4 - MRIMERR
ey 7 Key 2 2 0 I 7 M BB ESC O -

géuﬂﬁﬁ,%%ﬁm,W%ﬁﬁ&ﬁ@%ﬁﬁﬁﬁ&ﬁﬁ%ﬁ%@#%%ﬁ(ﬁ s BEEFET
B .

TR R P E, BRI B R4T T KeyE 4 5B DR 5 H A S BKey — A - XFTR
WIKey, FHii AKeysS K B R HKey 1T LEZEL R A Key FU4F 1184 5 K B A7 GERRIKey &4 0847 HUIR
BRHRELZHINSE . Fit, EIREREA I, (AR B 4 SEaiKey AR - 52 2 Key BT IR 6 5L
), B9k B F AR R DA Key (DR FTRER A MR 47 T4, REW TZAMA BRI R
HIE 5] AR R AL, AR D -

BRI

Bt EMOORR, FEFREFMEEIE . MRBLFMEAEIE, A THHEKey SR BEIKey 7 LB, I
IR [AR A B AN/ S 12 F S SRR AR (WREIEED) - WREANETRT, WEREDRE, 50
BHATHFRERE - WRBCFIRAL, Key X M5k H BN AER -

NN

BERBE -, KeybIREM R . WREWMTT D=8l WEE XM E L7 EEXE
. KeyfEUWE (WRBME) SAEMEIE - PRT, HFEBE - PRPOMENRIIEFELES KK
Lo WUEREAR T RO, MR G — 5% B BRI S IUR (UM E, IR 2RI Key NS — 7%
HEAE E . BHENERAE B—1%H) BB AR IR, WaERIRWEIEY, H N EmrEEL
P REEAMRS - WREUETEZ R, MREIRARS B FEEES . mRE, WEEHRFTRE
(Hi—A & HEER) | BRI BN - HER, REFTENREBIEES —KEF, &
IR, XA LA

FEIEFARFREREMF, LRGSR, HPEREFSBRITRIINE, M AKey NEEWR R - F
%%Mﬁwgﬁﬁ%ﬁﬁ%Fﬁﬁ%%%%%ﬂﬁﬁ,ﬁﬁ%ﬁﬁ&ﬁﬁ%%%ﬁ<Uw)ﬁﬁmﬁgmﬁ
TR -

4124 BHEPTHRIZHES X
W EETR, WRE — S EERR B M, T 5 A EEORE B, MEEOR B]
OIS Cuckoold 75 SEEL T ¥ e Z 4 AT I TERE X -

Wi, AP EEHRBINEL R BN, WHEEHERN AR EZN, B RS ATEENE, #FH
HREN BRI, FJE RN -

REERREHEMAN, FAMEELZFEZHEREME, HREAERMER-
R EIR TR R INE R G125 B ﬂﬁo

412, BAE 317

dpdk, Release 0.11

Table 4.49: Entry distribution measured with an example table with 1024

random entries using jhash algorithm

% Table used | % In Primary location | % In Secondary location
25 100 0

50 96.1 3.9

75 88.2 11.8

80 86.3 13.7

85 83.1 16.9

90 71.3 22.7

95.8 64.5 35.5

Table 4.50: Entry distribution measured with an example table with 1 mil-

lion random entries using jhash algorithm

% Table used | % In Primary location | % In Secondary location
50 96 4

75 86.9 13.1

80 83.9 16.1

85 80.1 19.9

90 74.8 25.2

94.5 67.4 32.6

Note: 3% F R {EE B A REYLEM G HJenkins B o £)P BRI R

4.12.5 . ok
W RTINS ST 2 T T E FE R - XFRIER DT, FASEAH A FE 8 5
TEETERM LR CH#HT, EIHE R ROBRIESE S9N H T2k B HEIRAITE 24 -

RS RN RS B EEEMRE, BTRMORERESZRERBNEE . MESFBORNER
TETNHEFR, $A{E N4,16,328064FT7 -
AT R EE R B G E SO N AIR SO IR — e 2 N F BRI AlKey, FTHARIRIE . — 1
151 {5 FH B IPANAE 5 E 8008 B 2K B DL N F B S HDiffServ STCZH: JRIPHELE, HARIPHBHE, ¥hi, VR

O, BEiregH .

DPDKMG 7 F it T —fud F A7 1A S DU R P R I AL - 287€ — 1 ECHSEI R, MR
FeRZ Ol S RAAFRE RS BB AN, FHRmEHEHRMLE N FESiKey + 17 T4

R B B R
* Add flow: FFHKeyiSINEING 7 WAGREIRAEARL, TGEHER DT FIFEE A TR e =85 5
PWERARBKOERORAE - B0, WAIMAW, s T8O TEERRNZHSE -
* Delete flow: M7 Pl BRifiKey - ARR BRI ERRL, W ERTTRIFREF s H LUES A
RERIIE B TR -

* Lookup flow: 7EM 75 & HifiKey - WIEIRFIIALEAR (EH)
FHOFAH - B (REHRRGT) ForHiiEdE s Em -

DUV FH 3R])6 S [P

318

Chapter 4. HTEEE

dpdk, Release 0.11

4.12.6 &%

* Donald E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching (2nd Edition), 1998,
Addison-Wesley Professional

4.13 Elastic Flow Distributor Library

4.13.1 Introduction

In Data Centers today, clustering and scheduling of distributed workloads is a very common task. Many workloads
require a deterministic partitioning of a flat key space among a cluster of machines. When a packet enters the cluster,
the ingress node will direct the packet to its handling node. For example, data-centers with disaggregated storage
use storage metadata tables to forward I/O requests to the correct back end storage cluster, stateful packet inspection
will use match incoming flows to signatures in flow tables to send incoming packets to their intended deep packet
inspection (DPI) devices, and so on.

EFD is a distributor library that uses perfect hashing to determine a target/value for a given incoming flow key. It
has the following advantages: first, because it uses perfect hashing it does not store the key itself and hence lookup
performance is not dependent on the key size. Second, the target/value can be any arbitrary value hence the system
designer and/or operator can better optimize service rates and inter-cluster network traffic locating. Third, since the
storage requirement is much smaller than a hash-based flow table (i.e. better fit for CPU cache), EFD can scale to
millions of flow keys. Finally, with the current optimized library implementation, performance is fully scalable with
any number of CPU cores.

4.13.2 Flow Based Distribution

Computation Based Schemes

Flow distribution and/or load balancing can be simply done using a stateless computation, for instance using round-
robin or a simple computation based on the flow key as an input. For example, a hash function can be used to direct a
certain flow to a target based on the flow key (e.g. h (key) mod n) where h(key) is the hash value of the flow key
and n is the number of possible targets.

Fig. 4.30: Load Balancing Using Front End Node

In this scheme (Fig. 4.30), the front end server/distributor/load balancer extracts the flow key from the input packet
and applies a computation to determine where this flow should be directed. Intuitively, this scheme is very simple and
requires no state to be kept at the front end node, and hence, storage requirements are minimum.

Fig. 4.31: Consistent Hashing

A widely used flow distributor that belongs to the same category of computation-based schemes is consistent
hashing, shown in Fig. 4.31. Target destinations (shown in red) are hashed into the same space as the flow keys
(shown in blue), and keys are mapped to the nearest target in a clockwise fashion. Dynamically adding and removing
targets with consistent hashing requires only K/n keys to be remapped on average, where K is the number of keys, and
n is the number of targets. In contrast, in a traditional hash-based scheme, a change in the number of targets causes
nearly all keys to be remapped.

4.13. Elastic Flow Distributor Library 319

dpdk, Release 0.11

Although computation-based schemes are simple and need very little storage requirement, they suffer from the draw-
back that the system designer/operator can’t fully control the target to assign a specific key, as this is dictated by
the hash function. Deterministically co-locating of keys together (for example, to minimize inter-server traffic or to
optimize for network traffic conditions, target load, etc.) is simply not possible.

Flow-Table Based Schemes

When using a Flow-Table based scheme to handle flow distribution/load balancing, in contrast with computation-
based schemes, the system designer has the flexibility of assigning a given flow to any given target. The flow table
(e.g. DPDK RTE Hash Library) will simply store both the flow key and the target value.

Fig. 4.32: Table Based Flow Distribution

As shown in Fig. 4.32, when doing a lookup, the flow-table is indexed with the hash of the flow key and the keys
(more than one is possible, because of hash collision) stored in this index and corresponding values are retrieved. The
retrieved key(s) is matched with the input flow key and if there is a match the value (target id) is returned.

The drawback of using a hash table for flow distribution/load balancing is the storage requirement, since the flow table
need to store keys, signatures and target values. This doesn’t allow this scheme to scale to millions of flow keys. Large
tables will usually not fit in the CPU cache, and hence, the lookup performance is degraded because of the latency to
access the main memory.

EFD Based Scheme

EFD combines the advantages of both flow-table based and computation-based schemes. It doesn’t require the large
storage necessary for flow-table based schemes (because EFD doesn’t store the key as explained below), and it supports
any arbitrary value for any given key.

Fig. 4.33: Searching for Perfect Hash Function

The basic idea of EFD is when a given key is to be inserted, a family of hash functions is searched until the correct hash
function that maps the input key to the correct value is found, as shown in Fig. 4.33. However, rather than explicitly
storing all keys and their associated values, EFD stores only indices of hash functions that map keys to values, and
thereby consumes much less space than conventional flow-based tables. The lookup operation is very simple, similar
to a computational-based scheme: given an input key the lookup operation is reduced to hashing that key with the
correct hash function.

Fig. 4.34: Divide and Conquer for Millions of Keys

Intuitively, finding a hash function that maps each of a large number (millions) of input keys to the correct output value
is effectively impossible, as a result EFD, as shown in Fig. 4.34, breaks the problem into smaller pieces (divide and
conquer). EFD divides the entire input key set into many small groups. Each group consists of approximately 20-28
keys (a configurable parameter for the library), then, for each small group, a brute force search to find a hash function
that produces the correct outputs for each key in the group.

It should be mentioned that, since the online lookup table for EFD doesn’t store the key itself, the size of the EFD
table is independent of the key size and hence EFD lookup performance which is almost constant irrespective of the
length of the key which is a highly desirable feature especially for longer keys.

In summary, EFD is a set separation data structure that supports millions of keys. It is used to distribute a given key to
an intended target. By itself EFD is not a FIB data structure with an exact match the input flow key.

320 Chapter 4. 4it2#5r

dpdk, Release 0.11

4.13.3 Example of EFD Library Usage

EFD can be used along the data path of many network functions and middleboxes. As previously mentioned, it can
used as an index table for <key,value> pairs, meta-data for objects, a flow-level load balancer, etc. Fig. 4.35 shows
an example of using EFD as a flow-level load balancer, where flows are received at a front end server before being
forwarded to the target back end server for processing. The system designer would deterministically co-locate flows
together in order to minimize cross-server interaction. (For example, flows requesting certain webpage objects are
co-located together, to minimize forwarding of common objects across servers).

Fig. 4.35: EFD as a Flow-Level Load Balancer

As shown in Fig. 4.35, the front end server will have an EFD table that stores for each group what is the perfect hash
index that satisfies the correct output. Because the table size is small and fits in cache (since keys are not stored), it
sustains a large number of flows (N*X, where N is the maximum number of flows served by each back end server of
the X possible targets).

With an input flow key, the group id is computed (for example, using last few bits of CRC hash) and then the EFD
table is indexed with the group id to retrieve the corresponding hash index to use. Once the index is retrieved the key
is hashed using this hash function and the result will be the intended correct target where this flow is supposed to be
processed.

It should be noted that as a result of EFD not matching the exact key but rather distributing the flows to a target back
end node based on the perfect hash index, a key that has not been inserted before will be distributed to a valid target.
Hence, a local table which stores the flows served at each node is used and is exact matched with the input key to rule
out new never seen before flows.

4.13.4 Library API Overview

The EFD library API is created with a very similar semantics of a hash-index or a flow table. The application creates
an EFD table for a given maximum number of flows, a function is called to insert a flow key with a specific target
value, and another function is used to retrieve target values for a given individual flow key or a bulk of keys.

EFD Table Create

The function rte_efd_create () is used to create and return a pointer to an EFD table that is sized to hold up to
num_flows key. The online version of the EFD table (the one that does not store the keys and is used for lookups) will
be allocated and created in the last level cache (LLC) of the socket defined by the online_socket_bitmask, while the
offline EFD table (the one that stores the keys and is used for key inserts and for computing the perfect hashing) is
allocated and created in the LLC of the socket defined by offline_socket_bitmask. It should be noted, that for highest
performance the socket id should match that where the thread is running, i.e. the online EFD lookup table should be
created on the same socket as where the lookup thread is running.

EFD Insert and Update

The EFD function to insert a key or update a key to anew value is rte_efd_update (). This function will update an
existing key to a new value (target) if the key has already been inserted before, or will insert the <key,value> pair if this
key has not been inserted before. It will return O upon success. It will return EFD_UPDATE_WARN_GROUP_FULL
(1) if the operation is insert, and the last available space in the key’s group was just used. It will return
EFD_UPDATE_FAILED (2) when the insertion or update has failed (either it failed to find a suitable perfect hash
or the group was full). The function will return EFD_UPDATE_NO_CHANGE (3) if there is no change to the EFD
table (i.e, same value already exists).

4.13. Elastic Flow Distributor Library 321

dpdk, Release 0.11

Note: This function is not multi-thread safe and should only be called from one thread.

EFD Lookup

To lookup a certain key in an EFD table, the function rte_efd_lookup () is used to return the value associated
with single key. As previously mentioned, if the key has been inserted, the correct value inserted is returned, if the key
has not been inserted before, a ‘random’ value (based on hashing of the key) is returned. For better performance and to
decrease the overhead of function calls per key, it is always recommended to use a bulk lookup function (simultaneous
lookup of multiple keys) instead of a single key lookup function. rte_efd_lookup_bulk () is the bulk lookup
function, that looks up num_keys simultaneously stored in the key_list and the corresponding return values will be
returned in the value_list.

Note: This function is multi-thread safe, but there should not be other threads writing in the EFD table, unless locks
are used.

EFD Delete

To delete a certain key in an EFD table, the function rte_efd_delete () can be used. The function returns zero
upon success when the key has been found and deleted. Socket_id is the parameter to use to lookup the existing value,
which is ideally the caller’s socket id. The previous value associated with this key will be returned in the prev_value
argument.

Note: This function is not multi-thread safe and should only be called from one thread.

4.13.5 Library Internals

This section provides the brief high-level idea and an overview of the library internals to accompany the RFC. The
intent of this section is to explain to readers the high-level implementation of insert, lookup and group rebalancing in
the EFD library.

Insert Function Internals

As previously mentioned the EFD divides the whole set of keys into groups of a manageable size (e.g. 28 keys) and
then searches for the perfect hash that satisfies the intended target value for each key. EFD stores two version of the
<key,value> table:

* Offline Version (in memory): Only used for the insertion/update operation, which is less frequent than the
lookup operation. In the offline version the exact keys for each group is stored. When a new key is added, the
hash function is updated that will satisfy the value for the new key together with the all old keys already inserted
in this group.

e Online Version (in cache): Used for the frequent lookup operation. In the online version, as previously men-
tioned, the keys are not stored but rather only the hash index for each group.

Fig. 4.36: Group Assignment

322 Chapter 4. 4it2#5r

dpdk, Release 0.11

Fig. 4.36 depicts the group assignment for 7 flow keys as an example. Given a flow key, a hash function (in our
implementation CRC hash) is used to get the group id. As shown in the figure, the groups can be unbalanced. (We
highlight group rebalancing further below).

Fig. 4.37: Perfect Hash Search - Assigned Keys & Target Value

Focusing on one group that has four keys, Fig. 4.37 depicts the search algorithm to find the perfect hash function.
Assuming that the target value bit for the keys is as shown in the figure, then the online EFD table will store a 16 bit
hash index and 16 bit lookup table per group per value bit.

Fig. 4.38: Perfect Hash Search - Satisfy Target Values

For a given keyX, a hash function (h (keyX, seedl) + index h(keyX, seed2)) is used to point to
certain bit index in the 16bit lookup_table value, as shown in Fig. 4.38. The insert function will brute force search for
all possible values for the hash index until a non conflicting lookup_table is found.

Fig. 4.39: Finding Hash Index for Conflict Free lookup_table

For example, since both key3 and key7 have a target bit value of 1, it is okay if the hash function of both keys point
to the same bit in the lookup table. A conflict will occur if a hash index is used that maps both Key4 and Key7 to
the same index in the lookup_table, as shown in Fig. 4.39, since their target value bit are not the same. Once a hash
index is found that produces a lookup_table with no contradictions, this index is stored for this group. This procedure
is repeated for each bit of target value.

Lookup Function Internals

The design principle of EFD is that lookups are much more frequent than inserts, and hence, EFD’s design optimizes
for the lookups which are faster and much simpler than the slower insert procedure (inserts are slow, because of perfect
hash search as previously discussed).

Fig. 4.40 depicts the lookup operation for EFD. Given an input key, the group id is computed (using CRC hash) and
then the hash index for this group is retrieved from the EFD table. Using the retrieved hash index, the hash function
h(key, seedl) + index xh(key, seed?2) isused which will result in an index in the lookup_table, the bit
corresponding to this index will be the target value bit. This procedure is repeated for each bit of the target value.

Group Rebalancing Function Internals

When discussing EFD inserts and lookups, the discussion is simplified by assuming that a group id is simply a result
of hash function. However, since hashing in general is not perfect and will not always produce a uniform output,
this simplified assumption will lead to unbalanced groups, i.e., some group will have more keys than other groups.
Typically, and to minimize insert time with an increasing number of keys, it is preferable that all groups will have a
balanced number of keys, so the brute force search for the perfect hash terminates with a valid hash index. In order to
achieve this target, groups are rebalanced during runtime inserts, and keys are moved around from a busy group to a
less crowded group as the more keys are inserted.

Fig. 4.41 depicts the high level idea of group rebalancing, given an input key the hash result is split into two parts a
chunk id and 8-bit bin id. A chunk contains 64 different groups and 256 bins (i.e. for any given bin it can map to 4
distinct groups). When a key is inserted, the bin id is computed, for example in Fig. 4.41 bin_id=2, and since each bin
can be mapped to one of four different groups (2 bit storage), the four possible mappings are evaluated and the one
that will result in a balanced key distribution across these four is selected the mapping result is stored in these two bits.

4.13. Elastic Flow Distributor Library 323

dpdk, Release 0.11

Fig. 4.40: EFD Lookup Operation

Fig. 4.41: Runtime Group Rebalancing

4.13.6 References

1- EFD is based on collaborative research work between Intel and Carnegie Mellon University (CMU), interested
readers can refer to the paper “Scaling Up Clustered Network Appliances with ScaleBricks;” Dong Zhou et al. at
SIGCOMM 2015 (http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p241.pdf) for more information.

4.14 LPMFE

DPDK LPMZEA LI T 327 Key AR K BT ZRILHD (LPM) FIERITHE, %5 1AE H H TEIPR & NIRRT
TR B R -

4.14.1 LPM API#%A

LPMZAESL{] 0 = BE B SRR Z SR R KB ATALN - LPMATZRH — X240 (32fiKey, WE) R,
RV Y1832 - LPMAL FHLPMAT 815 HiTZ8AH SR B —Z2 1 P B R - % mn 28 E 9 LPMALIU)P —
@Fio FEVZSEIH, APEERI TR, SR T —Bk, SHAERBERSHHEE T —BRIDR 2 H
AR -

LPMAHSHFEE LS.

« INPOILPMALI . LPMARLIIVE DD ¥ AN 2250 30 SR 3% b %8 1 A A8 R i 2 B0 LN D00 5 A UL % o
FILPMEF . (R EFH ELEFAEBGHEFHIRAMN, W&FFMNE T —Bk . =508 7T HM
=S A, R EEER -

o BIBRLPMALI . LPMALN ERTZRAE A SR IR B R R MM TLPMES, T 2 Hd
PR .

o LPMIUNE L. 32fiKey(ENEIASEL . ZBIEM TIEFLS EKey iR LA AILPMALN, iR [EZ A
M T —Bk - FELPMEEF BA L PR320 Key AL AT BL T, SRR B IR BRI AR HE DT
FOAL (K RIZRUCED) | SXEMRE ZINKey FTi A FIKey 2 18] 25 5= A 2L A DLAL -

4.14.2 SCEARTY

H B A SE IR FDIR-24-8 B 1A UAS (A, m] DIMGE N A F &, DUIRELPMEHGEE « ZEE R F AR
BANTEER L MR PUTERIRIE . GO EE, BIMEEANE LB, 24 R & E VTE 0 A5 E K
T4, EFRBIEMNFERIRNA RS - B, fFEF S0 E R SHAE TS S EE FH R
KRR FRLPME TR IBRERIPERE -
FEEIRSWF R LU TR E:

o —MN2MUNEHEIE .

o %2/1% (RTE_LPM_TBL8 NUM_GROUPS) , & 1#H2,81%H -
FH—NF, R4, fFHESRAIPHINE R4 1T RG], T A, FROvbI8H HIPHIE A& 5 8L

PTRG] . XEWE R ALE S RIPHIE S B A b124 5 AT IREC OSSR, BN AT RER 2 A —
PARTERHIE -

324 Chapter 4. HTEEE

dpdk, Release 0.11

T thl24R5 4 BE AT LA Aibls, FARREOL T, TN EF2,24 018, X5 EAF2 321 HIBEANE
R EME - FRNBERRS, X EREANTITH . MR, XA EFA T 82440 N2 3k
HE I ENX —FRFAE o B R R AN BB HBR FlbIs R R, BT LR KRR AT
e, FINRFEFTFOEREE (KN ENX—NNER) -

2824 eritrie

Fig. 4.42: Table split into different levels

tbl244 5% B 85 LU ¥ B
o NBb, BE N -REHRGBIRSIE-
« B -
* SMERSE H PR -
o PUMERPE -

F— T B M & R B0 BRI ARSI ALY, Bl AR DA B R KRR ICEL, WA LLEL S
TBERE - WAIRETBEATHERBRTER, DR RIER T AT - MR E S E R
FEFEART E A% H AP AR A AL -

thI8H 5% A B85 LUR 7B
« T8k
« HRRE -
« B -
< FE-
TBFIREEE ShR4FHEREINER - WIRETBRERAS BRI TERL -

4.14. LPM/E 325

dpdk, Release 0.11

HAi EZHIREMR A EF RN PATF—B) MEZEFEMOER. XIR-IEHBHINE, AT AR
g

« FEININEMIBR AT, BN S CEFE, AR KRHITER
o MIBRET, RER OGS ZEMPRAIHN - XIREI, Ry ERREEHE L0 B FHT -

s

INIIELET , FAERNFE R RTRENE o WS R B AR 12240, FR 4
o fERFN (TPHbtik) 1EMI24HIEE]
o KB BIEANEEHN) |, MEET—EBEERNEE, FEIUTEEEN (FREEHE
FEMERF) |, RN EREILERN0 (FREH TR R, RAXRILRARKMEIR) -
U SR AR R B IE 32400, FR A4
o SEFHN AR 240/ E D124 RS -
o WRFELR EIERNEEHM) |, MER DS HEEIS, FHZEAbISHIRG I ENIZE, ¥EK

PREIREAN (FORIEBIERMERAT) | RN K ERER (BREEHRS LS, FHAM
T R A 1 S 4]) -«
UISRH R B R AT HoAb(E, M HTRIZRY B . XEWEMN B EHEIE T —H%EH (REEA]
AW | XRS5 EUThL -
VER— M ERREF, Bl MEIRE &2007 - IXEWRES 1T 58 S EUCE AIPH I AR 240 B2 ~ (24 -20) =
16FIARRIRIE A - L, FEXMENR T, BATRZEME RS B B2 HiX E &R S LE -

WX, AT RS RS RES, WRAEAESIPHAEITHR AN, AT DI — 854~ A U Al 4
2, BAEBURTREAFEBEIE T —PR. IR REZEENXREZ —, FHRNEESRINTTRREER

PR o
"l

BHRIRERBGL, HEER. EIMHRLT:
o i HIPHBALE Y HI24 07 1F b 24 R 5] - A% A B ARBAE M, AR 20X BWRE FA 1150H ILEC HIPAI M
M- R EERH BINRA BAREIRE 0, MHRET —Bk -

o MRERABAH BINEAR BIREHOXE N, BN HbIZZR 5 R H Z A HIbI8, F B
ZIPHUIE F B R SO E LRI AR T - KLU, WRFARBEM, R2AEANE S5 ZIPHIEITAC A
M- REFR, MhRET—B-

RLIES H B B il

MNECE 2 2782 A FEEZ RS - F— 2 MNRRAEE, RET AP RS . — BiREIX ML
¥, BUNATREE AT 2 BB B R, BRAEE — 1B P ER -

FARFRBEIRONERS - WHIETA, T EREANFHERE, oBIERE AR FNFER (WERA
256) o GIRBLATFERDIS, B R TCIEFRIAL AL - #7E H R P HED DR AR RMER AT E
iR

ABEFANE — DB R T 240058 N, 58 Bz M A F2467 5 58 5 s in o S0 RO 2460 AN, & TH
FEtbI8 - WNSRAAR], FE 28 R 5 F— DAL AL A F o8, PR 7 A LN 2 8] e — DX 51 A A —
PFIA -

326 Chapter 4. 4it2#5r

dpdk, Release 0.11

BONE 256G LT, FATREZ A LIA256 MM, K E240, HEi =7 HEAR . BT KER
240 BRI N KT RE, BREE RSO E A ARNIZE — AR - BRI, oI8RIEE thr] LUl s E
g

. 1Pvaisk
LPM B A T SEIIPvA%EE & (i s I A TC R BRI B i (CIDR) 55 -

References
* RFC1519 Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy http:
/Iwww.ietf.org/rfc/rfc1519

» Pankaj Gupta, Algorithms for Routing Lookups and Packet Classification, PhD Thesis, Stanford University,
2000 (http://klamath.stanford.edu/~pankaj/thesis/ thesis_1sided.pdf)

4.15 LPM6J%E

LPM6 (LPM for IPv6) JFELHAESCEL T 12807 Key FI S K B ZRVCAL R & 775, 1% 77 1200 % H THEIPveE: & N
R4 B e EICEL S -

4.15.1 LPM6 APIHiA

LPM6/EFERE S
o TEFFILPMMNI S RECH : 1XE LT HREMNFFRA AR, RS /T LR InEFIECE -
o thISHIELE: thlS Etrief— 17 5., ZELPM6BE IEATFERA

tbI8 5 1] ISFE R EAE ¢, (EICiAEm TINERE &5 € B E AN TR f =18, B EssF UK T8
LU AR FIIPHBE - — bISTEFEL kbHFIINAE - 1ENTETE, 6553671 tbISN 1% & LAFREECT - 1Pve#ill], {2
AR LT 5 -

LPMAEIZRH —X 230 (128(UKey, %) For, WETEEN1E]128 . LPMAN] HLPME] 23715 A 8840 < BE
F—LeH P EIER R o %A REALPMALI A ME—FRIRAF - B EISCIA, AP EER 216K, T —
e, SN THEEZEMER, ATAEEHRESZESR T —BID .

ALPMAES MK EZ AR

o ASIILPMALI . LPMALIN AFE o B A\ 250 40 3R P 50 A7 A6 48 (5] AR B AU,) 58 A U5
FILPME S - IIREZF CEFERFME RGN, W2 FF AT —Bk - 238 T HZ R
R [N -

o MBRLPMARN: LPMHETZRIEARIASEL . IR EEREMRIMNFLETLPMES, W2 BMIER -

o ERLPMALN: 1280V Key(F NI NS EL - ZRIREFEIURA E Key WA ILECHOMN, iR [EZ AL
BTN —Bt - FELPME AL DB AME 1280 Key ERIMM BB O T, Bk mERE A NES
B EEVCECALIN, X BRE A R A\ S AR Key 2 [A] 25 S B U AL AL -

4.15. LPM6JE 327

http://www.ietf.org/rfc/rfc1519
http://www.ietf.org/rfc/rfc1519
http://klamath.stanford.edu/~pankaj/thesis/%20thesis_1sided.pdf

dpdk, Release 0.11

SEIRAH T
IX SIS FHIPVAR BB (5 IIPv4 LPMEEFRAHTT) o ZEXFMEIL T, NEFEHWRTE, M
FH— 2K FItb124 70 1425 FAItb18 -

S AT LAE VB & — T "Multi-bit trie, E& MR LRSS Kl EBURIESAE FTANE - BRI, iR
T AR 2407, T A01040L LISALFILEFATIOE « X EWRARIBRINE R FAIHN, ZrielkZ BE 1412
EE AR P BRI A E RS T R R E SR AT I B 4, ERE R A B E B BUR TR K B, DUKAE
BRG0P T AE B BE E F A N AN AE [R] fKey - ' A AZE1EN 4R 5 FHRIEZ (8] Z8 4k, IPv6Hf
B ARKERFEERSIRIGRERIE . FEEIRSEMMHEH T T EmiE:

o« —NE24MKERFE

« BEIMFBERE, EEHBAPIRLE
F— DR AOR4, FHEERAIPHIEA 240 7RG, HAeRWR b1, # HIPHIE A0 E &5 7
&S], K/NRSHL - X E RS SR K i A SR B FIIPHL I 5 776 7E tb124 85 J5 SEb18 7 HIFLIN 33k 17 VL AR A 45
B, BATTRETREETIRB A IR P RS T 12 -
RUITFIPvAEIEFRIRRE], N T EEITE TRERIIPve I, BATFZE—1NBEE24 1280 % HHIFE . HTHIE
PR, X BIREATITHY
I T R 4 RO TR A0 R/ A PR IS B &, T TR AR K DN TE AR, [RIFT AR R R I & 4
HE (BR— 1 HNEVR) -

Fig. 4.43: Table split into different levels

FHMEA ST FE:
o N BE B b8 S
o MUNRRE

328 Chapter 4. ZfE$5E

dpdk, Release 0.11

. BT
e Ce
. SRS E R

F— D7 BT U S TR AU REROZAREEhIS IR G|, B iR EAE R R K AR ARICES, AT LLE S
T B S o R AR B A R A R AT E 2% B A IO 2 - ARSI TR E 5 IR B BRI LUK
BRIEEBDRIGER - PFREL R IL AR AL -

AP EERIEEE SN (P, T—BFRE) MEEFENE. IR PEREHINE, HT
AR H

o FEIINEMBRZ AT, REMNESCEFE, MAFERHRITER -
FHIBRESS , ROER A7 AE B S ZEMBR AN R AR E Z R0, RO R4 FA L0 TR L B -

A

ANIALME AR R AT RENE « AR MM AR BRI 240, AR 4
o INIIARIE FEAE AR AT RENE « AR AR IR U 22400, AR A4

« WARFETLR (BIRFERAGESHM) |, WHET PO ERNEE, FESRELE N &R
WA HIEEERT) | HRFMRFERSRER0 (BRI HR, B X 2 ILES) & K A Fl

2 -
WA IR K T2407, EREECHS, T
o EFIFIN] (IPHBhE) 1E9tbI24F0ZRT] -

s MARFETR EIEAEEN) |, MEHR—DZ b8, FHZERIISIIRTSENILE, FHHX
RSB (FoRIFEEEFERAT) | HRINTZBIRERN (BREEHRIRLMRE:, FAM
NI AR SERTRM) -

o FEFFLIAY T 8AL/ER TN —MbISHIZRF] -

« EEVZIRE, HELAFIEMAAIMbIS (BURTERE) |, HREERTRS T8, BT —1&ERER
EHO-

RN AR R M E, MPITIISY & - JIEWERNEEHEIERE (RETENARER)
PASEERELVEAL -

= DRIARE] T, FATBORERER200L - X EWREH F] B85 EUL AL i0IPHb Ik A 2462 F2 A (24-20) =
16FIARIRIAE S - Hit, EXMER T, IR REEEHE X EHERINEMIE -

WXL, FATRREE RIS, WIREESIPHE IR AR, &2 AT LATE 141 N AE A IR k3
EHBRTHRERE] T —DRORE - WTRY R ZEEN R —, FOVEEE RN R EEREE
i

RS R AT AR B AT o BRI, lan, EREER340L, EREH =R (FE-DET OB 1T

"l

BRARERAEL, FEEER. EXIMHLT:
o [FHIPHB AL A HIT24 07 E 124 R 5] - A% A H AR, AR 25X BWRE B 150H ILAC HLIPAI
M- R ERRSHH B ARSI EN0, MHRE N —BE -

s WREHBGF BT BERSPOLE N, A2 FA]EHbIBR G R H ZRE Kb, F HRFZIPH
AR —DSALVERIZRIVRS] - KM, WRFK HRBAER, ABABNTE 5 %IPHAE TR -
WRERARL, ILREINRA BIRE LI EHT T8 -

4.15. LPM6JE 329

dpdk, Release 0.11

- EEERE, HEREITSAE (BiRaF) SOMRERSRENONERAHE - E—MHE
RER B

ALY H PR
A AR R AT ISR « SB— R MNAR AR, R ET APIE R SE . — BIiAE)iX
NECE, BANFTREFRRINE T 2 (0B B R, BRAER — D EiZ MHER -

B PRBZ AT A0SR - ARIANTFER bI18s, Ffl R TCIEH AR AN - RMER AT E LT H LD
FEHFRE M R BT T Y o

TEZ AR, B FNAT DLVE AR I8 B B KRB E 13, X AIEEL, B R F = A5 ZEebl24 7 4 i
H -SRI

o BH, FIPv6 L, BEHANERITASNL, X EEE HINE 7 E 3 tbl8 -

UHFELPM for IPVARIE TR RER), IRIBENTWE—-INFHELZ D, RAGBSHILIMNKE 1L
bl o WIRTAILZMFEATEIA0, Fl0, 5 _RAI0ISFHHIL T « XA RS AEEIRNBRHFRLE, B
LUBRLERE, AR SR P 148 A K AR AR B Ja — > 19 ME— B DX 31 3t T RE (6 AR TR A = thl8 -

FE T 5 PN 77 7 RE B9S2 I DL R AT LR I BILPME FF AL E s, IS KA & SR AE K AR O BIE I
T APIZ AR P IS5 — I bITHFEIKBHINAE -

4.15.2 . IPveiEXR
LPMELVE A T 5o Bl SeIlIPS 4 s b SSFT{ F e 25 Bl B8 F (CIDR) SR -

4.16 WX K E

DPDKHR X & g it — MU, A TAE—IR BAEFRBUEE MR @, LSRR R S0 898 . S
DER, FEZENMACKZERZ. EERNTNBNELD ZBECEN D ZOEE%, A—TER—4HL
TEZEER, MTTEMOR B 2 208 B RORUE 6 H o b AT #edE

BVERI T B R

TR &%= FEFH W AHAPHR(ERR 0. — Fh 2 4 AH32bitdflow_id, — X [l — worker& 15 — 1
W, BH—MAERE — IR & E &£ B £ Bworker, {F H15bitfflow_id- 1% 15 = H
rte_distributor_create () @éﬁ*ﬂ’]?@ﬂ?&?gi °

4.16.1 5 KB HEZERE

G R IBEEARZHIT T AER FOAL B LI R EUE f fEworker 2 [B] AP0 & o 42 2 R ERB AT :
1. 53 R IBHEZ A core A28 15 YA H rte_distributor_process|() HAR TR, -

T Bworker lcore 5 distributor lcore 3t F— 258 74517, LU{FEFEworkerfdistributorZ [8] & 1214 B FNEE
1 HUT AP F R 218 TS worker PR A71T, LIE B Wi tSworker IE7E 15 SKETE 6 -

3. A workeri® KEFE BT, distributor \ 55 —FZ & R B —HEIR QP B EIER, FRHES X
Z&worker - B R A B EE € H A 8 FEmbuf P RSSHE A F B) “tag”, 0K B >worker IFE 7E 20
E"]tago

4. MEFARCEF T M EUREEH — 1 C L W workerb 3 tag, MIZEHE 6K HEPA 55 Feworker)

A, FHAET —PworkerlE REFR AN, LB RBEMIIEIRE - XA LIARAZH L LEEFH
FltagfIP MROC, FFH, BHMERaghm RS AR5 -

N

330 Chapter 4. HTEEE

dpdk, Release 0.11

o core

Mbufs in

%

Worker

Fig. 4.44: Packet Distributor mode of operation

4.16. WX XK E

331

dpdk, Release 0.11

5. —HARBEHATAPIM T B IR L B4 5 & thworker, 53 CL 22 HERN S5 7548 EtaghiworkerZb 3, TIIHk
fTAPGR B4 -

Distributor lcore 7] LA FH 1) H A T E
* rte_distributor_returned_pkts()
e rte_distributor_flush()
e rte_distributor_clear_returns()

HAHEBEERAPIFI A E rte_distributor_returned_pkts () , T REELE A #FEAPIHIcore b I
H - ERFTH worker core TE AN EE FI T A EE G 44 VA - FEX IR A AR, AR ERE T
B YR R AR IR A -

NOTE: 1 Rworker lcoreft N HR %% f7 B AL T HE B (X, I3 Fragh B B ATRES PR . —H —
“Mworker Icorelf K — P HETHIEUEEL, distributorfl & (BUE'E B TEM 1 ERIAIEIRE, HILEH 1 Faghk
IS G AT L% 2t o Be 45 Hobworker, S8R AT TATBE 2 B B HIBIET R i AOBE 6, FERR & & et -

NOTE: % F AL E A EIE CaghBdE 6, AR BEWE EHERRILE -
A LR AT I3 H8 Fereturned_pkts AP, R AGEFI LU BLFHREF TR, [RIES SR iF 489 fag iR A I ECE (IR

HHEOEGRE LI -
Worker:
Lcore
Waorker
.core

7z

Distributo

/)|

Worker
Lcore

Fig. 4.45: Application workflow

Z Hi$E 2 flushFclear_returns APTYEFH A BEAN K T # Freturned_pkts APIS, Ff H EZH T8 BI% E#H1T
BTt - AT AFEDPDK APIZ 2% SIS i 4 B Lo T E B 5 FH IR A

4.16.2 Worker Operation

Worker Icores& X distributor s & FIEUHE B3 17 L P E fflcore - Workeriffl Hrte_distributor_get_pkt() APIZE5E
R — N ER B RE R — N REER A . BT — IR A NE R AR A A SRR S A ZAPDA A TR

332 Chapter 4. ZfE$5E

dpdk, Release 0.11

8125 5> & s 2R 1 -

BEHER] fE T E M worker lcore PR, XBURT LSS E, BIFERRERIRAER AR, 7] Diworkeril i
Y Frte_distributor_return_pkt()#z [{Z LA, DAIFS/RAESER Y iR AL, ANFEHETEE -

4.17 HEFFesE

EFTHERF SR T —FRIE 7515 EHHEF mbufs LA -

417.1 #4E

BEHTHTF AR E 2 — P EHHES ImbufsHOSR M X - P RFELF Bmbufsiili A EHHEF R XA, H M
H I F mbufs o

LA ERIRTE, EHHEFE M X A8 F5 54 FFE O N Ambufs « 75 O S X ELE R AT LA B8
NI HEURE - B0, 44E BH20010 5% Bt B&/NFFS A350 EHEF &gy, FFAIE 093]
EE 3501550 1AM e FR) -

236 Ambufshf, FHHEF FERIEE A B ImbuffF 515 [X S valid, lateFlearly #imbuf:
o valid: 735 7EH 75 HAIRREIA -
o late: [FHSER DRSS, DT TR
o early: FHISER DRSS, KT LR

BHTHET &I X B3R [E]late mbufs, F%2150iE N early mbufs «

4.17.2 SEIAHTS

BT FER L — X X, FR90rder bufferfiReady buffer -
A AR, valid mbufsf B9 A2 Order buffer® , late mbufs B LR A28 FH P &% -

X Tearly bufferfIfE L, BHFZRMXFZRBEED B HENFIHS) , PUFmbufpl b E 3 —
o NI, Order buffer™ fmbufs# #5512 Bt Ready buffer® . 11fA] 14 K EiA FImbufsER#E 20, H 25 Alllate
mbufs - X & RE H EReady buffer 5 = [A], & M K54 5) L& Mearly mbufs, SNPRFAERETHEFE O Z
bh e

fian, BaEEATE — P BE350 M RANFIFH2001 5% B RI% WX, FHBANIFEBA—1BE565F775
Hlearly mbuf - XEMERKNITFELNE O 2D ERE P mbuf - HEFEReady buffer/H 23 [0, EHHE
JF %% 9 R 2 30RF 22 /D 7E Order buffer ™ #Y T — M 15 ME H [mbufs#5 5 |Ready buffer[X « 7EiX— 5 L BINUF
e (R IX A B AR AT [RIBR R d Bk, HLxX SE IR B R SCEIA I R+ 5 Folate bufferfIETE R - REiREH%
Bl E|Ready buffer(P)id FRAR SR H TR HIR/IME, BHENBE] T RFXFRERE, B#bmbuf-

HE Himbufsif , = #71 HE P 4% i X B 5% R [ElReady buffer® fmbufs, & 5 MOrder bufferiZ [F] 2| i & 2| i&
A Jmbufs -

4.17.3 HHl: WX H %K

{5 I DPDKEUE £ 73 4 &3 00 R AR 7 7] AR BT HE R E LL S EA TR RO P15 A 2R A -

FLAR AR SO IS 23 F 1R BB £ Pworker corsf 7> FLaS 4 AR - workertit U €3 0 4 B8 AN BE CRAEH2 T e 2
7, A U E AT R KORR AT RES B HEEUR A -

4.17. HEFFasE 333

dpdk, Release 0.11

FEXFIIE LR, distributor 751 5 43 Bl 5mbufs, 9K 5 BRI H & 1648 TAE NG - B & worker5E Al 2 B
£, distributorFFiX Lembufsid NEHFRITIX , &5 & HHEH Fmbufs -

4.18 IP5 v REAE

1P B EL 40 7 SEIRIPVAFIPYO IR SCH 93 7 A 2H -

4.18.1 U5 H

o B I AR R AR SR B 2 140 - rte_ipv4_fragment_packet()Ffirte_ipv6_fragment_packet() BRI ECAR (B
T8 F AmbufEUIRTE A R SCAIIPHGSL AU R IR (BIL2HSk EL#RIE) - N TR A E HISChrEUE e rEdE, i
FAZEFEIEAR (rte_pktmbuf_attach) o ¥ FHDR B, KO M HHImbuf:

* Direct mbuf — mbuf*Ri &1 & 1 7 Bt AUL3LED -
* Indirect mbuf — JFEHE ELH N E mbuf - Z3E B8 1 R IGER B £ M InEdRE W2 £ 164 -

N JEHILI KT M mbut S 1% direct"mbutJF BHT LU BUEHOREFORAS - HIERE, W TIPwe, FREHf
B RIA, HERENE .

&5, BT mbuff) N nextFBURFEE B BT “dirext” 1 “indirect mbuffE HEAE —H2 , DAFIRCHT A Bt RUEIRE & -
WA A 2] LLRA TS 2 B £ mempools S A T A H 43 Br “direct” A1 “indirect ’mbufs -
H Kdirectfllindirect mbufsHE 5., ES M E % 284 Buffers -

4.18.2 {RCEHA
IPHF %

W AR YE CERIEIREIRE A BIER -
BAPEIR R =15 <JRIPHt>, <BEFPHiLES, ME—HRR -

HER, RO AR ERPTE E AR R AR R L 2R . B, WRARFAHET BT (Gig
1) EFEBRE—DER, BEADHER LN R DAL -

B FIWA] R F R EZRTE_LIBRTE_IP._ FRAG_MAX (EHAER4) HEHEIREEHER -
REG7RE], FER T ORI A B

frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * max_flow_ttl;
bucket_num = max_flow_num + max_flow_num / 4;
frag_tbl = rte_ip_frag _table_create (max_flow_num, bucket_entries, max_flow_num, frag_

—~cycles, socket_id);

NEB R B R R — 1 E e A R - EABABZEHB B AREF KRB . XN KeyERLT F 1
T2 ATRERIALE - M AR HETE2 * #8 G HF, ip_frag_tbl_add() H 2R B KM, TAZKIE
fIKey B HT A Z A NN E: -

Hoh, FEAERFRIZBWORILER, WHIANRTERT, 7T HH R B BRARH -

BEEE, EHHASFEESEIEZmbuf- 7EEM4ERA (2 bucket_entries RTE_LIBRTE_IP_ FRAG_MAX *
<ENEER R Kmbufsi>>) A LU 7RSS R 42 Fr B) Fragment TableH? -

334 Chapter 4. 4it2#5r

dpdk, Release 0.11

wCEA

R H AL PRAN E 4H FHrte_ipv4_frag_reassemble_packet()/rte_ipv6_frag_reassemble_packet)FEf% - &M 1iR B —
MR mbuf ¥, EESEFHAMEUER, S35 REINULL (405REUE 6 M T 3R R H oL E
HE) -

XEETRE AL
1 ERAEBR, WAKEER -

2. RARENZARH, MG EIZA H RS CE@N WRE, MR LI A, A5 B
PRAERENIIEER -

3. R EHBLX R IKey %% H, B4 Sl DUR R %2 — Bl — 1
(a) FTE=Z%H -
(b) MIBR— BT H, 5 EmbufsEEEAIZS Wmbufs, FEEPEE IR EROFEH -
4. FRFRBEREH&E, FREEGUENHGEES EUEanizBasmERE) -
(2) W2, MWEHAREIRE, BERMFZBMLNS, HEEHHEmbubR E AR -
(b) WA, Mm% IRE—TNULL-

RS AV BOBRIEHR (0. ARERE & B AR BERETERUEIR B, MNZ R ECR R
TR 5 5 H R B RIREIPRIE R 5 B (BN TEROFRNULLIR B 45 2 -

Wik B S KRR

RTE_LIBRTE_IP_FRAG_TBL_STATH B 7 T H| i Bt R IS0t E B - BB TREH -

RTE_LIBRTE_IP_FRAG_DEBUGHZ #lIP A B A FRAI A A0 H B0 5% - BUAEB L N - i§EE, £
FBILTRAEE KEFAE BN, SWESEAAHEEE, H S RERKELRIEL -

4.19 Librte_pdump/#

librte_pdump J&E ADPDKH B8 G f AR F2 4t 7 — N HEZE o 1% % FFRxHAITx mbufsi] 58 2 & il 2|
fmempool, KL FECRHTEFRIMERE, BCEWC AL ZEH T -

TR LT APDRYTIA LR ELIRIIRAER, RSB R Gk, sl Ealt AT S A L.
* rte_pdump_init (): YIAAHEDE EIMIRIESR .

* rte_pdump_enable (): E45 € #0¥ 0 MEAS BT EIR ALK - EE: APIHRE IS LT N T
RAIGIRINAER 5 ALFT -

* rte_pdump_enable_by_deviceid(): B AELTRFID (vdev& Hiakpeittitilk) FIEAS L AIEE
AR . FR: APIH RIS R et TR FH T AR SR DI RE A 5 L5 -

s rte_pdump_disable (): ZEF4E & v O RS b AR B 32K -

* rte_pdump_disable_by_deviceid (): 2B EIRFID (vdevZPRalpcitbil) FBAS b B %R
EHEE

e rte_pdump_uninit (): YA EIE R EL .
s rte_pdump_set_socket_dir (): WERSHME P mEREFHKREZE . EE: WAPINE&REL 2
-

4.19. Librte_pdumpJ& 335

dpdk, Release 0.11

4.19.1 #{E

librte_pdumpEi& A T2 F ¥/ ik S5 a2 5 - RS54 5 R B REOR Gk, &/ um i 3915k E g A
BRI -

G EAERIE N R F VIR L — B0 4>, fEpthread] #Epthread F1 AR 55 28 B F - W HEZE W1
RN ARFROUERSHRERET, TREENABEFEANERER, WA REERINER (rootH -
J/var/ran/.dpdk, JErootFd F'~/.dpdk) FOI%EE .

TR A 0 P R AR A B R R R A2 DR 8 AR A2 N BBOABE1E (rootfHl 7 H)/var/run/.dpdk,

JEroot /i 7 ~/.dpdk) FRIEZF FHLERET, HPRERZEEI RS S - RSBSERETRHEWH TR R
EE SR A2 P i oK -

4.19.2 SEHLAHTY

J% API rte_pdump_init()if it Al Epthread F1 IR 55 28 B PR WG W EIR B IRHELE - pthread | N L RIIRSS 25
ERTR IR P imiE K U FH A RO ek -

J% API rte_pdump_enable()Flirte_pdump_enable_by_deviceid()f5 F £ #E G 5K - B IR JA A IX LEAPIRY , A1 2
— M IR EET, AR pdump enable”EK, HRAERLEDIRS S - EEET LIRTHIIRS S5
18 645 T8 1 B S TDFIRASZH A 1 LUK W Rx/TXE M] 8 bR ESOoR B2 I0E Sk 5 IR Bk - N5,
R 55 K5 B2 AR B B 2T mempool 31 RE T TABAEI 2 i 5128 25X LEAPTHrte_ring » AR S5 & RIS & 3%
[E% P, DT A B AOTE SKAIRES - MRS SIEIR S, P imERET KM -

J# API rte_pdump_disable()#/Irte_pdump_disable_by_deviceid()2 FHEIE G IK - BRI IXLEAPIR, FE2 0
B P ERET, AR pdump disable”1F K, HRAERZEBIRS S - EELTERFHIRS %
B IE % 45 78 v 1 B% S IDFIEA S 2H A 7 LUK IR XA TX MM B3 2] 8 s EOR FA T8 Sk H R AR B3k - IRSS
FR IR N A £ [g, DA T AR FR G AIE SR EIRAS - MRS SRR , B mERET KM -

JZE APL rte_pdump_uninit()ﬁiiﬂ‘%Iﬂpthread%ﬂﬂﬁ% R EHTF RV B R A AELR -

JEAPI rte_pdump_set_socket_dirOtRIEAPIFI R A SECR 4G € BRI E N IR S5 S ERF BIR S F In BT 1
2o WNRAERENNULL, NPEEZEBIARE (BlrootfH /7 f/var/run/.dpdkal dEroot H &) ~/.dpdk) - &0
RIRFHEETFBESBINBEAF, & FAmlHE A APDEILE H RS S EEF KT

4.19.3 H#:9MH

DPDKR. HFEF/pdump T EEFE T ILEF LK, HATHHRDPDKH FIEFRE - H o] LU BRI & B CAIEL
MK TE .

4.20 ZHEIFF

FEDPDKH, Z A8 305 5 76 A VF—HDPDKZEAE LU B i 5 Ut A TAF, DABTHdE A B e E fth T
TEfE . T CFrIIRE, B4 ORIDPDKIMEIZZ (EAL) #1777 —L3ghn .

EALE BB R VF AR 2R R FDPDK AR 7 4=, &1 DPDKIRE7E B AR /T i FH Ahugepage A 77 £ B A AN
[A] FOAPR - BAE AT LTS E W AR B AR

* primary processes, A AFJIA1L, $HELZNFRIZTE2IR
« secondary processes, NAEWITRILILZ TR, (H AT AT EITI G0 10 i) e N R R H P AR & -

M 57 DPDK# #2 & primary processes, [fMsecondary processes LB 5 EA e —iiz T, & EHAR DAL NHE
‘E [hugepage L Z N7 -

336 Chapter 4. HTEEE

dpdk, Release 0.11

N T LRI FHRE R DL A S A HA 2 R E , EALISIREE TN e ar 1724k
o ——proc-type: HATREAERIHRESLHITE E Nprimary processesiisecondary processes DPDK LA «
e ——file-prefix: URFAFEMMEEGNFEFMERS XIBHHE -

DPDKi#E {1 1 Z R il b AR 7, B R W0 T A] LL— & 66 £ P DPDKGA AR - JX L] il 7 (DPDK Sample
Application] 1 ER) A< RRIR B R — B PR EIER LS -

4.20.1 NHEHLE

{5 FHDPDK) 22 32 R By FH R - A B S B B 30 2 il OR PA) A BRVRAE A A 22 AR I PR AR P 2 RE 2 TR IE T 4L =2
— B LUEE 2 DR DI R AR, NEHRERLERE (IPC) AR 15 A R L -

TEM AL AR B primary processes/E BT, DPDK [A] A A7 B U il sk LN A RC B IFH(E B, BFF
IE7Ef# H fhugepages, BRESFIREFIHOHE, FAERINFEE LSS - Hsecondary processes/ABhET, X L34
BEH, I HEALfEsecondary processes ™! B #T O AH R AN FRCE . DAEFTE N7 X EAE AR Z A=, I
BRTETRMZ NIRRT AR A R, I BRI R R 5

Note: HXLinuxAZbhl =S [AIA RBELIL (ASLR) Al i 7 3L ZHEANE B 2% ZOREiRb

Fig. 4.46: Memory Sharing in the DPDK Multi-process Sample Application

EALIE SR HE (. (FHEAL -proc-type = autobRiidt &) , WIARESLFICEAEETT, NIDPDKHAREIES
HEEBIEEN -

4.20.2 FREHER,
Xt BRI S R

DPDKZ # A8 SC Al FH T O —HXN SR, B0 #EMITHEN TEME . ZREHESTREEEZ 1%
2, BPEEEGEITHEFEREEAIIGE, K Z HURHLFIDPDKI RGN & o i SERU —FE - 7RI
B, R FH—proc-type = primary EALVREAE AL — AR BI#HAR, 10 FTH J5 28556 #0 5 {5 F—proc-type =
secondary 7R 42 A% »

simple_mp7Fsymmetric_mp7 i B 2 P i 7~ T BRI B - B4 (DPDK Sample ApplicationfH /- #5
F) B HAEREIN A —E TR -

FEXRFBR/ AR SF R

o] T 2R R AR F A RE Z A & BF B Pprimary process=E 7], 7T 2 7 5 ¥ i 2% Bl distributor,
TEVE Fsecondary processesiz T Hworker8(& F HLEL AR Z [A] 7 & B RO BUE 6 - fEXFIGIL T, Tz #
Hirte_ring® %2, EALT = hugepage N7 H -

client_server_mp7~ il N FHFE 7 R BAR AL FVE - £ (DPDK Sample Application] Ff8FE) H L HFE R K
Hr—EdaEiR .

BFT LML IDPDK R R Fe

B2 T U X Z 1 DPDKH R Bk E L2 5h, AT LAHATIZAT 2 1 DPDKHFRE, X Lefi fR#R n] LIRS TAE - i
FEALK-file-prefix 2 £ & HEXT 156 FH 32 5 B 507

4.20. ZHEIFF 337

dpdk, Release 0.11

FINEIL T, EALSF Frtemap_X {444 £ 5 hugetlbfs A R 455 _F Bl #Ehugepage 34, HHXAITE FE 0E| £
K Fhugepages -1 [FFE, 2 Llroot& (1217 (8 LAdErootFH ' & {352 17} 4$ HOME / .rte_config) , HISRIC
HRGFREEINRNZS, MR FHFE A F F /var/run/ rte_config U4 24 B IL = & SCHF) « DLLEBATC
124 BB 43] LA F file-prefix S R UH TR & -

BR T ¥8E file-prefixZELYh, HATIEAT I FTDPDK R 2 e #0277 BARR PR I N A A « 0l K-mbn & (%
EBLE R NI RERTE E B D HEAE AT LU £ DhugepageNFF (LUKF TN HAL) (BOE T -socket-memRTE E
BAHER BN EEFRZ PhugepageNTF) -

Note: 7£# GHLas EHATBAT A L DPDKSE I TC i3t 2 AR [0 483 1 o — >R {6 A A] 90 48y 11 R
ZAEH ARSI R

2472 ML FIDPDK R R P41

PIRIFERI 20, AT DLEBR DR EH AT ML ADPDKEY. R T, XAl DUE SR i & 2| H 1752
TDPDKN TR F I £ #H T2 4H - ZEIXFBF LT, secondary processes:h {3 F 5 H 3 = [N 77 7% 2 Kprimary
processtH [F] F—file-prefix 24§ -

Note: FHATBITHIZ ML DPDKIAE A BT FR#IF1 R R & H T I %5 -

4.20.3 ZHFEFRH

IB1TDPDKZ 2 N PR Py A7 A — LEIR)« Hor— 2890 5% a0 R

o ZREINREERAERTR MR A AE 52 2 A [F] hugepage N FF BT o Linux % 2 THAE, Ml == (] 46
JRFENLIL (ASLR) FIRER THRILBRES, [HELrTaEdRZEH LD ee A fEv] S dtia T 2R N AR -

Warning: %SFHUE23 7 RBEPLIL (ASLR) WHEEVEZ 4 TAM, [RILEN (U/ELn LB 4 P,
B FURE TR T BBk & B -

o VERBADN AR ET 1 H L ZE N ER A DPDKHRE V41 B H ASF Hcoremask /corelistZ 4L - E4A]
A [F) B13% B N A% AN] BEBHE primary Flsecondary S5 {51 8 ~secondary S5 « 2 isliX FE AT BE & F 2N 7
2% A7 HOHR IR S [A] R

o FIMTAY(L 3, WEthernetiX & 5% MRS W, 7Esecondary processH INEAEH - BT A H 7 {{ #Eprimary
process/ fil & o 7E % A R A TR B N OE AR R AR R AN B AL B S ALE, R E R
Mprimary process#5#% 2|75 Z1% (5 B 1 secondary process -

o ASCRFER 2T ARSI 2t s T2 AR Z R R EGEEE, UOE — i RE P28 € s AU
BB ATRES A — A RERIALE AR« IXAE AT AR LElibrte_hashEE L AR SLFH IEHIBTT, FOVELE
NERBE T — R R EL R TR E -

ERBanE, BN ZHENAHAEFELEBENRE S E AR K, K5 N
Firte_hash_add_with_hash()/rte_hash_lookup_with_hash() B ECRHUTIE AT E, A NERHUTET B REL,
{3 4rirte_hash_add()/rte_hash_lookup() -

o AR B 156 FH O BE 4 F0 it 5 FH IDPDKOH AR %R . AT RETCIATE &1 DPDKSE 5| 7 &R 1% FHHPET /€ Ff 2% -
Al A TLinux A 7 =5 [6] fTHPET comparatorsHl /N E AIGERHF — 1, X EWRE R H % — primary
DPDK #2525 7] LLFT F- Flmmap/dev/hpet - 215 B 7R DPDK 2 H%L & i#813 7] A FHPETcomparatorsE{
&, MLFHEHATSC (AT AIBATTIES) A ZHPET -

338 Chapter 4. HTEEE

dpdk, Release 0.11

4.21 NEMEEO RO

DPDK Kernel NIC Interface (KNI) i Fl P 25 8] B2 FH R 7 (A Linux P T -

{8 FHDPDK KNIATHF b2 -
o HWIIE FILinux TUN / TAPEE O FER (GBI TERR RSV Flcopy_to_user()/copy_from_userOf(E) -
o RVFEAPRMELinux M2 THE (4ethtool, ifconfighlitcpdump) & FEDPDKYH [-
o VPSP SHERR R -

5 FIDPDK N ZNICH: 0 PN IR 7 FIE i B B 7R« Fig. 4.47.

Linux Kernel J Userland
\ 1 v
Net Stack T ifconfig
I0CTL sockfd
vEthO IOCTL sockfd = &thtool
vEth1 /
| Net_device @________________ Send Non-Intel®
2 tofreece —™— DPDK net
\ fFO\b f10CTL App
6‘,5‘@ o
Register net_device S,
She
\ g
"?7@07
O,} .
Jdev/kni Intel® DPDK
Misc_device (x\\ | Application
oL — |

Fig. 4.47: Components of a DPDK KNI Application

4.21.1 DPDK KNIk

KNI A] I il SR o Fh 28 2 R 75
o Hh%#&: (/dev/kni)
- AlEMSEE GBEiTioctHAH) -

4.21. NEMEEOFRED 339

dpdk, Release 0.11

- YEIP PR KNIE G Z A AR AR B3 (BRI SRR P R X)

- WT RN, 4B PTE KNI G E RS T30 (B SN Eh IR 7 FIRX) -

- WTFEZDARERES, HEPKNEEF] (BRI FFORXM) 48— P A&E LTI
o LR

— 33 SEIH Hstruct net_device i€ X7 Unetdev_ops, header_ops, ethtool_opsZ JE AT JL #EEHE it
fINetThHE, 453 FFDPDK mbufsFAFIFO -

- BOAVRE P2 AR .
- MACHHEA] DU B IERINIC MACHEHEEBELAY -

4.21.2 KNIBI/3 B2 il bR
KNIZ% [HDPDKE fH B2 7 57 25 6] & - # 10 4 B% FIFIFOME 41 5 B /1 B A A2 7 3l idiocd] I
Frte_kni_device_infoZSEf32M4E, ZEMES.
o BEOLHR-
o HKFIFORIE N At s Y s it -
 Mbuf mempool FEAH(E B, EIEMEAEN (T EmbuffEf I REE) -
« PCIfF R -
* Core-
HRFEMER, 15Z HDPDKIF AL H Hrte_kni_common.h -
W EE AR T B N A 2], AT B KN E R 3 .
WHZRXZRE (BEBEMEZ) #5E 7] Hforce_bindHicore_id L& ZEd%] -

@75, DPDKN TR AT LIS ASMBRKNIEE O - tboh, B R ERAKNITE 082404 & (DPDKR A
TP RIS) BIREBCRAE BB -

4.21.3 DPDKZ& 1 X i

N T E/MUAENZZ B HIE1T FIDPDK AT HELE . mbuf mempool (7R P 23 [T 2 - (AR ASEER AT LA
J&HImbufs, {EZFTH mbuf 7 BUAEE AT 1 ERF (X FHDPDK K. R P AL 2 -

Fig. 4.48 shows a typical scenario with packets sent in both directions.

4.21.4 F#l: Ingress

7EDPDK RX{lll, mbuf HPMD7ERXZFE B N CH AL - 1% 22 Kimbuf APAZlrx_q FIFOH - KNIZFE R 5216
FIEKNIE SIS E - WRmbuf BN, ‘ERHEH Fusk_buff, FHEidnetif_rx() & £ 2 P4 MU « TR B H
FAFImbuf, K% R[E E]free_q FIFOH -

RXEAEAEM R EEAFRIIZFIFO, H7E HIAZ 5 B ilmbuf -

340 Chapter 4. 4it2#5r

dpdk, Release 0.11

Mbuf mempool

ﬁ\]—l kthread RX Thread \

XA N I—
v-

f mbuf tosk buf «—1 < [<[<[<] < |[&———— rte_sth rx_burst)

netif_r fre
free g
[> [= = F——» rte_pkimbuffree() .-

§ y, N Y,

met Stack kthread ‘\ alloc..a TX Thread \\

< [<]«]<]= H
mbuf cache oy
kni_net_tx) rte pktmbuf allogf) =====""
l‘ rte_pktmbuf free
sk byl tC'r‘\n--l_:..u_f____hl [[ﬁ,rg, | rte_eth_tx_burst)
\\ >l =2]=1]= /

Fig. 4.48: Packet Flow via mbufs in the DPDK KNI

4.21.5 H%l: Egress

KRR M, DPDKR R L E S5 AL IL A mbufs 4 HELE N 3 B — T mbufZ 77 -

JE YA Fkni_net_txOEIH, MLinux S HERENCEIR @ - mbuf PN (BRI %A, FRUEFSER) | I
JEFT T of B sk_buffAEHE - SRE R sk _buff, FKfmbuf’Zi%%tx_q FIFO -

DPDK TXZ&FEHTmbuf HEA, FF¥EH L £ ZIPMD (GEidrte_eth_tx_burst() - IX/FHFmbuffil [BIZE 7+ -

4.21.6 LKW H

EthtoolsELinux T TE, TEHAZHEEMBZE, B LI XRMEREEN B R . B
Aif A SC A Figb / ixgbefE B Linux IR Zh 27 77 1 Tethtool 32 HF - i40efIVM (VFELEMIX %) A FFEthtool «

4.21.7 FEERSEMTUKES

HE BRI S FIMTUZS AL, 2 08 55 3 1 ifconfig 58 A A P 48 12 L8 AE - 1Z1E K NN (FEifconfigiFFE Y I F 3L
EP7>F AR, P ADPDKN AT . RHREFFRIEER, 8 N AR B R B [E] 2]
A% 2 [H] -
BBl DLE OB OB M, el RS T I B E .. XRE T2 HETR (K
FHKNIZEprimary processH 6], FEsecondary process™ ZbHH[FI) AR IEME « 23 52 B 3 A2 v DAY A A
AEHEK -

4.21. NEMEEOFRED 341

dpdk, Release 0.11

4.22 DPDKIFERI IR L2

DPDK LM EERL - JX L P R LT RERT IR 2 M w2l A, R —#BMIARE . AT
T 5 N SAEFEE H ORI R i 2 FE X L2 -

DPDKFIE (FATERSGE £ 5 MEEY LB M. (LR, EREWAT, CSRESEEN, MAES
BN . B, TS (AR AR ()3 SRR AR . AR T RS, T BT L SRR 2 &
ﬁﬁgﬁg%oﬁuﬁ%%ME¥ﬁﬁﬁ%WM%,ﬁ%ﬁ#%ﬁ%%ﬁﬁﬁo@%,ﬁﬂ%%ﬁ&%ﬁ
F MR AR

4.22.1 HREEIZAPI

IR E BT N AR P R R BUR, EXEEF ALK REASZEEIF L HH - PMDH
fJHash, LPM#mempoolZ L JXRX / TXHR X FE) -

BT, HashMILPMAESRAE N2, AREFATIHM, DIRFFIERE . AT, WRTFEE, JTTA NG L
SofE . LSnESR R IRt RE 2 2 . AR N AT ES, HHAERBFILPMES, ATLEZ D
BT HTITENER . BR, HHRANRARULPMER, 390, MERSESEAREAEHBES
PNERFTER - BlA — MERITER BRI ERNZ DL, vre NERE H CRIRIA .

PMDHIRXFITX/EDPDK . FAEFF i S o B T T, BBCREEH B, KoV E 2 mIERE - (ERIEER,
S BN LR AR HINICEAS EHATVORS, iXEIFER Ll & NZ MR - iR E MEREAER —
ASNICH H _E (PR R AORE FRAS R B8 e B A i 2 B

Ring FERISCIE T BB L, RFEEANERET ST - 1o, BTN P Ei AN E/ A
NN/ AR ESR Bt = £ RE - mempool/#2E TDPDK T Biring/%, A2 Z AR L 21 -

4.22.2 JEHRERURAPI

1E 52517 A B0 M BE B RE X B 2 4, DPDK K £ # H fih FE 1§ it & 2 2 £ iAPL. f
0, mallocFimemzone B RE 7] L& Fl T L R 2 HFEEASE A -

PMDH S E AN E AR REBUER), EEARKEL 2N . £L5EINE PPMDBCE MACE] F 112 X
BYSATRER PR « T IX AR MREBUR), JT AN LUEZRERINECWE, URBEREZ 2MNEM
FLE . HUTAERZERI A, F%8% 0 AIRIIA AL R R ShAs i) 8RR SERY -

4.22.3 FEWIIE

I DPDK LR R 7 /8 sl 7E LB wIia i, mAEMEER L EEFVIHRMNL - (HE, DPDKEH
TeE, DBIRENHETIBL—IK . REZRAZ XN, WREER. E2HABEEBLT, £ZNET
it & 15 B H BEfHprimary process¥J U5t - ML/, primary processFsecondary process#P i] LA 43 Bir/ R Al i 4 (1<
TFrte_mallocE{memzone I/ A A7 X 5 o

4.22.4 HHrLFE

DPDK AR R T JLF 582 F T Linux 7 25 8] « 0 T3 AN I PMID S IR 75 A 20 380 R) B 28 N2)
B, W LAFETDPDKACFREGAE SR A BRI RE o o [« 3 2 R 4[] A K 0B 9 43 (A 5 i DPDK £ A2 &
HFIDPDKRT 5, UIRTREEXFEML, NHREFP L AT LU St G4 il = i BE B R R -

342 Chapter 4. HTEEE

dpdk, Release 0.11

4.23 QoSHE

REANETDPDKARS FifE (QoS) HE

4.23.1 S FFQoSHIEIE /K%

£S

1,

HH QoS 3 B J8fR ST B K IR Bl an K B TR -

> Pkt I/O Pkt e | Load —— > e Pkt I/0
RX Parse asst oneer Balancer orker st © X
Thread 2
Thread 1 Thread (n+2)
Thread 0 |]]]_ Worker |
]]- Classif]]]_ Dropper —>
Pkt 1/0
RX N
]} Policer Sched
‘m- - Thread rn+1)]]]— n-bj:ﬂ-
Parse
Load | | Pkt1/0
Balancer]]]‘ TX

Worker

Fig. 4.49: Complex Packet Processing Pipeline with QoS Support

X IREAE] 5 ODPDKAK A R A 2 o AEIX DR S IIQoS I ZAR IR . SRlk s, RAFE A
FEgs . TRINM T RIRAVTRERIA -

4.23. QoSHEZE

343

dpdk, Release 0.11

Table 4.51: Packet Processing Pipeline Implementing QoS

| Block Functional Description

1 | Packet /O % P NICYH; O BT SR/ B % - FH T Intel 1GbE/10GbE NICHES R KSR P
RX & TX (PMD) -

2 | Packet AT ABIE LS - R EETE B LT 5 -
parser

3 | Flow classi- | FRAZBIECBRIECAmME L. FHAAACERG KL (jhash, CRCE) FIFEZHEE
fication SEH SR ARETRICEL R B 3L -

4 | Policer fEHsrTCM (RFC 2697) EitrTCM (RFC2698) BIEFTEFEEMNE -
5 | Load B N\BOIE RS Z LN R Fworker - NE Pworkerle G —HI % - REERE

Balancer X worker (55 F1 7 AR AR H R B -

6 | Worker ERfREMNA TEREN ST (FIInPHERE) -
threads
7 | Dropper ZEEE AR AR (RED) F3% (Sally Floyd-Van Jacobsonfi830) Sl
FIRED (WRED) - 1R#E %4 5 ERFEAS B A ERBIFIR TR EFHRSL . Ml
FIHERS, HAEEFMAETBIRPEIEE -

8 | Hierarchical | BT GAF N64K) M A BAS)) BISHSZRES (RN EHumD, i
Scheduler O, B, MERMY) . SHREEY (ATFmEER) |, mRieg
FIREHKH) MIIAHEES (WRR) (HFEMEERERFHING]) -

AR B AR 8 R E RS R AN R TR -

Table 4.52: Infrastructure Blocks Used by the Packet Processing Pipeline

| Block Functional Description

1 | Buffer manager | X FF & REITHIAE K EER T 517 -
2 | Queue manager | S TF/KZZ [RIFTHE BAE 8 -

3 | Power saving RIS SR LR RE -

IREGIREICPU cores 1BRSS AT LURRIERE 15 € N FHRE I P 75 RO PR REZ A AN & D RS FH I D) RESR E AT -
—LEERATHE X VHFEL 1" CPU cores (5 1CPU corefE A [FIHI A KE 6 LB TR — MREGAFSEG) |, A
ShEIJL R AT LIRS £ [7] — T CPU core -

4.23.2 HERAE

SREER (BFELERN) 8 AT %M B B TXM - B H AR AR I A P48 T 5 IR 55 20500 th il
(SLA) 87 WSS ARSI [FH - MU R & 2R A AR 1% 5 -

Bk
DERFERUUT ML S HEARREEHE, @FLMENR (SEER) PHABMEAE . ©BREMX

—FRELME, SEMERRMZ AR FHREEIER (AIRIE) . HTNIC TXIEAEEREZ R @7 %
Wi, PTRUZEEEUR GRS L, H BREE 0 HERSEBIETUE LAISLA (HEARIE) TIZLENIC TX -

RN K ERSCBAIIFHAT T AL - S ATREDE ISR, ROZ 8 E B % 3 S A & X e
. HRELZIFEMTHS, 1S5 “Worst Case Scenarios for Performance” -

HERIX

VEZ RGN TR - Fig. 4.51. JZIREEMI B —2 LR MTX H 1/10/40 GbE, 5422 IR A E X H
Fima, EiE, MERAT .

344 Chapter 4. HTEEE

dpdk, Release 0.11

Queues

/ ananbuj \

Gt/

Fig. 4.50: Hierarchical Scheduler Block Internal Diagram

4.23. QoSHEZE

345

dpdk, Release 0.11

WE, BT ARRIEXWHPE, MEMEEFRRENHAATS . BMREREEERHEERE,
IEIRFIENE SR (FIIATES, PIOREEdE Eh) MARRERENER . FIORIEEEE TR —H 6
Al —RE M — i MERR IR -

PRI T AR IRHIIIHE -

346 Chapter 4. 4it2#5r

dpdk, Release 0.11

Port

Subport

Pipe

Traffic
Class

Queue

Fig. 4.51: Scheduling Hierarchy per Port

4.23. QoSHEZE 347

dpdk, Release 0.11

Table 4.53: Port Scheduling Hierarchy

Level

Siblings per Parent

Functional Description

Port

I D W N
[11/10/40 GbE

2. . A LA 1A
KFAREE, TE
i 0 B H A [F
52K

Subport

Configurable (default: 8)

1. EBE AL
MEEE (81
FH—-1P4 M
1)

2. Subport/Z X} & >
mMEE (TC) M
AT LFR -

3.8 Ok e K
FITCHE % B F %
= A 9 & TCH
il R 5 FH) F v

mE

Pipe

Configurable
4K)

(default:

1. {5 4 FAR H 5
#HAT N R B E
(& Ppipe— 1%

FEA)

Traffic Class (TC)

1. 1 [FlpipefJTCLA
RS B AL 58 I
FFabH .

2. fEpipeZ} bl
BTCH 1T L
PR

3.8% Mk I W
FITCEE % = H
BN 3=
5 % BITCHE A
HIpipetii Bt

4. 3 F RTCHE #

(BC & A 2R
VI N —
ETC_E BR # FR
HH A F i a
FELEZMNHE

kS

Queue

1. AR IE Pl E AL E
i A In A & 2R
(WRR) X #H
[ETCHI BA 7] 33 17

B AZ.

348

Chapfer 4. %if2157

dpdk, Release 0.11

gyt |
PORT A B L & API

rte_sched. h 3 AE 61 & port, subportFlpipe L & I HE -
PORT 2 AFAAPI

Portii E ABAAPIFE# 2512l T DPDK PMD TXIhHEAAPI -

int rte_sched_port_enqueue (struct rte_sched_port xport, struct rte_mbuf *+pkts,

—uint32_t n_pkts);

PORTA i FAAPI

Port i & APAAPIHE# 25l FDPDK PMD RXINHEFAPI -

int rte_sched_port_dequeue (struct rte_sched_port xport, struct rte_mbuf *xpkts,

—uint32_t n_pkts);

Rl

/* File "application.c" */
#define N_PKTS RX 64
#define N_PKTS TX 48
#define NIC_RX_PORT 0
#define NIC_RX_QUEUE 0
#define NIC_TX_ PORT 1
#define NIC_TX QUEUE 0
struct rte_sched_port xport = NULL;
struct rte_mbuf xpkts_rx[N_PKTS_RX], *pkts_tx[N_PKTS_TX];
uint32_t n_pkts_rx, n_pkts_tx;
/+ Initialization =/
<initialization code>
/% Runtime x/
while (1) {
/* Read packets from NIC RX queue x/
n_pkts_rx = rte_eth_rx_burst (NIC_RX_PORT, NIC_RX_QUEUE,
/+ Hierarchical scheduler enqueue */

rte_sched_port_enqueue (port, pkts_rx, n_pkts_rx);

/+ Hierarchical scheduler dequeue */

pkts_rx,

n_pkts_tx = rte_sched_port_dequeue (port, pkts_tx, N_PKTS_TX);

N_PKTS_RX) ;

4.23. QoSHEZR

349

dpdk, Release 0.11

/+ Write packets to NIC TX queue #*/

rte_eth_tx_burst (NIC_TX_PORT, NIC_TX_QUEUE, pkts_tx, n_pkts_tx);

2]

Internal Data Structures per Port

WAEREHRLE R B, AR T -

350 Chapter 4. HTEEE

dpdk, Release 0.11

Subport
Table

Pipe Grinder

= - - -
3 : : ;

Table

Queue Queue
Table Storage Area

Fig. 4.52: Internal Data Structures per Port

4.23. QOSHEZR 351

dpdk, Release 0.11

Table 4.54: Scheduler Internal Data Structures per Port

Data structure

> Size (bytes)

per port

Access type

Description

Eng

Deq

Subport table
entry

64

subports
per port

Rd, Wr

FrEzm 1 %
H¥E (5
H. %)

Pipe table en-
try

64

pipes per
port

Rd, Wr

T
¥ Hipip,
HTCck H
FA 51 70 £ 3

(fFH%)
pipe@ﬂ 'S
A B AT
ANEEE . 1H
W fpipefit
B2 Z |
% I pipett
=z,
e 11~
EpipeR 5%
B 1 — &
53

Queue table
entry

#queues per
port

Rd, Wr

Rd, Wr

EE A1l
BiE (L5
8)

T A
N2
PMTCHIBAZ
KM,

R RN
B/ W i =
NI
it lig
X WA 5 E
N AINIES
B —E
4o

(S
Epipef] FA
5| % %% H #
TR —
A E AT
T

Queue stor-

age arca

Config (de-
fault: 64
x8)

queues per
port

Rd

BITH
IC #F A4
BITTEM
K /N ERF
“Tmbuffgft

Active
queues
bitmap

1 bit per
queue

Wr (Set)

Rd,
(Clear)

RLE &
A1 2 37 —
AR AL
BAFI A 15 51
(BA 31 1
=) BAS

352

Chapt

e F R R R
)
BA %) 7 B 1
EEF AR

By ="=% 71 =il

dpdk, Release 0.11

E2CX)&

ZRRIETRME R -
1. FERRISAE LR B3 1 o (E5R R — 3 1 A ABNTH A B R — AR T -

2. B AEANFIAAE BB R G O (R O) RONFIER T3 H, AT LOR AR R B9 s 37 5 21
ARIEAE - KL, T O I EIEL im0, 8070 BHAFREEET - E-FR—
i H AN BAAT AR [l — AR AT - (U TIEREH R, ANFIRE S 8D core b B 52 B v 1 Hf
A IXFEALH -

I — % H ¥ 1 4 AR BA

EHEGRE, R A A AR 2 R — NRART - By, #E ARl core BN [R]— i thivim H AT
HBAFIABANERAE, FTRER XA EEAE AL REE R AR, BRI AN X L -

[l — ity 1 B PARR S AR AE 3 22 DL R 4548 B TR AR -
1. ROTHLAR
2. BAFIE
3. BAIIEREE X
4. TEBHIRAFIAL A
A REFALE IR RE T RERRE 1T

1. TEMATIFIO R ER AR 2, XA RER 0 HPILLRIE EY (flan, B ESE) =i H
JERFEAIEFHIT IO (FI40, Test and SetEiCompare and Swapin ©4%6)) .« B —MEHLEERE RN
ErEBL .

2. Eﬁﬁ;l\corezIﬂ?ﬂ'ﬁﬁ%?@?%ﬁﬁ?ﬂ‘@E‘J%ﬁﬁmﬁﬁiﬁwﬁ (FHMESIVMY & A7 — B CPURE (4575 B #E
SER) .

LR EREF AR AR ED AR — M EE2 1T, AVFRIIRIN E B E IR RE 22, IR AR P AUR
CEMRFFAER —Tcore b, AT IR AFERE L ARIEMERE -

PEREAET
JRENICY: M £ AT 2 ARIE A T = A ICPUN R 14 LU IR AT .«

ABAKZ

SMRACIRNINZ £

1. 14 [Almbufll 32 BCAR 15 £ 98 & 79 B 5 PN 51 B 77 B9 5 B - 3X 22 5 B & Fport, subport, traffic
class fequeve, F HiBH HIRCD KN BOXE -

2. PRSI S LUR BB P RIS AALE - GREASIER, W EFZETEE -
3. DIRIBASIRES AL B LI EEE 6 (RIS Ambuffgtt) -

REZIE B BX 2o IR 2 (8] B 1R 3R i BRI, 8 D9 25 BRoAN3 A A SR AN2 0 45 R A2 15 AT I 2 Jil B 1R R
By, IXFERUICIA SR B AR AL T 51 2 IR UET 25 ATEREILIL -

4.23. QOoSHEZE 353

dpdk, Release 0.11

ZRXHE—FEN, BENBARCCGERRE, PAFIEEX, fTLUBRES], AR EiEdEaFHE DR
BAREMANEE T Z BicorelIL18{L2 data cache ™, MO, _FAR3NNTETR B RAER & 7= A L1FIL2 data cache
miss - FIEREEEIN S, 81 E3E A HIN3IKLL / L2 data cache missA& A H52H -

BT 1R R B T A 5 PO BE 454 - TGRIEE A HUTIER , 7ESLBA R b FR 88 AN R 22 i 7] 24 §if IEE
TP RCELE L), BORT b BRBS R () P T HoAh TAE - AT FH A9 EAD T B AT DU E A5 AR SCHUT AR B
FIABNFEF], AT SE A AR E AR /K 2 S

Fig. 4.53 Bon T B H4FKEANRIESSEL, H B8N BHRE2 AR BB ATR S - 7548 & IR 1] 55
b, AR R BEAE KR A B AT A 3 .

pkt 00 pKE10 PKE20 Pkt 30

=" Stage0 | Stage1 ?| Stage 2
(Prefetch (Prefetch (Prefetch

—MKt o mbuf) pit 11 > queue) _’p_l_(_t 21 location)

Fig. 4.53: Prefetch Pipeline for the Hierarchical Scheduler Enqueue Operation

I _E FEA A ANBA K 2 SEIR RO I 288 B 7 SR JE W 2RI A BB B HEAARN, BRI ES B A 1L X
ey, ELXA SRR AR E T, BRI P EEEE HEA - AT LT FARED/WRED/E ARK
IR — R R, AR EIS G HRFRCM SR, D LR EEEARANEFRE (A
PARTE SR @A X s EFR T EEE AR

M Fiipipe & T — MR AP IR
1. AL E SRR A R — &5 Bpipe (prefetch pipe) -
2. B HlpipeSIR 45+ - BT Y Fipipe & Eisubport115 F - iR 52 Bilpipe T 1 %5 — Pactive traffic class, 1%
FAWRRIERE T —~queue, 2 HipipelIFTE 161 queueTHH AT F55T -
3. MZHIWRR queueiZBU T —ITE, FHIECEEGRBHATT -

4. NBEH AT (mbufd5 1) WA KE - R\ KEMAT HEMH (3 Hipipe, pipe traffic
class, subportsubport traffic class) , 4 B EdE 61T 2 BB IRE -

T 3 ffcache miss, [iREUHE 45 (pipe, queue, queue array, mbufs) FE# U5 1A] 2 B #% FUEL - BRI
T B #5479 3 SR /9 3K B% & 7E h 4 Hilpipe & H FUHLU G 32 B M 24 Hijpipe (7Egrinder AT)] # 2| 7 —
pipe (FEgrinderBH) o aXFERE AT IZEHITIIHe Elpipe (grinder A) Z 8, B W5 AT 8] 52 A FRBGRIE -

i pipetR AL RF &8 77 AR AL B 2R = R P, R E 2l A [R] #pipe TCAHIpipe (AT REZ HOKTE &
FER) RERFWEEZHEEE, REHEBHNE T —DENTC pipe (MEH) 25— 1 Shpipe- ..

_figure_pipe_prefetch_sm:

B IR A] 25

o O RO T IR AR, FEARESETATRRIEDE . X T10GbE, FH05 2 iR A
F2SCAFHHIEN - RBEERFEFT AR, REFERBOIRSCIER, T —LEH R a2
T B RIR B -

JE L, RIREEERER HEABR VBN FINIC TX A% - G8H, — HNIC TXHI ARSI & FH RN 2 F0E LA
HELR, ¥ OSSR HEE (T PWreiE TR, EdES MG S H) REFEE S IR A
BAS -

354 Chapter 4. TE$5E

dpdk, Release 0.11

Mo active
pipes

Mextactive
pipe

Fig. 4.54: Pipe Prefetch State Machine for the Hierarchical Scheduler Dequeue Operation

4.23. QOSHEZR 355

dpdk, Release 0.11

PR RS 18] 51

VA A IR ER (5 LB BRI RIS, ROV ERAREE TR REIES (i, TREMEEREEY, Ri
R ERRATEE) -

B 2 AR P e R R ZOR BINIC TXEATRHRS, AR AR AE ROt S N L R (A 2% - Ak, DA
T B OREF AR B 2R v R T (R Y, H A T R R B R AR i o B AR 1 BT A R SRR (] < 9X
*irbﬁég&li%&iﬁfﬁﬁﬁ?%fﬁﬁﬁi BIEILL (n+h) 33, HnfDlw 7 A IO, g MR
BAUGIREE Sk i 8

PR 18] 25 BT [F] 20

VR LA e R LN BB R) 22500 5 £l A% 87 HP o [DR S OR R AR P A DAL 3) Jo F) 4 o
T L IF I REHEANIC TX, Pt EiRE L .

VA AR 3 B HH AR A B S BT 1] o] DIGE G SO () BT 38 (TSC) FFA 8 miiG 5 5 1 i I 25

(HPET) & 17 e KAKHRCPUR A1 - 24 Bij CPUR [B] B R CPURN B E R F 174 time_bytes = time_cycles
/ cycles_per_byte, H Hicycles_per_bytes® %5 5 T 4 b — > 7 {1 1% i iy (8] AICPU A 4L (61 AnCPUAR % 2
GHzF110GbE: [, cycles_per_byte=1.6) -

VAEREFFHETNIC time I NERET A1 2% o &= BRI, NIC imeP 0 H KK (BIBWUTHH) - &
BIRHPAHFRS, AR TR A ENIC timeINERS |5 24 Rl (B 1756 &

1. GIERNIC time ARk (NIC time> =4 Fils[E]) |, NIATREHEENIC time - 32X 75 M E VA S 2T BES ZENICSL
P B LG VR 6 2 BT ZHENICE PR &, BRIBENIC TXFRME T 2R £,

2. WIENIC timeid % (NICH [Al<Y4 FifstE]) |, MINIC time/S 5 E % B Y B AR AT . X E
W& T AREIR DENICFE T &S A0, K TNIC TXRUEUE B HER AR, BT ANICH 58 #
IRTET -

VRS EIRIER (SRTD) AEFEVA AL R — M pipe M JGELER TS 2 [AIFIIT Al (CPUREA%D -

TR ER O (RLERTREER) |, WEREFRIZEEN UNIC TXA £ Kn M EE (5 PR o D EdE
£ .

BB A TR, AEREFRER LEESHRBEENS MEERESR . XEREEEL BRI
NNOZIRER AR, UMEEHTRBSRTDIMA 1, FOUXFSEEEMERRL (FREHEL) -

EHZH
PERE
LR LU N E &R, M (subport S, pipe P, traffic class TC, queue Q) &k N —"MHAAERE (9
P LE)
* Subport SHPipe P E Hij FH—1-¥if [A e,
s MERTCEEEPHIR LR FEERERT;
» BAFIQEE EPHILE R TCH HWRRIEEER T —1-PAF;

s THOSHZEBMERAEIEE,
s THOSEHAEWHERRERTCRA LI,

356 Chapter 4. HTEEE

dpdk, Release 0.11

« EIEPE RWIE AR AR
- EEPEAEBMEMNMTRERTCLELIRE -
WA ETE LR S E, Mg HAT R, FANTEAOS, TERAOSMERTC, &EP, EEPHE

RTCHEZ L ERIFH -
T4

AT E IR S K ERRRANEON DT, BrUUMEHBAGE 1D FHn 5 1 RSO R E
A#ES%T (n+h) , HPhETEMRICHIRMUT #7145 -

Table 4.55: Ethernet Frame Overhead Fields

| Packet field Length Comments
(bytes)

1 | Preamble 7

Start of Frame Delimiter 1

(SFD)
3 | Frame Check Sequence (FCS) | 4 AmbufEKEFEFTNEEIHX B FEZET

-

4 | Inter Frame Gap (IFG) 12
5 | Total 24

Traffic Shaping

The traffic shaping for subport and pipe is implemented using a token bucket per subport/per pipe. Each token bucket
is implemented using one saturated counter that keeps track of the number of available credits.

The token bucket generic parameters and operations are presented in Table 4.56 and Table 4.57.

Table 4.56: Token Bucket Generic Operations

| Token Bucket Parameter | Unit Description
1 | bucket_rate Credits per second | Rate of adding credits to the bucket.
2 | bucket_size Credits Max number of credits that can be stored in the bucket.
Table 4.57: Token Bucket Generic Parameters
| Token Description
Bucket
Operation

1 | Initialization Bucket set to a predefined value, e.g. zero or half of the bucket size.

Credit update | Credits are added to the bucket on top of existing ones, either periodically or on demand,
based on the bucket_rate. Credits cannot exceed the upper limit defined by the bucket_size,
so any credits to be added to the bucket while the bucket is full are dropped.

3 | Credit As result of packet scheduling, the necessary number of credits is removed from the bucket.
consumption The packet can only be sent if enough credits are in the bucket to send the full packet
(packet bytes and framing overhead for the packet).

To implement the token bucket generic operations described above, the current design uses the persistent data structure
presented in Table 4.58, while the implementation of the token bucket operations is described in Table 4.59.

4.23. QOoSHEZE 357

dpdk, Release 0.11

Table 4.58: Token Bucket Persistent Data Structure

Token bucket field

Unit

Description

1 tb_time

Bytes

Time of the last credit up-
date. Measured in bytes
instead of seconds or CPU
cycles for ease of credit
consumption operation (as
the current time is also
maintained in bytes).

See Section 26.2.4.5.1
“Internal Time Refer-
ence” for an explanation
of why the time is
maintained in byte units.

2 tb_period

Bytes

Time period that should
elapse since the last credit
update in order for the
bucket to be awarded
tb_credits_per_period
worth or credits.

3 tb_credits_per_period

Bytes

Credit allowance per
tb_period.

4 tb_size

Bytes

Bucket size, i.e. upper
limit for the tb_credits.

5 tb_credits

Bytes

Number of credits cur-
rently in the bucket.

The bucket rate (in bytes per second) can be computed with the following formula:

bucket_rate = (tb_credits_per_period / tb_period) * r

where, r = port line rate (in bytes per second).

358

Chapter 4. 4ifE$5r

dpdk, Release 0.11

Table 4.59: Token Bucket Operations

Token bucket operation

Description

Initialization

th_credits = 0; or th_credits =
th_size/2;

Credit update

Credit update options:

» Every time a packet is sent for
a port, update the credits of all
the the subports and pipes of
that port. Not feasible.

» Every time a packet is sent,
update the credits for the pipe
and subport. Very accurate,
but not needed (a lot of cal-
culations).

» Every time a pipe is selected
(that is, picked by one of the
grinders), update the credits
for the pipe and its subport.

The current implementation is us-
ing option 3. According to Section
“Dequeue State Machine”, the pipe
and subport credits are updated ev-
ery time a pipe is selected by the de-
queue process before the pipe and
subport credits are actually used.
The implementation uses a tradeoff
between accuracy and speed by up-
dating the bucket credits only when
at least a full tb_period has elapsed
since the last update.

* Full accuracy can be achieved
by selecting the wvalue
for tb_period for which
tb_credits_per_period = 1.

* When full accuracy is not re-
quired, better performance is
achieved by setting tb_credits
to a larger value.

Update operations:

* n_periods = (time - tb_time) /
tb_period;

* tb_credits += n_periods *
tb_credits_per_period;

e tb_credits = min(tb_credits,
tb_size);

e tb_time += n_periods *
tb_period,;

Credit consumption (on packet
scheduling)

As result of packet scheduling, the
necessary number of credits is re-
moved from the bucket. The packet
can only be sent if enough credits
are in the bucket to send the full
packet (packet bytes and framing

4.23. QOoSHEZR

overhead for the packet). 359
Scheduling operations:

pkt_credits = pkt_len +
frame_overhead; if (tb_credits

~ e mlbt ArmnditNT+Ih A dieaq .

dpdk, Release 0.11

Traffic Classes

Implementation of Strict Priority Scheduling

Strict priority scheduling of traffic classes within the same pipe is implemented by the pipe dequeue state machine,
which selects the queues in ascending order. Therefore, queues 0..3 (associated with TC 0, highest priority TC) are
handled before queues 4..7 (TC 1, lower priority than TC 0), which are handled before queues 8..11 (TC 2), which are

handled before queues 12..15 (TC 3, lowest priority TC).

Upper Limit Enforcement

The traffic classes at the pipe and subport levels are not traffic shaped, so there is no token bucket maintained in this
context. The upper limit for the traffic classes at the subport and pipe levels is enforced by periodically refilling the
subport / pipe traffic class credit counter, out of which credits are consumed every time a packet is scheduled for that

subport / pipe, as described in Table 4.60 and Table 4.61.

Table 4.60: Subport/Pipe Traffic Class Upper Limit Enforcement Persistent Data Structure

Subport or pipe field

Unit

Description

1 tc_time

Bytes

Time of the next update
(upper limit refill) for the
4 TCs of the current sub-
port / pipe.

See Section “Internal
Time Reference”for the
explanation of why the
time is maintained in byte
units.

2 tc_period

Bytes

Time between two con-
secutive updates for the 4
TCs of the current subport
/ pipe. This is expected to
be many times bigger than
the typical value of the to-
ken bucket tb_period.

3 tc_credits_per_period

Bytes

Upper limit for the num-
ber of credits allowed
to be consumed by the
current TC during each
enforcement period
tc_period.

4 tc_credits

Bytes

Current upper limit for the
number of credits that can
be consumed by the cur-
rent traffic class for the re-
mainder of the current en-
forcement period.

360

Chapter 4. HTEEE

dpdk, Release 0.11

Table 4.61: Subport/Pipe Traffic Class Upper Limit Enforcement Operations

scheduling)

Traffic Class Operation Description

1 Initialization tc_credits = tc_credits_per_period;
tc_time = tc_period;

2 Credit update Update operations:
if (time >= tc_time) {
tc_credits = tc_credits_per_period;
tc_time = time + tc_period;
}

3 Credit consumption (on packet | As result of packet scheduling, the

TC limit is decreased with the nec-
essary number of credits. The
packet can only be sent if enough
credits are currently available in the
TC limit to send the full packet
(packet bytes and framing overhead
for the packet).

Scheduling operations:

pkt_credits = pk_len +
frame_overhead;

if (tc_credits >= pkt_credits)
{tc_credits -= pkt_credits;}

Weighted Round Robin (WRR)

The evolution of the WRR design solution from simple to complex is shown in Table 4.62.

4.23. QoSHEZR

361

dpdk, Release 0.11

Table 4.62:

Weighted Round Robin (WRR)

All
tive?

Queues Ac-

Equal Weights for
All Queues?

All Packets Equal?

Strategy

Yes

Yes

Yes

Byte level round
robin

Next queue queue
#,i=(i+1)%n

Yes

Yes

Packet level round
robin

Consuming one
byte from queue #i
requires consuming
exactly one token
for queue #i.

T(@) = Accumulated
number of tokens
previously con-
sumed from queue
#i. Every time a
packet is consumed
from queue #i, T(i)
is updated as: T()
+= pkt_len.

Next queue : queue
with the smallest T.

Yes

No

Packet level
weighted round
robin

This case can be
reduced to the
previous case by
introducing a cost
per byte that is
different for each
queue. Queues with
lower weights have
a higher cost per
byte. This way, it
is still meaningful
to compare the con-
sumption amongst
different queues in
order to select the
next queue.

w() = Weight of
queue #i

t(i) = Tokens per
byte for queue
#i, defined as the
inverse weight
of queue #i.
For example, if
w[0..3] = [1:2:4:8],
then t[0..3] =

362

Chupter b, ipis g

= [1:4:15:20],
then t[0..3] =
[60:15:4:3]. Con-

. S Tax A

PR

dpdk, Release 0.11

Subport Traffic Class Oversubscription
Problem Statement

Oversubscription for subport traffic class X is a configuration-time event that occurs when more bandwidth is allocated
for traffic class X at the level of subport member pipes than allocated for the same traffic class at the parent subport
level.

The existence of the oversubscription for a specific subport and traffic class is solely the result of pipe and subport-
level configuration as opposed to being created due to dynamic evolution of the traffic load at run-time (as congestion
is).

When the overall demand for traffic class X for the current subport is low, the existence of the oversubscription
condition does not represent a problem, as demand for traffic class X is completely satisfied for all member pipes.
However, this can no longer be achieved when the aggregated demand for traffic class X for all subport member pipes
exceeds the limit configured at the subport level.

Solution Space

summarizes some of the possible approaches for handling this problem, with the third approach selected for imple-
mentation.

4.23. QOoSHEZE 363

dpdk, Release 0.11

Table 4.63: Subport Traffic Class Oversubscription

No. Approach Description

1 Don’t care First come, first served.

This approach is not fair amongst
subport member pipes, as pipes that
are served first will use up as much
bandwidth for TC X as they need,
while pipes that are served later will
receive poor service due to band-
width for TC X at the subport level
being scarce.

2 Scale down all pipes All pipes within the subport have
their bandwidth limit for TC X
scaled down by the same factor.
This approach is not fair among sub-
port member pipes, as the low end
pipes (that is, pipes configured with
low bandwidth) can potentially ex-
perience severe service degradation
that might render their service un-
usable (if available bandwidth for
these pipes drops below the mini-
mum requirements for a workable
service), while the service degrada-
tion for high end pipes might not be
noticeable at all.

3 Cap the high demand pipes Each subport member pipe receives
an equal share of the bandwidth
available at run-time for TC X at the
subport level. Any bandwidth left
unused by the low-demand pipes
is redistributed in equal portions to
the high-demand pipes. This way,
the high-demand pipes are truncated
while the low-demand pipes are not
impacted.

Typically, the subport TC oversubscription feature is enabled only for the lowest priority traffic class (TC 3), which is
typically used for best effort traffic, with the management plane preventing this condition from occurring for the other
(higher priority) traffic classes.

To ease implementation, it is also assumed that the upper limit for subport TC 3 is set to 100% of the subport rate, and
that the upper limit for pipe TC 3 is set to 100% of pipe rate for all subport member pipes.

Implementation Overview

The algorithm computes a watermark, which is periodically updated based on the current demand experienced by the
subport member pipes, whose purpose is to limit the amount of traffic that each pipe is allowed to send for TC 3. The
watermark is computed at the subport level at the beginning of each traffic class upper limit enforcement period and
the same value is used by all the subport member pipes throughout the current enforcement period. illustrates how the
watermark computed as subport level at the beginning of each period is propagated to all subport member pipes.

At the beginning of the current enforcement period (which coincides with the end of the previous enforcement period),

364 Chapter 4. HTEEE

dpdk, Release 0.11

the value of the watermark is adjusted based on the amount of bandwidth allocated to TC 3 at the beginning of the
previous period that was not left unused by the subport member pipes at the end of the previous period.

If there was subport TC 3 bandwidth left unused, the value of the watermark for the current period is increased to
encourage the subport member pipes to consume more bandwidth. Otherwise, the value of the watermark is decreased
to enforce equality of bandwidth consumption among subport member pipes for TC 3.

The increase or decrease in the watermark value is done in small increments, so several enforcement periods might
be required to reach the equilibrium state. This state can change at any moment due to variations in the demand
experienced by the subport member pipes for TC 3, for example, as a result of demand increase (when the watermark
needs to be lowered) or demand decrease (when the watermark needs to be increased).

When demand is low, the watermark is set high to prevent it from impeding the subport member pipes from consuming
more bandwidth. The highest value for the watermark is picked as the highest rate configured for a subport member
pipe. Table 4.64 and Table 4.65 illustrates the watermark operation.

Table 4.64: Watermark Propagation from Subport Level to Member Pipes at the Beginning of Each Traffic Class Upper
Limit Enforcement Period

No. Subport Traffic Class Operation | Description

1 Initialization Subport level: subport_period_id=

0

Pipe level: pipe_period_id =0

2 Credit update Subport Level:

if (time>=subport_tc_time)

{ subport_wm = wa-
ter_mark_update();
subport_tc_time = time + sub-
port_tc_period;
subport_period_id++;

}
Pipelevel:

if(pipe_period_id = sub-
port_period_id)
{
pipe_ov_credits
= subport_wm ¥
pipe_weight;
pipe_period_id = sub-
port_period_id;
}
3 Credit consumption (on packet | Pipe level:
scheduling) pkt_credits = pk_len +
frame_overhead;
if(pipe_ov_credits >= pkt_credits{
pipe_ov_credits -=
pkt_credits;

4.23. QOoSHEZE 365

dpdk, Release 0.11

Table 4.65: Watermark Calculation

No. Subport Traffic Class Operation | Description

1 Initialization Subport level:
wm = WM_MAX

2 Credit update Subport level (wa-
ter_mark_update):
tcO_cons = sub-

port_tcO_credits_per_period -
subport_tcO_credits;
tcl_cons = sub-
port_tc1_credits_per_period -
subport_tcl_credits;
tc2_cons = sub-
port_tc2_credits_per_period -
subport_tc2_credits;
tc3_cons = sub-
port_tc3_credits_per_period -
subport_tc3_credits;
tc3_cons_max = sub-
port_tc3_credits_per_period -
(tcO_cons + tc1_cons + tc2_cons);
if(tc3_consumption >
(tc3_consumption_max - MTU)){

wm -= wm >> 7;

iftwm < WM_MIN)

wm = WM_MIN;
} else {

wm += (wm >>7) + 1;

iftwm > WM_MAX)

wm = WM_MAX;

Worst Case Scenarios for Performance

Lots of Active Queues with Not Enough Credits

The more queues the scheduler has to examine for packets and credits in order to select one packet, the lower the
performance of the scheduler is.

The scheduler maintains the bitmap of active queues, which skips the non-active queues, but in order to detect whether
a specific pipe has enough credits, the pipe has to be drilled down using the pipe dequeue state machine, which
consumes cycles regardless of the scheduling result (no packets are produced or at least one packet is produced).

This scenario stresses the importance of the policer for the scheduler performance: if the pipe does not have enough
credits, its packets should be dropped as soon as possible (before they reach the hierarchical scheduler), thus ren-
dering the pipe queues as not active, which allows the dequeue side to skip that pipe with no cycles being spent on
investigating the pipe credits that would result in a “not enough credits” status.

366 Chapter 4. 4it2#5r

dpdk, Release 0.11

Single Queue with 100% Line Rate

The port scheduler performance is optimized for a large number of queues. If the number of queues is small, then the
performance of the port scheduler for the same level of active traffic is expected to be worse than the performance of
a small set of message passing queues.

4.23.3 Dropper

The purpose of the DPDK dropper is to drop packets arriving at a packet scheduler to avoid congestion. The dropper
supports the Random Early Detection (RED), Weighted Random Early Detection (WRED) and tail drop algorithms.
Fig. 4.55 illustrates how the dropper integrates with the scheduler. The DPDK currently does not support congestion
management so the dropper provides the only method for congestion avoidance.

Scheduler
RED
Yellow
Green
Run-Time Data Configuration
Dropper
Current »| RED/WRED Orop/ ! Tail Drop Orop/
Queue Size No Drop No Drop

Packet Queue

Fig. 4.55: High-level Block Diagram of the DPDK Dropper

The dropper uses the Random Early Detection (RED) congestion avoidance algorithm as documented in the reference
publication. The purpose of the RED algorithm is to monitor a packet queue, determine the current congestion level
in the queue and decide whether an arriving packet should be enqueued or dropped. The RED algorithm uses an
Exponential Weighted Moving Average (EWMA) filter to compute average queue size which gives an indication of
the current congestion level in the queue.

For each enqueue operation, the RED algorithm compares the average queue size to minimum and maximum thresh-
olds. Depending on whether the average queue size is below, above or in between these thresholds, the RED algorithm

4.23. QOSHEZR 367

dpdk, Release 0.11

calculates the probability that an arriving packet should be dropped and makes a random decision based on this prob-
ability.

The dropper also supports Weighted Random Early Detection (WRED) by allowing the scheduler to select different
RED configurations for the same packet queue at run-time. In the case of severe congestion, the dropper resorts to tail
drop. This occurs when a packet queue has reached maximum capacity and cannot store any more packets. In this
situation, all arriving packets are dropped.

The flow through the dropper is illustrated in Fig. 4.56. The RED/WRED algorithm is exercised first and tail drop
second.

The use cases supported by the dropper are:

e - Initialize configuration data

e - Initialize run-time data

* - Enqueue (make a decision to enqueue or drop an arriving packet)

e — Mark empty (record the time at which a packet queue becomes empty)

The configuration use case is explained in Section2.23.3.1, the enqueue operation is explained in Section 2.23.3.2 and
the mark empty operation is explained in Section 2.23.3.3.

Configuration

A RED configuration contains the parameters given in Table 4.66.

Table 4.66: RED Configuration Parameters

Parameter Minimum | Maximum | Typical
Minimum Threshold 0 1022 1/4 x queue size
Maximum Threshold 1 1023 1/2 x queue size
Inverse Mark Probability | 1 255 10

EWMA Filter Weight 1 12 9

The meaning of these parameters is explained in more detail in the following sections. The format of these parameters
as specified to the dropper module API corresponds to the format used by Cisco* in their RED implementation. The
minimum and maximum threshold parameters are specified to the dropper module in terms of number of packets. The
mark probability parameter is specified as an inverse value, for example, an inverse mark probability parameter value
of 10 corresponds to a mark probability of 1/10 (that is, 1 in 10 packets will be dropped). The EWMA filter weight
parameter is specified as an inverse log value, for example, a filter weight parameter value of 9 corresponds to a filter
weight of 1/29.

Enqueue Operation

In the example shown in Fig. 4.57, q (actual queue size) is the input value, avg (average queue size) and count
(number of packets since the last drop) are run-time values, decision is the output value and the remaining values are
configuration parameters.

EWMA Filter Microblock

The purpose of the EWMA Filter microblock is to filter queue size values to smooth out transient changes that result
from “bursty” traffic. The output value is the average queue size which gives a more stable view of the current
congestion level in the queue.

368 Chapter 4. HTEEE

dpdk, Release 0.11

(=)
l

RED/WRED

Drop?
Yes

No
Tail Drop Yies—
No
4 L
Engueue Packet Drop Packet

l
(=)

Fig. 4.56: Flow Through the Dropper

4.23. QOSHEZR 369

dpdk, Release 0.11

Min Threshold
Max Threshold
Filter Weight Mark Probability
count][i]
ql’] o avg(i] — # decision([i]
avali1] EWMA > Drop >
1
Delay fe— Random

Fig. 4.57: Example Data Flow Through Dropper

The EWMA filter has one configuration parameter, filter weight, which determines how quickly or slowly the average
queue size output responds to changes in the actual queue size input. Higher values of filter weight mean that the
average queue size responds more quickly to changes in actual queue size.

Average Queue Size Calculation when the Queue is not Empty

The definition of the EWMA filter is given in the following equation.
avglil = (1 - wq} % avgli — 1] + w, x g[i]

Where:
* gvg = average queue size
* wq = filter weight

* g =actual queue size

Note:

The filter weight, wq = 1/2*n, where n is the filter weight parameter value passed to the dropper module on
configuration (see Section2.23.3.1).

Average Queue Size Calculation when the Queue is Empty

The EWMA filter does not read time stamps and instead assumes that enqueue operations will happen quite regularly.
Special handling is required when the queue becomes empty as the queue could be empty for a short time or a long

370 Chapter 4. ZitEf5rs

dpdk, Release 0.11

time. When the queue becomes empty, average queue size should decay gradually to zero instead of dropping suddenly
to zero or remaining stagnant at the last computed value. When a packet is enqueued on an empty queue, the average
queue size is computed using the following formula:

avglil = avgli — 11 x (1 —wq}m

Where:

* m = the number of enqueue operations that could have occurred on this queue while the queue was empty
In the dropper module, m is defined as:

(tim& —gtim e)
m=jy-—
5

Where:

* time = current time

* gtime = time the queue became empty

* s = typical time between successive enqueue operations on this queue

The time reference is in units of bytes, where a byte signifies the time duration required by the physical interface to
send out a byte on the transmission medium (see Section “Internal Time Reference”). The parameter s is defined in
the dropper module as a constant with the value: s=2722. This corresponds to the time required by every leaf node in a
hierarchy with 64K leaf nodes to transmit one 64-byte packet onto the wire and represents the worst case scenario. For
much smaller scheduler hierarchies, it may be necessary to reduce the parameter s, which is defined in the red header
source file (rte_red.h) as:

#define RTE_RED_S

Since the time reference is in bytes, the port speed is implied in the expression: time-gtime. The dropper does not have
to be configured with the actual port speed. It adjusts automatically to low speed and high speed links.

Implementation

A numerical method is used to compute the factor (1-wq)*m that appears in Equation 2.

This method is based on the following identity:
a= El:bxlngzl:ﬂ}}
This allows us to express the following:
L™ almxlogg(1-w
(1) = 2lmeossiwed)

In the dropper module, a look-up table is used to compute log2(1-wq) for each value of wq supported by the dropper
module. The factor (1-wq)*m can then be obtained by multiplying the table value by m and applying shift operations.
To avoid overflow in the multiplication, the value, m, and the look-up table values are limited to 16 bits. The total size
of the look-up table is 56 bytes. Once the factor (1-wq)"m is obtained using this method, the average queue size can
be calculated from Equation 2.

4.23. QOSHEZE 371

dpdk, Release 0.11

Alternative Approaches

Other methods for calculating the factor (1-wq)”m in the expression for computing average queue size when the queue
is empty (Equation 2) were considered. These approaches include:

* Floating-point evaluation

* Fixed-point evaluation using a small look-up table (512B) and up to 16 multiplications (this is the approach used
in the FreeBSD* ALTQ RED implementation)

* Fixed-point evaluation using a small look-up table (512B) and 16 SSE multiplications (SSE optimized version
of the approach used in the FreeBSD* ALTQ RED implementation)

» Large look-up table (76 KB)

The method that was finally selected (described above in Section 26.3.2.2.1) out performs all of these approaches in
terms of run-time performance and memory requirements and also achieves accuracy comparable to floating-point
evaluation. Table 4.67 lists the performance of each of these alternative approaches relative to the method that is used
in the dropper. As can be seen, the floating-point implementation achieved the worst performance.

Table 4.67: Relative Performance of Alternative Approaches

Method Relative Performance

Current dropper method (see Section 23.3.2.1.3) 100%

Fixed-point method with small (512B) look-up table | 148%

SSE method with small (512B) look-up table 114%

Large (76KB) look-up table 118%

Floating-point 595%

Note: In this case, since performance is expressed as time spent executing the operation in a specific condition, any relative performar

Drop Decision Block

The Drop Decision block:
* Compares the average queue size with the minimum and maximum thresholds
* Calculates a packet drop probability
* Makes a random decision to enqueue or drop an arriving packet

The calculation of the drop probability occurs in two stages. An initial drop probability is calculated based on the
average queue size, the minimum and maximum thresholds and the mark probability. An actual drop probability
is then computed from the initial drop probability. The actual drop probability takes the count run-time value into
consideration so that the actual drop probability increases as more packets arrive to the packet queue since the last
packet was dropped.

Initial Packet Drop Probability

The initial drop probability is calculated using the following equation.

0, QUvg 5 WEEMep
avg — Mg]
2

Py = mmﬂ(Ml = QYVG < MEX

MTEN g — MM R
1, arg = Maxes

Where:

372 Chapter 4. 4it2#5r

dpdk, Release 0.11

* maxp = mark probability

* avg = average queue size

* minth = minimum threshold
e maxth = maximum threshold

The calculation of the packet drop probability using Equation 3 is illustrated in Fig. 4.58. If the average queue size is
below the minimum threshold, an arriving packet is enqueued. If the average queue size is at or above the maximum
threshold, an arriving packet is dropped. If the average queue size is between the minimum and maximum thresholds,
a drop probability is calculated to determine if the packet should be enqueued or dropped.

Packet Drop Probability

Mark Probability —

Min Threshold Max Threshold

Average Queue Size

Fig. 4.58: Packet Drop Probability for a Given RED Configuration

Actual Drop Probability

If the average queue size is between the minimum and maximum thresholds, then the actual drop probability is calcu-
lated from the following equation.

P

Pe = (2 = count % p)

Where:

4.23. QOoSHEZE 373

dpdk, Release 0.11

* Pb = initial drop probability (from Equation 3)
* count = number of packets that have arrived since the last drop

The constant 2, in Equation 4 is the only deviation from the drop probability formulae given in the reference document
where a value of 1 is used instead. It should be noted that the value pa computed from can be negative or greater than
1. If this is the case, then a value of 1 should be used instead.

The initial and actual drop probabilities are shown in Fig. 4.59. The actual drop probability is shown for the case where
the formula given in the reference document! is used (blue curve) and also for the case where the formula implemented
in the dropper module, is used (red curve). The formula in the reference document results in a significantly higher
drop rate compared to the mark probability configuration parameter specified by the user. The choice to deviate from
the reference document is simply a design decision and one that has been taken by other RED implementations, for

example, FreeBSD* ALTQ RED.

0.25
0.2
-9
E
g 0.15
e === pa=pb /(1 -count * pb)
a
E- 0.1 = pa=pb /(2 -count* pb)
X / pb = max_p * (.9 f 10}
0.05 -+
0

1234567 8 91011121314151617
count

Fig. 4.59: Initial Drop Probability (pb), Actual Drop probability (pa) Computed Using a Factor 1 (Blue Curve) and a
Factor 2 (Red Curve)

Queue Empty Operation

The time at which a packet queue becomes empty must be recorded and saved with the RED run-time data so that the
EWMA filter block can calculate the average queue size on the next enqueue operation. It is the responsibility of the
calling application to inform the dropper module through the API that a queue has become empty.

Source Files Location

The source files for the DPDK dropper are located at:
¢« DPDK/lib/librte_sched/rte_red.h
e DPDK/lib/librte_sched/rte_red.c

374 Chapter 4. HTEEE

dpdk, Release 0.11

Integration with the DPDK QoS Scheduler

RED functionality in the DPDK QoS scheduler is disabled by default. To enable it, use the DPDK configuration
parameter:

CONFIG_RTE_SCHED_RED=y

This parameter must be set to y. The parameter is found in the build configuration files in the DPDK/config directory,
for example, DPDK/config/common_linuxapp. RED configuration parameters are specified in the rte_red_params
structure within the rte_sched_port_params structure that is passed to the scheduler on initialization. RED parameters
are specified separately for four traffic classes and three packet colors (green, yellow and red) allowing the scheduler
to impleme