

.NET Concepts: Services

.NET Concepts: Services are concept libraries made to inspire a better structure for C# services.

Contents:

	Getting Started
	Create Service

	Create Bootstrap

	Run the service

	Service Host
	Hosting ASP.NET Core

	RabbitMQ

Getting Started

Create Service

A service is defined by implementing a class derived from Service. The method StartAsync will be called when the service is started, and can be considered as the entry point to the service. Optionally, StopAsync can be overridden to implement clean up activities, like disposing services.

public class TimeService : Service
{
 private readonly IWorldClock _clock;
 private Timer _timer;

 public TimeService(IWorldClock clock)
 {
 _clock = clock;
 }

 public override async Task StartAsync(CancellationToken ct = default(CancellationToken))
 {
 _timer = new Timer(time =>
 {
 Log.Information("It is {timeOfDay}, and all is well", _clock.GetTime());
 }, null, TimeSpan.Zero, TimeSpan.FromSeconds(10));
 }
}

Create Bootstrap

The IServiceBootstrap is responsible for configuring the applicatoin logger and wire-up the dependency injection container. It is not primed to any specific frameworks, as the interface only contains hooks [https://github.com/pardahlman/dotnet-concepts-services/blob/master/src/Concept.Service/ServiceBootstrap.cs#L7]. For convinience, there are implementations that wire up different populare libraries.

The OpinionatedServiceBootstrap configures a Serilog [https://serilog.net/] logger and creates an Autofac [https://autofac.org/] container to register services in.

public class TimeBootstrap : OpinionatedServiceBootstrap<TimeService>
{
 public override ServiceMetadata CreateMetadata()
 {
 return new ServiceMetadata
 {
 Type = typeof(TimeService),
 Name = nameof(TimeService),
 Description = "Tells the time"
 };
 }

 protected override void RegisterDependencies(ContainerBuilder builder)
 {
 builder
 .RegisterType<WorldClock>()
 .AsImplementedInterfaces();
 builder
 .RegisterType<TimeService>()
 .AsSelf();
 }
}

Run the service

The service can be run in a few different ways. The most straight forward option is to use the ConsoleRuner

public class Program
{
 public static void Main(string[] args)
 {
 MainAsync(args).GetAwaiter().GetResult();
 }

 public static async Task MainAsync(string[] args)
 {
 await ConsoleRunner.StartAsync(new TimeBootstrap());
 }
}

The console runner is a great option for running services on .NET Core in Docker [https://www.docker.com/] containers. On a Windows system, the TopshelfRunner can be used to run the service as an actual Windows Service

TopshelfRunner.Start(new TimeBootstrap());

There are more sophisticated ways to run a service, that allows hybrid services that runs an ASP.NET Core API as well as a traditional service. This is achieved by using the ServiceHost and related classes.

Service Host

The ServiceHost is heavely inspired by the WebHost classes, used to configure ASP.NET Core applications.

A service host is created by defining a ServiceHostBuilder, configuring it and finally building the host.

var serviceHost = new ServiceHostBuilder(new TimeBootstrap())
 .UseConsoleHost()
 .Build();

await serviceHost.RunAsync();

Hosting ASP.NET Core

The package Concept.Service.AspNetCore contains classes that makes it possible to host an ASP.NET application together with the service. This can be great in a microservice architecture where each service exposes an API as well as underlying, event based business logic.

Getting up and running is fairly easy. Make sure that the bootstrap inherits from AspNetCoreBootstrap. This is an extended bootstrap that, in addition to normal bootstrapping, contains methods similar to the ones in the Startup class.

public class FooBootstrap : AspNetCoreBootstrap<FooService>
{
 public override void ConfigureServices(IServiceCollection services)
 {
 services
 .AddSingleton<FooService>()
 .AddLogging()
 .AddMvc();
 }

 public override void ConfigureAppConfiguration(IConfigurationBuilder configuration)
 {
 configuration.AddJsonFile("appsettings.json");
 }

 public override void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 app.UseDeveloperExceptionPage();

 app.UseMvc();
 }
}

With the updated bootstrapper, the service host builder can define multiple hosts

public static async Task MainAsync(string[] args)
{
 var host = new ServiceHostBuilder(new OpinionatedFooBootstrap())
 .UseConsoleHost()
 .UseWebHost()
 .Build();

 await host.RunAsync();
}

RabbitMQ

RabbitMQ [https://www.rabbitmq.com/] is a populare message broker for distributed systems. The package Concept.Service.RabbitMq contains RabbitMqService that has methods for subscribing and publishing messages. It uses RawRabbit [https://github.com/pardahlman/RawRabbit] under the hood.

public class FooService : RabbitMqService
{
 public FooService(IBusClient busClient) : base(busClient) { }

 public override async Task StartAsync(CancellationToken ct = default(CancellationToken))
 {
 // Method in base class
 await SubscribeAsync<PerformFoo>(HandleFooAsync, ct: ct);
 }

 private async Task HandleFooAsync(PerformFoo message, ConceptContext context)
 {
 /* Handle message */
 // Method in base class
 await PublishAsync(new FooPerformed {Success = true});
 }
}

Index

 nav.xhtml

 Table of Contents

 		.NET Concepts: Services

 		Getting Started

 		Create Service

 		Create Bootstrap

 		Run the service

 		Service Host

 		Hosting ASP.NET Core

 		RabbitMQ

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

