

Donnie Assistive Robot: Developer Manual

About Donnie

[image: sempre use alt para descreve a imagem p um deficiente visual]
[image: sempre use alt para descreve a imagem p um deficiente visual]

Warning

This document is for developers only. If you want to use and test Donnie, please refer to the Donnie Assistive Robot: User Manual [https://donnie-user-manual.readthedocs.io/en/latest/index.html]

Donnie is an assistive technology project, whose objective is to use robotics to facilitate programming teaching to visually impaired students.
It is divided in two main parts:

	The construction and fine-tuning of the titular mobile robot, Donnie;

	The project’s software stack, including an intuitive parser/interpreter and a robot simulation environment;

The project is in its second version, developed in the Laboratório de Sistemas Autônomos (LSA [http://lsa-pucrs.github.io]) of the Pontific Catholic University of Rio Grande do Sul (PUCRS), Brazil.

	Getting Started
	About Donnie

	How to Install Donnie's Software

	How to Build Your Own Donnie Robot

Software Description

	Donnie Programming Environment
	Introduction

	GoDonnie Programming Language

	GoDonnie Interpreter

	Player Robotic Middleware
	Introduction

	Software Organization

	Explain the Cfg File

	Build a Cfg for Multiple Robots

	Stage Multi Robot Simulator
	Introduction

	How to Create a New Environment
	Building an Empty World

	Models

	Describing the Player/Stage Window

	How to Create an Environment with Multiple Robots

Hardware Description

	Building Your Donnie Robot
	Introduction

	Required Material

	Production Phase

	Modifying Donnie’s Body

	Visualization

	Assembly the Arduino Part

	Donnie’s PCB

	Manufacturing the boards
	Send the Gerber for manufacturing

	Arduino Shield

	Raspberry Pi Shield

	Assembly

	Change the PCB Design

	Setting Up the Raspberry Pi
	Installing the OS

	Setting Up the OS

	Installing Donnie
	How to install the driver and its depedencies

	Known limitations

	How to test it

	Hooking Up Peripherals to the Rpi board
	Raspicam

	Setup Video streamming

	Testing the Rpi
	Possible Faults

	Arduino
	Arduino Firmware
	Firmware Overview Section

	Detailed Firmware Section

	Building Your Vibrating Belt
	Introduction

	Manufacturing

	Assembly

	Firmware

	Building Donnie Robot Environment
	Braille Cell Manual
	Drawing the Parts

	Cutting the Parts

	Assembling the Parts

Additional Resources

	Donnie Contributors

Papers

If you are using Donnie and/or its software on your research projects, please cite our papers:

@inproceedings{oliveira2017teaching,
 title={Teaching Robot Programming Activities for Visually Impaired Students: A Systematic Review},
 author={Oliveira, Juliana Damasio and de Borba Campos, M{\'a}rcia and de Morais Amory, Alexandre and Manssour, Isabel Harb},
 booktitle={International Conference on Universal Access in Human-Computer Interaction},
 pages={155--167},
 year={2017},
 organization={Springer}
}

@inproceedings{guilherme2017donnie,
 title={Donnie Robot: Towards an Accessible And Educational Robot for Visually Impaired People},
 author={Guilherme H. M. Marques, Daniel C. Einloft, Augusto C. P. Bergamin, Joice A. Marek, Renan G. Maidana Marcia B. Campos, Isabel H. Manssour, Alexandre M. Amory},
 booktitle={Latin American Robotics Symposium (LARS)},
 year={2017}
}

Disclaimer

Donnie and its software are protected under the MIT [http://opensource.org/licences/MIT] License:

Copyright 2018, Laboratório de Sistemas Autônomos

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Feedback

Don’t hesitate to ask about additional info or the next guides, and also if you find some mistakes, please let us know.
Issues and push requests can be done on github [http://github.com/lsa-pucrs/donnie-assistive-robot-sw].

Getting Started

Before going into the tutorials, follow the instructions below to prepare your environment.

	About Donnie
	Features

	How to Install Donnie's Software
	Operating System Requirement

	Compile and Install Donnie Software on a Desktop Computer

	How to Build Your Own Donnie Robot
	Install Donnie’s Software on an Embedded Computer (Raspberry Pi)

About Donnie

Robotics has been used to teach young students the basics of programming. However, most of the programming environments for kids are high visual, based on grab and drag blocks. Blind students or students with some visual disability cannot use these teaching resources.

The Donnie project proposes an inclusive robotic programming environment which all students (with or without visual disabilities) can use.

Donnie comes with two usage options: with the simulated and with the physical robots. It is recommend to start with simulation since it does not require building the robot. Moreover, the physical robot is functional, but still under test.

Features

	Robot programming environment for young students with or without visual impairment;

	Assistive programming language called GoDonnie. GoDonnie is TTS and screen reader friendly;

	Integration with a Arduino-based robot with Player robotic middleware;

	Extension of Stage simulator to generate sound clues while the robot is moving;

	Software developed for the simulated robot is compatible with the real Donnie robot;

The simulation is recommended if you want to known about Donnie but don’t have the required resources to build your own Donnie robot.

How to Install Donnie’s Software

Operating System Requirement

	Currently this project requires Ubuntu 16.04 Ubuntu 16.04 [http://releases.ubuntu.com/16.04/] (Xenial Xerus) is the recommended OS distribution. For older computers or VMs, Lubuntu 16.04 [http://cdimage.ubuntu.com/lubuntu/releases/16.04/release/] or Ubuntu Mate 16.04 [https://ubuntu-mate.org/trusty/] are recommended.

	Git installed.

Compile and Install Donnie Software on a Desktop Computer

Open a terminal, and execute the following commands:

mkdir ~/donnie; cd ~/donnie
git clone --recurse-submodules -b devel https://github.com/lsa-pucrs/donnie-assistive-robot-sw.git
cd donnie-assistive-robot-sw
chmod +x ./install.sh
export DONNIE_PATH=/opt/donnie
./install.sh

After the execution of the last command above, if the installation finished successfully you are ready to go! note:The last command above, in general, requires lot of time to finish.

Initializing the environment

With Donnie’s environment installed on your computer, open a new terminal (crtl + alt + t) and run the command:

donnie_player

Wait a few seconds for the environment to boot, and then run GoDonnie. There are two modes of execution:
Terminal mode: The code must be entered at the GoDonnie terminal and is executed by pressing the ESC key.

GoDonnie -t

File Mode: Allows you to play GoDonnie files (extension .gd or .txt)

GoDonnie -f <filename>

Some examples of GoDonnie files are in the directory.

/opt/donnie/test/GoDonnie/

Note: To execute a file that is in another directory, you must indicate the directory path where it is located. For example, the file test.gd is in the /opt/donnie/test/GoDonnie/directory, to run it use the GoDonnie command as follows:

	GoDonnie -f /opt/donnie/test/GoDonnie/test.gd

Or go to the directory the file is in, before executing:

	cd /opt/donnie/test/GoDonnie/

	GoDonnie -f test.gd

Configuring Donnie

The installation script composes a standard instalation that we believe is the most appropriate for the average user.
However, advanced parameters can be set if the user has experience with the appropriate tools.

The build system is based on cmake, so experience with Linux, make [https://www.gnu.org/software/make/], and cmake [https://cmake.org/] is required. All the individual parts of Donnie’s Software Stack are also based on CMake. These are the software parts that can be customized, each with its own set of parameters:

	raspicam driver

	Player [https://github.com/playerproject/player]

	Stage [https://github.com/rtv/Stage]

	Donnie Software

each of these packages have their one sets of parameters.

Developers interested in customization might want to read the following files:

	install.sh [https://github.com/lsa-pucrs/donnie-assistive-robot-sw/blob/master/install.sh]: For desktop setup procedure;

	setup.sh.in [https://github.com/lsa-pucrs/donnie-assistive-robot-sw/blob/master/install/setup.sh.in]

	install-rpi.sh [https://github.com/lsa-pucrs/donnie-assistive-robot-sw/blob/master/install-rpi.sh]: For embedded computer (e.g. Raspberry Pi) setup procedure;

	setup-rpi.sh.in [https://github.com/lsa-pucrs/donnie-assistive-robot-sw/blob/master/install/setup-rpi.sh.in]

	and all the CMakeLists.txt files

Parameters for Donnie’s Software

The following list explains Donnie’s main compilation parameters:

BUILD_DOCS OFF Generate Donnie's documents.
BUILD_DOXYGEN ON This is the default document in HTML, meant only for developers.
BUILD_DOXYGEN_PDF OFF The same document before, but in PDF.
BUILD_EXAMPLES OFF Build the examples for each part of Donnie.
BUILD_MANUAL OFF Build the manuals: software manual, hardware manual, user manual.
CMAKE_BUILD_TYPE Release | Debug Debug mode is for developers only !
DOC_LANGUAGE en | pt-br | es The language used to build documents and the GoDonnie interpreter. Future work !

How to Build Your Own Donnie Robot

To build your own Donnie robot, please refer to the following repositories (github login and read access required):

	Donnie electronics [https://github.com/lsa-pucrs/donnie-assistive-robot-hw]

	Donnie 3D printing [https://github.com/lsa-pucrs/donnie-assistive-robot-3d]

Install Donnie’s Software on an Embedded Computer (Raspberry Pi)

Once the eletronics and 3D printing are done, the operating system and Donnie’s software must be installed in the robot’s Raspberry Pi.

Loading the Donnie Image into the Pi’s SD Card

The easiest way to setup the embedded computer is to use the pre-built image (comming soon!).
Please follow these steps to burn the SD card:

wget xxxxxxxx.img
continue ...

Compile, Configure the OS, and Install the Donnie Image into the SD Card

This option is for programmers experient with Raspberry Pi.

Raspbian 8.0 (Jessie [https://www.raspberrypi.org/downloads/raspbian/]) is the recommended OS distribution for the robot.
Log onto Donnie’s embedded computer, open a terminal, and run the following to download and execute the software installation script:

mkdir ~/donnie; cd ~/donnie
wget https://github.com/lsa-pucrs/donnie-assistive-robot-sw/raw/devel/install-rpi.sh
chmod +x ./install-rpi.sh
./install-rpi.sh

Experienced programmers can configure the same paramerters presented here, for the Raspberry Pi.

Donnie Programming Environment

Introduction

The Donnie Programming Environment is guided by a programming language called GoDonnie. This
language was created with the purpose of being easy and less visual, motivating people with
visual impairment to pursue a career in the area of programming and technology. The GoDonnie
language commands a robot called Donnie, which can be programmed to describe the environment
around him and thus help the person with visual impairment to better understand the place where
they are.

GoDonnie Programming Language

GoDonnie is a programming language that commands a robot called
Donnie. This robot works in its own environment. The GoDonnie
User Manual [https://donnie-user-manual.readthedocs.io/en/latest/docs/godonnie/index.html#]
can be found in the Donnie User Manual [https://donnie-user-manual.readthedocs.io/en/latest/index.html].

GoDonnie Interpreter

	The GoDonnie.cpp is GoDonnie’s main file.

	
	It parses GoDonnie’s command line arguments. Type GoDonnie –h

	If GoDonnie is run in terminal mode, it gets the terminal’s commands using readline library

	If GoDonnie is run in batch mode, it reads the entire GoDonnie file

	Despite the mode (terminal or batch) to call the parser with the command ‘Compiler.parseGD’

	The Compiler.cpp class implements the GoDonnie’s programming language parser

	
	The ‘parseGD’ method creates the lexer and parser tree for the incoming string in the GoDonnie programming language format

	This file includes the files “GoDonnieLexer.h” “GoDonnieParser.h”, which are automatically generated by Antlr, based on the file GoDonnie.g

	If the parsing is successful, then it runs its commands with the method ‘run’

	The ‘run’ method executes each command in the parse tree. This method is a big switch used to select the current token to be executed.

	For most of the GoDonnie’s instruction call command in the Donnie attribute of the ExprTreeEvaluator class. This attribute implements the DonnieClient class, with all command GoDonnie can execute. DonnieClient does the interface between the parser and Player.

	The GoDonnie.g file implements the rules of the GoDonnie language

	
	The initial part of this file, before the rule ‘start_rule’ is just a resource made to change the ANTLR default error message such that these messages are more user-friendly

	After the rule ‘start_rule’, it is the language definition itself. All tokens and grammar are defined here.

The DonnieClient.cpp file implements the interface with Player middleware. It’s method implements all actions that Donnie can execute via Player.
The list of commands include:

	moveForward, moveBackward, GetPos, Scan, GetRange, Speak, Color, Goto, among others

The Exception, Historic, and DonnieMemory are auxiliary files with secondary functions

Player Robotic Middleware

Introduction

explica brevemente, cita o artigo, mostra algum exemplo pronto.

Software Organization

o que um driver, interface, client, etc

Explain the Cfg File

fazer tipo um tutorial usando os Cfg do Donnie como exemplo

Build a Cfg for Multiple Robots

fazer tipo um tutorial passo a passo

Stage Multi Robot Simulator

Introduction

Player/Stage is a robot simulating tool, it comprises of one program, Player,
which is a Hardware Abstraction Layer. That means that it talks to the bits of
hardware on the robot (like a claw or a camera) and lets you control them with
your code, meaning you don’t need to worry about how the various parts of the
robot work. Stage is a plugin to Player which listens to what Player is telling
it to do and turns these instructions into a simulation of your robot. It also
simulates sensor data and sends this to Player which in turn makes the sensor
data available to your code.

A simulation then, is composed of three parts:

	Your code. This talks to Player.

	Player. This takes your code and sends instructions to a robot. From the
robot it gets sensor data and sends it to your code.

	Stage. Stage interfaces with Player in the same way as a robot’s hardware
would. It receives instructions from Player and moves a simulated robot in a
simulated world, it gets sensor data from the robot in the simulation and
sends this to Player.

In Player/Stage there are 3 kinds of file that you need to understand to get
going with Player/Stage:

	a .world file

	a .cfg (configuration) file

	a .inc (include) file

The .world file tells Player/Stage what things are available to put in the world.
In this file you describe your robot, any items which populate the world and the
layout of the world. The .inc file follows the same syntax and format of a .world
file but it can be included. So if there is an object in your world that you might
want to use in other worlds, such as a model of a robot, putting the robot description
in a .inc file just makes it easier to copy over, it also means that if you ever want
to change your robot description then you only need to do it in one place and your
multiple simulations are changed too.

The .cfg file is what Player reads to get all the information about the robot that
you are going to use.This file tells Player which drivers it needs to use in order
to interact with the robot, if you’re using a real robot these drivers are built in
to Player (or you can download or write your own drivers, but I’m not going to talk
about how to do this here.) Alternatively, if you want to make a simulation, the driver
is always Stage (this is how Player uses Stage in the same way it uses a robot: it thinks
that it is a hardware driver and communicates with it as such). The .cfg file tells
Player how to talk to the driver, and how to interpret any data from the driver so that
it can be presented to your code. Items described in the .world file should be described
in the .cfg file if you want your code to be able to interact with that item (such as a robot),
if you don’t need your code to interact with the item then this isn’t necessary. The .cfg
file does all this specification using interfaces and drivers.

How to Create a New Environment

Building an Empty World

To start building an empty world we need a .cfg file. First create a document called empty.cfg
(i.e. open in your favorite text editor) and copy the following code into it:

driver
(
 name "stage"
 plugin "stageplugin"

 provides ["simulation:0"]

 # load the named file into the simulator
 worldfile "empty.world"
)

Basically what is happening here is that your configuration file is telling Player
that there is a driver called stage in the stageplugin library, and this will give
Player data which conforms to the simulation interface. To build the simulation
Player needs to look in the worldfile called empty.world which is stored in the
same folder as this .cfg. If it was stored elsewhere you would have to include a
filepath, for example ./worlds/empty.world. Lines that begin with the hash symbol
(#) are comments. When you build a simulation, any simulation, in Stage the above
chunk of code should always be the first thing the configuration file says.
Obviously the name of the worldfile should be changed depending on what you called it though.

Now a basic configuration file has been written, it is time to tell Player/Stage what
to put into this simulation. This is done in the .world file.

Models

A worldfile is basically just a list of models that describes all the stuff in the simulation.
This includes the basic environment, robots and other objects. The basic type of model is
called “model”, and you define a model using the following syntax:

define model_name model
(
 # parameters
)

This tells Player/Stage that you are defining a model which you have called model_name,
and all the stuff in the round brackets are parameters of the model. To begin to understand
Player/Stage model parameters, let’s look at the map.inc file that comes with Stage, this
contains the floorplan model, which is used to describe the basic environment of the simulation
(i.e. walls the robots can bump into):

define floorplan model
(
sombre, sensible, artistic
color "gray30"

most maps will need a bounding box
boundary 1

gui_nose 0
gui_grid 0
gui_move 0
gui_outline 0
gripper_return 0
fiducial_return 0
ranger_return 1
)

We can see from the first line that they are defining a model called floorplan.

	color: Tells Player/Stage what colour to render this model,
in this case it is going to be a shade of grey.

	boundary: Whether or not there is a bounding box around the
model. This is an example of a binary parameter, which means the if
the number next to it is 0 then it is false, if it is 1 or over then
it’s true. So here we DO have a bounding box around our “map” model
so the robot can’t wander out of our map.

	gui_nose: this tells Player/Stage that it should indicate which
way the model is facing.

	gui_grid: this will superimpose a grid over the model.

	gui_move: this indicates whether it should be possible to drag
and drop the model. Here it is 0, so you cannot move the map model
once Player/Stage has been run.

	gui_outline: indicates whether or not the model should be
outlined. This makes no difference to a map, but it can be useful
when making models of items within the world.

	fiducial_return: any parameter of the form some_sensor_return
describes how that kind of sensor should react to the model.

	ranger_return: Setting ranger_return to a negative number
indicates that a model cannot be seen by ranger sensors. Setting
ranger_return to a number between 0 and 1 (inclusive) (Note: this
means that ranger_return 0 will allow a ranger sensor to see
the object — the range will get set, it’ll just set the
intensity of that return to zero.)

	gripper_return: Like fiducial_return, gripper_return
tells Player/Stage that your model can be detected by the relevant
sensor, i.e. it can be gripped by a gripper. Here gripper_return
is set to 0 so the map cannot be gripped by a gripper.

To make use of the map.inc file we put the following code into our
world file:

include "map.inc"

This inserts the map.inc file into our world file where the include
line is. This assumes that your worldfile and map.inc file are in
the same folder, if they are not then you’ll need to include the
filepath in the quotes. Once this is done we can modify our definition
of the map model to be used in the simulation. For example:

floorplan
(
 bitmap "bitmaps/helloworld.png"
 size [12 5 1]
)

What this means is that we are using the model “floorplan”, and making
some extra definitions; both “bitmap” and “size” are parameters of a
Player/Stage model. Here we are telling Player/Stage that we defined a
bunch of parameters for a type of model called “floorplan” (contained in
map.inc) and now we’re using this “floorplan” model definition and
adding a few extra parameters.

	bitmap: this is the filepath to a bitmap, which can be type bmp,
jpeg, gif or png. Black areas in the bitmap tell the model what shape
to be, non-black areas are not rendered, this is illustrated in
Figure 3.4. In the map.inc file we told the map that its “color”
would be grey. This parameter does not affect how the bitmaps are
read, Player/Stage will always look for black in the bitmap, the
color parameter just alters what colour the map is rendered in
the simulation.

	size: This is the size in metres of the simulation. All sizes
you give in the world file are in metres, and they represent the
actual size of things. If you have 3m x 4m robot testing arena that
is 2m high and you want to simulate it then the size is [3 4 2].
The first number is the size in the x dimension, the second is the
y dimension and the third is the z dimension.

Describing the Player/Stage Window

The worldfile also can be used to describe the simulation window that
Player/Stage creates. Player/Stage will automatically make a window for
the simulation if you don’t put any window details in the worldfile,
however, it is often useful to put this information in anyway. This
prevents a large simulation from being too big for the window, or to
increase or decrease the size of the simulation.

Like a model, a window is an inbuilt, high-level entity with lots of
parameters. Unlike models though, there can be only one window in a
simulation and only a few of its parameters are really needed. The
simulation window is described with the following syntax:

window
(
 # parameters...
)

The two most important parameters for the window are size and
scale.

	size: This is the size the simulation window will be in pixels.
You need to define both the width and height of the window using the
following syntax: size [width height].

	scale: This is how many metres of the simulated environment each
pixel shows. The bigger this number is, the smaller the simulation
becomes. The optimum value for the scale is
window_size/floorplan_size and it should be rounded downwards so
the simulation is a little smaller than the window it’s in, some
degree of trial and error is needed to get this right.

We have already discussed the basics of worldfile building: models and
the window. Finally, we are able to write a worldfile!

include "map.inc"

configure the GUI window
window
(
 size [700.000 700.000]
 scale 41
)

load an environment bitmap
floorplan
(
 bitmap "bitmaps/cave.png"
 size [15 15 0.5]
)

If we save the above code as empty.world (correcting any filepaths if
necessary) we can run its corresponding empty.cfg file.

	::

	> cd <source_code>/worlds
> player empty.cfg &

Running the empty.cfg file you should see the following simulation:

[image: ../../_images/simpleworld.png]
To modify your simulation’s scenario just create a drawing in black in an
image editor of your preference and save the file in one of the specified
formats. After that, just put the name of the file in the bitmap
parameter inside your .world file. Save the image in the bitmaps folder.
In case you prefer to save the image in another folder you’ll have to especify
the path to the image in the .world file.

How to Create an Environment with Multiple Robots

If you want to create an environment with multiple robots, you can learn how to do it in the
Simulating Multiple Robots [https://playerstage-manual.readthedocs.io/en/latest/docs/CONTROLLER_C.html#simulating-multiple-robots] page.

Building Your Donnie Robot

Introduction

This manual has all files required to understand how to build the Donnie robot.
It explains how to print the Donnie’s body with a 3D printer and manufacture the
necessary boards. It also tells you the operation of the firmware and teaches you
how to assembly the parts.

Required Material

Donnie requires about 500g of PLA. We use PLA because its low retraction
factor in large pieces.

Production Phase

	The 3D printer requires the stl files, in the stl_files folder.

	We use Slicer (1.2.9) [http://slic3r.org/] to slice and 3d
printing the robot. We use the following configs on slicer:

	Infill: 20%;

	Layer height: 0.3mm;

	Without support (parts that need support have it in the model).

Modifying Donnie’s Body

We used the Solidworks 2014 to model the robot. All the source files are
in the solidworks directory [https://github.com/lsa-pucrs/donnie-assistive-robot-3d/tree/master/solidworks].

Visualization

You can visualize the 3D PDF files with Adobe Reader
9 [http://www.adobe.com/] or above. You just need to click in “Enable
3D View” when open the 3D PDF.

[image: Meet Donnie !!!]
Meet Donnie !!!

Assembly the Arduino Part

Donnie’s PCB

The repository [https://github.com/lsa-pucrs/donnie-assistive-robot-hw]
has all files related to Donnie’s hardware (PCB design,
schematics, eletrical diagrams, gerber files, BOM files). Donnie has two
daugther boards (or ‘shields’). One for the Arduino Mega and the other for
the Raspberry Pi.

The following image shows Donnie’s brain and its electronics.

[image: Meet Donnie Brain!!!]

Manufacturing the boards

Send the Gerber for manufacturing

If you just want to manufacture these boards as they are, we recommend
the following steps:

	Send the Gerber ZIP files
(arduino-shield [https://github.com/lsa-pucrs/donnie-assistive-robot-hw/blob/master/ard-shield/gerbers/ard_shield-160322-gerbers.zip]
and
raspberrypi-shield [https://github.com/lsa-pucrs/donnie-assistive-robot-hw/blob/master/rasp-shield/gerber_files/rasp_shield-gerber_files-160118.zip])
to manufacture to Seeedstudio. You should use the following tutorial
Fusion PCB Order Submission
Guidelines [http://support.seeedstudio.com/knowledgebase/articles/422482-fusion-pcb-order-submission-guidelines]

Arduino Shield

[image: ../../_images/ArduinoShield.jpg]

Raspberry Pi Shield

[image: ../../_images/RaspShield.jpg]

Assembly

After you receive the PCBs, then follow these steps to assemble the
boards:

	First of all, separe and buy the components indicated in BOM file
(arduino-shield [https://github.com/lsa-pucrs/donnie-assistive-robot-hw/blob/master/ard-shield/BOM.txt] and
raspberrypi-shield [https://github.com/lsa-pucrs/donnie-assistive-robot-hw/blob/master/rasp-shield/BOM.txt]);

	Print the PDF schemmatic and BOM file;

	Place and weld the componnects in the PCB with the BOM’s indicated
PART.

Change the PCB Design

If you want to change the PCB design, we recommend to use Eagle version
XYZ.

Setting Up the Raspberry Pi

	Installing the OS

	Setting Up the OS

	Installing Donnie
	How to install the driver and its depedencies

	Known limitations

	How to test it

	Hooking Up Peripherals to the Rpi board
	Raspicam
	About the sensor

	How to physically connect it to the RPi

	How to install the driver and its depedencies

	Known limitations of the sensor

	How to test it

	Setup Video streamming

	Testing the Rpi
	Possible Faults

Installing the OS

	download the OS. write down the reasons to choose this os distribution

	how to burn the sdcard

	how to the partitioning

	how to resize the image

Setting Up the OS

	which basics packages to install

	how to setup the wireless

	main depedencies to intall

	setup automatic login

	how to enable the rpi pins and protocols (i2c, gpio, pwm, spi, etc)

Installing Donnie

How to install the driver and its depedencies

	where/how to download

	how to configure it

	how to install its depedencies

	how to install software depedencies and additional required nodes

	provide a script to install it all at once

Known limitations

describe here any known limitation of the software so that the next student is aware of it.

How to test it

	basic testing to see if the is procedure working on the RPi

Hooking Up Peripherals to the Raspberry Pi

This section shows how to add the following peripherals to the RPi board

	Raspicam
	About the sensor

	How to physically connect it to the RPi

	How to install the driver and its depedencies

	Known limitations of the sensor

	How to test it

Installing the Raspicam to the Raspberry Pi

Warning

@ To be done by Renan

About the sensor

	where to buy, how much

	link to datasheet of the models available at LSA

How to physically connect it to the RPi

	describe power requirements

	bill of materials if required (ftdi, cables, etc)

	show fritzing schematics to connect the sensors, power, other boards, etc

How to install the driver and its depedencies

	how to install software depedencies and drivers the required

Known limitations of the sensor

describe here any known limitation of the sensor or its drivers so the next student is aware of it.

How to test it

	basic testing to see if the sensor is working on the RPi

Video Streaming Tutorials

The Raspberry Pi camera module can be used to take high-definition video, as well as stills photographs. This tutorial will introduce to you the Raspberry Pi Camera Module to view a video stream from your Pi setup and show you how to start video streaming through several tools.

Video Streaming with RaspberryPi Using VLC

Tip

	In this tutorial, you will:

	
	Learn how to configure your Raspberry Pi for video streaming

	Know the commands needed for simple video streaming through the VLC media tool

Tip

	This demonstration was tested on:

	
	VLC 2.2.4 on a Windows 8.1 64-bit Computer

	2017/1/11 Raspbian Jessi on a RBpi 2 Model B V1.1 using Pi Camera rev 1.3

	Note: Pi Camera V2.1 was also tested successfully

This tutorial will introduce to you to your Raspberry Pi Camera Module to view a video stream from your Pi setup, the server using Raspbian, to a different computer, a client using Windows, in your home network

[image: ../../../_images/raspberrypi2.jpg]

Configuring your RaspberryPi

Firstly, on your Pi’s terminal, Update and Upgrade the environment so it can be up to date. This helps in reducing future problems. Don’t forget to ENABLE your Raspberry Pi Camera using ‘raspi-config’.

$ sudo apt-get update
$ sudo apt-get upgrade

$ sudo raspi-config

A blue BIOS-like screen will appear, go into the Enable Camera Options and enable the camera.

[image: ../../../_images/Blue1.png]
[image: ../../../_images/Blue2.png]

Note

Depending on your version of Raspbian, the Enable setting may not first appear on the main list. You will have to go under the settings in the blue screen to locate the enable option.

It is also advised now to see what is the IP Address of your Pi.
Type in the following to locate the IP as you will need it in the VLC program for your Windows machine.

$ ifconfig

If you are using a wireless connection,

the IP you want is located in the lo section under inet addr:x.x.x.x

If you are using ethernet,

it will be under eth0 in inet addr:x.x.x.x

Getting VLC

On your Client PC that is running Windows, download the VLC software media tool on here through the VLC’s Website [http://www.videolan.org/vlc/index.html]

Now on your Pi’s terminal, download and install the VLC for Raspbian.

$ sudo apt-get install vlc

Note

Make sure that your Pi is up-to-date and also now has VLC
and that your PC has VLC installed, before going to the next step

Initiating the Stream

Once installed, you may now start the video streaming by typing the folloing in your Pi’s Terminal.

$ raspivid -o - -t 0 -hf -w 800 -h 400 -fps 24 |cvlc -vvv stream:///dev/stdin --sout '#standard{access=http,mux=ts,dst=:8160}' :demux=h264

	-o Specifies the output filename. the ‘-‘ beside denotes no filename

	-t is the duration of the recoding, 0 being infinity

	-hf is Horizontal Flip

	-w and -h is the resolution for Width and Height

	-fps is Frames per Second

	The rest means that on port 8160, data will be sent through http using h264 as stdout using VLC

Once entered, the Pi Camera will turn on and start recording and simultaneously send it over http.
This is now the time to go to your Windows machine and watch your streaming footage.

Note

You may want to experiment and change settings like -w, -h, and -fps.

Open the VLC program on your Windows Machine.

And under Media > Open Network Stream > Network > Please enter a network URL:

Type in the IP address that you got from ifconfig like so;

[image: ../../../_images/vlc.png]
http://x.x.x.x:8160

As we have specified the port to be 8160 in our terminal on the Pi

Once entered, VLC will automatically start playing the stream from the Pi over your network.

Conclusion

Note

As you can see from the stream that the video quality is not that ground breaking but is acceptable, and the latency is the biggest issue of this streaming method.

Video Demonstration

Note

The Monitor on the left displays real time from the Raspberry directly, whereas the Laptop is displaying the VLC stream.

Raspberry Pi camera module streaming video to another computer.
This video tutorial shows the overview of this written tutorial.

END

Video Streaming with RapsberryPI Using gStreamer

Tip

	In this tutorial, you will:

	
	Learn how to configure your Raspberry Pi for video streaming through the gStreamer Method

	Know the commands needed for simple video streaming through gStreamer

Note

This demonstration uses a Linux based environment (Ubuntu) as the client side, NOT a Windows PC like the other methods.

Tip

	This demonstration was tested on:

	
	Google Chrome Version 56.0.2924.87 on Ubuntu 14.04 64-bit

	2017/1/11 Raspbian Jessi on a RBpi 2 Model B V1.1 using Pi Camera rev 1.3

	Note: Pi Camera V2.1 was also tested successfully

This tutorial will introduce to you to your Raspberry Pi Camera Module to view a video stream from your Pi setup, the server using Raspbian, to a different computer, a client using Ubuntu, in your home network

[image: ../../../_images/raspberrypi2.jpg]

Configuring your RaspberryPi

Firstly, on your Pi’s terminal, Update and Upgrade the environment so it can be up to date. This helps in reducing future problems. Don’t forget to ENABLE your Raspberry Pi Camera using ‘raspi-config’.

$ sudo apt-get update
$ sudo apt-get upgrade

$ sudo raspi-config

A blue BIOS-like screen will appear, go into the Enable Camera Options and enable the camera.

[image: ../../../_images/Blue1.png]
[image: ../../../_images/Blue2.png]

Note

Depending on your version of Raspbian, the Enable setting may not first appear on the main list. You will have to go under the settings in the blue screen to locate the enable option.

It is also advised now to see what is the IP Address of your Pi.
Type in the following to locate the IP as you will need it in the Browser for your Windows machine.

$ ifconfig

If you are using a wireless connection,

the IP you want is located in the lo section under inet addr:x.x.x.x

If you are using ethernet,

it will be under eth0 in inet addr:x.x.x.x

Getting gStreamer

Now we will get into the main focus of this tutorial, gStreamer. gStreamer is a multimedia tool that connects a sequence of elements through a pipeline.

We will now get gStreamer for both the Pi and your Ubuntu

$ sudo add-apt-repository ppa:gstreamer-developers/ppa
$ sudo apt-get update
$ sudo apt-get install gstreamer1.0*

Initiating the Video Stream

After the installation, to begin the video stream, we can type in the Pi:

$ raspivid -fps 26 -h 450 -w 600 -vf -n -t 0 -b 200000 -o - | gst-launch-1.0 -v fdsrc ! h264parse ! rtph264pay config-interval=1 pt=96! gdppay ! tcpserversink host=x.x.x.x port=5000

	..NOTE::

	
	You can remove -n so you can start a preview on your Pi, -n disables the preview

	-b is for the bitrate

Please note that the host here must be changed to YOUR host IP from the ifconfig above.
That will initiate the stream from the Pi side.

On your client with Linux, also install gStreamer, and then type in the terminal

$ gst-launch-0.10 -v tcpclientsrc host=x.x.x.x port=5000 ! gdpdepay ! rtph264depay ! ffdec_h264 ! ffmpegcolorspace ! autovideosink sync=false

Please note that the host here must be changed to YOUR host IP from the ifconfig above.
Now you will see the stream from the Pi server.

Note

As you can see, the quality and latency is ground breaking this time compared to the VLC and mjpgStreamer methods.

Video Demonstration

Note

The Monitor on the left displays real time from the Raspberry directly, whereas the Laptop is displaying the gStreamer stream.

Wirelessly streaming a video from a Raspberry to a remote laptop.
This video tutorial shows the overview of this written tutorial.

END 3

Video Streaming with RapsberryPI Using mjpgStreamer

Tip

	In this tutorial, you will:

	
	Learn how to configure your Raspberry Pi for video streaming through the mjpgStreamer Method

	Know the commands needed for simple video streaming through mjpgStreamer

	Acquire the dependencies needed for mjpgStreamer

Tip

	This demonstration was tested on:

	
	Google Chrome Version 56.0.2924.87 on a Windows 8.1 64-bit Computer

	2017/1/11 Raspbian Jessi on a RBpi 2 Model B V1.1 using Pi Camera rev 1.3

	Note: Pi Camera V2.1 was also tested successfully

This tutorial will introduce to you to your Raspberry Pi Camera Module to view a video stream from your Pi setup, the server using Raspbian, to a different computer, a client using Windows, in your home network

[image: ../../../_images/raspberrypi2.jpg]

Configuring your RaspberryPi

Firstly, on your Pi’s terminal, Update and Upgrade the environment so it can be up to date. This helps in reducing future problems. Don’t forget to ENABLE your Raspberry Pi Camera using ‘raspi-config’.

$ sudo apt-get update
$ sudo apt-get upgrade

$ sudo raspi-config

A blue BIOS-like screen will appear, go into the Enable Camera Options and enable the camera.

[image: ../../../_images/Blue1.png]
[image: ../../../_images/Blue2.png]

Note

Depending on your version of Raspbian, the Enable setting may not first appear on the main list. You will have to go under the settings in the blue screen to locate the enable option.

It is also advised now to see what is the IP Address of your Pi.
Type in the following to locate the IP as you will need it in the Browser for your Windows machine.

$ ifconfig

If you are using a wireless connection,

the IP you want is located in the lo section under inet addr:x.x.x.x

If you are using ethernet,

it will be under eth0 in inet addr:x.x.x.x

Getting mjpgStreamer

We will now install mjpgStreamer on our Pi, the main focus of this method
To do this, we will go to the mjpgStreamer website [https://lilnetwork.com/download/raspberrypi/mjpg-streamer.tar.gz]
which will automatically start the download.

We will need to decompress the file, this process will also install it at the same time.

$ tar -zxvf mjpg-streamer.tar.gz

Press Enter, and you should see a new directory called mjpg-streamer

Note

You can check for directories in the terminal by typing in ls

Getting mjpgStreamer’s Dependencies

Now we need mjpgStreamer’s dependancies to make it fully functional.

$ sudo apt-get install libjpeg8-dev
$ sudo apt-get install imagemagick

After this is done, go into the mjpg-streamer directory inside the already existing mjpg-streamer.
Yes, type it twice.
And then type make which will build the system and compile it

$ cd mjpg-streamer
$ cd mjpg-streamer
$ make

In order to start the capture, we must make a temporary file that will save the image taken by raspistill, and then it will get updated many times every second.
So in ~/mjpg-streamer/mjpg-streamer $ type in:

$ mkdir /tmp/stream

We can now initiate the stream by typing in

$ LD_LIBRARY_PATH=./ ./mjpg_streamer -i "input_file.so -f /tmp/stream -n pic.jpg" -o "output_http.so -w ./www"

Open a new terminal window and type

$ raspistill -w 640 -h 480 -q 5 -o /tmp/stream/pic.jpg -tl 1 -t 9999999 -th 0:0:0

	-w and -h is resolution

	-q is quality

	-o is the Specified output filename

	-tl is the time interval between each snap shot (here is 1 millisecond)

	-t is the camera’s ON time in seconds, 9999999 is 115 Days

	-th Set thumbnail parameters (x:y:quality)

Now, on your client computer, open your preferred browser and type in your IP and port# which will be 8080 by default.

x.x.x.x:8080

A website will display showing you the mjpgStreamer Demo Page and a congratulation message.
Go to the stream section in the menu to see the live footage from your Pi.

Note

As you can see from the stream that the video quality is not that ground breaking but is acceptable, although a little worse than the VLC method, however the latency is a so much better than in the VLC method.

 Thorough Tests for the Board

Thorough Tests for the Board

	describe here how one can test the features of the board

Possible Faults

	describe here usual fault and how to solve it

	describe where to buy replacement parts

 Arduino

Arduino

Arduino Firmware

Firmware Overview Section

To make your robot work you’ll need to download the .ino file [https://github.com/lsa-pucrs/donnie-assistive-robot-sw/blob/devel/firmware/donnie/firmware/firmware.ino]
and upload it into the arduino.

Before explaining how the arduino firmware arrangement works,
it’s important to learn a little about where the firmware takes
place throughout the project.
There is the high level language called
GoDonnie [https://donnie-user-manual.readthedocs.io/en/stable/docs/godonnie/index.html],
which connects with the Stage and the simulated robot or with the physical robot.
When this connection is established with the physical robot the Raspberry Pi,
that communicates with the language, translates the high level commands
into lower level commands and then sends them to the arduino. The arduino,
in turn, commands directly the sensors and the actuators of the physical robot.

[image: ../../_images/firmware.png]
The firmware is the code that intermediate between the GoDonnie
language and the hardware device, and it runs in the arduino.
The arduino firmware it’s directly connected with the Raspberry Pi,
which sends commands to the arduino that causes the motors to move
and the sensors to function. Shortly thereafter the arduino sends back
to the Raspberry Pi the information obtained by the sensors. The
Player [https://playerstage-manual.readthedocs.io/en/latest/]
server runs in the Rasp, which is connected with the GoDonnie
through the computer. The robot’s camera is also connected through
the Rasp, that receives the image from the camera and sends to the
Player, which processes the images.

Detailed Firmware Section

	Special Bytes Definition

Some bytes have a special meaning at certain points within a packet.
These are given symbolic names as follows.

SYNC0 0xFA
SYNC1 0xFB
END 0xFE
ARG 0x3B
NARG 0x1B
SARG 0x2B

When integers are sent as arguments, they are always inserted into the byte
stream as 2 bytes. The first byte is the low byte, the second byte is the high
byte of the integer.

	Packet Protocol

The protocol is based on command packets that are sent to the controller,
and information packets that are received by the host PC. All packets have
the following format.

SYNC0
SYNC1
count
count-2 bytes of data
checksum (1 byte)

	Checksum Calculation

The checksum is calculated on the full packet. The checksum algorithm is given here
in C code. The argument size is the number of bytes, and *msg is the vector
of bytes in the packet. This checksum algorithm is based on the CRC8 formulas [http://www.leonardomiliani.com/en/2013/un-semplice-crc8-per-arduino/]
by Dallas/Maxim.

uint8_t Player::checksum(const uint8_t *msg, uint8_t size) {
 uint8_t crc = 0x00;
 while (size--) {
 uint8_t extract = *msg++;
 for (uint8_t tempI = 8; tempI; tempI--){
 uint8_t sum = (crc ^ extract) & 0x01;
 crc >>= 1;
 if (sum) {
 crc ^= 0x8C;
 }
 extract >>= 1;
 }
 }
 return crc;
}

	Arduino-based Firmware

[image: ../../_images/code.png]
The main loop in the image above (lines 8 to 15) performs the robot control. It
initially reads incoming packets from the serial port (line 9), executes the
commands (e.g. move commands, line 10), updates the sensor readings into the
internal memory (line 11), updates the indicators (LEDs, buzzer, vibration motors)
based on the command and sensor readings (line 12), and sends the new data via
serial port to the Player Driver (line 13). The last line updates counters that
control the frequency to send the serial messages.

The Enlace-level of the serial messages presented in figure below has two
constants bytes of header, one byte of packet length, one byte for message
types, variable number of bytes for the payload, and a final byte with checksum.
Each functionality in the Arduino board has a corresponding message type.

[image: ../../_images/package.png]
When the user adds a new functionality to the robot, he/she has to define a
new message type and adapt both the firmware and the driver to handle this
new message. The firmware and driver codes have comments to give clues to
the user as in where to change.

 Building Your Vibrating Belt

Building Your Vibrating Belt

Introduction

With the goal of improving the quality of life of people with visual impairment and helping
their mobility through a better perception of the environment it was created a tactile belt.
Capable of working with different intensities, the tactile belt makes the user perceive,
through vibrations, the approaching of an object.
In this manual there’s everything you need to know to build you own vibrating belt. You’ll
learn how to manufacture your belt, how to assembly the parts and how the hardware and the
firmware work.

Manufacturing

The belt hardware basically is composed by 12 haptic motors, an arduino nano, a PCB shield
and bypass connectors.

If you want to manufacture the PCB shield you will find all the information you need (PCB design,
schematic, eletrical diagram, BOM file) in the Vib-belt Repository [https://github.com/lsa-pucrs/donnie-assistive-robot-hw/tree/master/vib-belt].
The PCB schematic is shown in the image bellow.

[image: ../../_images/schematiceagle.png]

Assembly

The belt has 2 motor vibracall MV50 modules in each of its 6 columns. These modules have three
wires connected to them (Gnd, Vcc-5V and the command sign). To connect the wires to the modules
we recommend that you use bypass connectors. The modules are spaced 10cm of each other in the two
directions. The image shows exactly how to organize the modules in the belt.

[image: ../../_images/Belt.png]
The image bellow shows how to assembly the parts of the belt. If you prefer, the Fritzing file [https://github.com/lsa-pucrs/donnie-assistive-robot-hw/blob/master/vib-belt/vib_belt_nano.fzz]
is also avaliable for you.

[image: ../../_images/vibbelt.png]

Firmware

When using physical robot

[image: ../../_images/beltrobot.png]
When using the simulation environment

[image: ../../_images/beltstage.png]
To make you belt work you’ll need to upload the .ino file [https://github.com/lsa-pucrs/donnie-assistive-robot-sw/blob/devel/firmware/vib_belt/vib_belt_new/vib_belt_new.ino]
into your arduino.

 Building Donnie Robot Environment

Building Donnie Robot Environment

Braille Cell Manual

Drawing the Parts

The panels and braille cells production process starts with they being
drawn in the CAD Corel Draw® software. The drawn pieces can be divided
in three types:

	Braille Cells fixation panel

[image: Figure 1: Fixation panel drawn in CorelDraw®]

	Braille cell for pin insertion that compose the representation in braille
of letters, numbers and symbols.

[image: Figure 2: The base (a) and the braille cell (b), both drawn in CorelDraw®]

	Pins that are used for insertion in the braille cells.

[image: Figura 3: Pins that were drawn in CorelDraw®]

Cutting the Parts

The second stage of the production process is the laser cutting. In our production
we used a laser cutting machine model CMA1080. The cutting of each of the three
parts can be seen in the images bellow.

	Braille Cells fixation panel:

This panel was made with 3mm thick milky white acrylic. Two grooves were made in
the edges so the braille cells could move through the fixation panel. This fixation
panel can be made as large as necessary, in this case we used the size to support up
to ten braille cells.

[image: Figure 4: Braille cells fixation panel cutted by the laser cutting machine]

	Braille cell for pin insertion that compose the representation in braille of
letters, numbers and symbols:

For the confection of the cell was used a 5mm thick blue EVA (Figure 5b). As the
basis of the EVA was used a 3mm thick milky white acrylic (Figure 5a).

[image: Figure 5: The white acrylic base (a) and the blue EVA braille cell (b)]
[image: Figure 6: Blue EVA cells cutted by the laser cutting machine]

	Pins that are used for insertion in the braille cells:

These pins were made in a 6mm thick red acrylic. The choice for the red color
of the pins and the blue color of the braille cell are due to the ideal contrast
for image processing and character recognition.

[image: Figure 7: Red acrylic pins cutted by the laser cutting machine]

Assembling the Parts

After cutting the parts in the laser cutting machine it’s possible to assemble the
fixation panel and the braille cells. The EVA braille cell was glued in the white
acrylic part (Figure 8). For the panels was made some kind of fitting in order that
the cells could slip through the fixation panel and that it could also be easily organized.

[image: Figure 8: The EVA braille cell (b) was glued to the white acrylic part (a)]
The result after the fixation panel and the braille cell was assembled is shown below:

[image: Figure 9: Braille cell and fixation panel able to support up to ten cells]
[image: Figure 10: Braille cell and pins used to represent letters, numbers and symbols]
[image: Figure 11: Fixation panel, braille cell and pins that are used to represent letters, numbers and symbols]
Final result!!

[image: ../../_images/figure12.jpeg]

 Donnie Contributors

Donnie Contributors

The list of contributors to this document.

	@Alexandre Amory [https://amamory.github.io/]

	@Roger

	@Renan

	@Marcelo

	@Davi

	@Gabrielle Pothin [https://github.com/Gabrielle-pr]

	@Beltrano com webpage [https://github.com/Amahmoud1994]

 Index

Index

 Making Raspberry Pi usable

Making Raspberry Pi usable

Introduction

After 8 months of using RPi, I decided to make second version of this tutorial for same
people as I’m - who looks for easy, understandable way to make RPi as
awesome as possible. Several things have changed since last realease of this tutorial, so I decided to rewrite some parts and also to delete some parts which are not necessary today.

In this tutorial I will walk you through whole process of making from
Raspberry Pi secure, reliable, efficient, fast and easy to maintain
server for variable purposes as is FTP, web hosting, sharing… All
that thanks to Arch Linux ARM operating system. The device will be
“headless” - it means, there will be no fancy windows etc., just command
line. Don’t be scared, I will walk you through and you’ll thank me then
:) . You don’t need some special knowledge about computers and linux
systems.

What you get

From “bare” RPi you’ll get:

	Safely to connect to your RPi from anywhere

	Possibility of hosting web pages, files, etc.

	Readable and reliable system (it will do what you want and nothing
more)

What you will need

	Raspberry Pi (doesn’t matter which model) with power supply

	SD Card as a main hardisk for RPi

	SD Card reader on computer with internet access

	Ethernet LAN cable or USB Wi-Fi bundle

	Other computer (preferably with linux, but nevermind if you use
Windows or Mac)

	Possibility to physically get to your router and know credentials to
login to it (or have contact to your network administrator :))

	Few hours of work

What you don’t need

	Monitor or ability to connect RPi to some monitor

	Keyboard or mouse connected to your RPi

Start

So you have just bare RPi, SD card, power supply, ethernet cable
(RJ-45). So let’s start! There are houndreds of guides, but I haven’t
found them satisfaing.

Installing Arch Linux ARM to SD card

Go here [http://ArchLinuxarm.org/platforms/armv6/raspberry-pi], choose installation and
make first 3 steps. That’s it! You have done it. You have you Arch Linux
ARM SD card :)

Little networking

I guess you probably have some of “home router” (“box with internet”)
and when you want to connect e.g by Wi-Fi with your laptop or mobile
phone, it just connects (after inserting password). You need to test
first what happens, when you try to connect by ethernet cable, for
example with your laptop. Turn off Wi-Fi and check it. Did your computer
connects to the network (or even internet) as usuall?

If yes, it is great! You can procced. It is what we need - we need RPi,
when it boots up, to automatically connect to the network. Then we will
able to connect to it. You will need one more thing to find out - which
IP address does router assign to you when you connect by cable - it is very
probable that RPi will get very similiar. Don’t be afraid - it
is easy to get IP address [http://apple.stackexchange.com/questions/19783/how-do-i-know-the-ip-addresses-of-other-computers-in-my-network]. On modern systems,
one command :) .

Ok, now you have to insert SD card to RPi and connect it to your router
with ethernet cable and then turn RPi on by inserting power supply. The
diods start flashing. Now back to your computer and we will try to
connect it using SSH. SSH is just “magic power” which enables to
connect to another computer.

RPi is already ready and waits for SSH connection. How to use SSH is supereasy - you will
find a tons of tutorials on the internet (keywords: how to use ssh). IP
address is the probably the one you assigned before. It will be
something like this: 192.168.0.x, 10.0.0.14x or similar. Next
thing you need is username. It’s just “root” (and password also).

If your RPi haven’t got this address (ssh is not working), than there
are two options.

	You will login to your router settings and find out list of all
connected devices with IP addresses and try them.

	Use
nmap [http://www.cyberciti.biz/networking/nmap-command-examples-tutorials/]
to find active devices in your network.

Example You have this address assigned: 192.168.0.201. Then you
have to type (in linux): ssh root@192.168.0.201.

You should now end up in RPi console.

Enough of networking for now. We’ll set a proper network configuration later in this guide, but first some musthaves.

First setup

This is covered over the internet, so I will just redirect you.
elinux [http://elinux.org/ArchLinux_Install_Guide] - from this guide
finish these parts (in RPi console):

	Change root password

	Modify system files

	Mount extra partitions (if you don’t know what it is, nevermind)

	Update system

	Install sudo

	Create regular user account

My usuall procedure (which is strongly related to my needs!):

passwd # change root password to something important
rm -rf /etc/localtime # dont care about this
ln -s /usr/share/zoneinfo/Europe/Prague /etc/localtime # set appropriate timezone
echo "my_raspberry" > /etc/hostname # set name of your RPi

useradd -m -aG wheel -s /usr/bin/bash common_user #
groupadd webdata # for sharing
useradd -M -aG webdata -s /usr/bin/false nginx
usermod -aG webdata common_user

visudo # uncomment this line: %wheel ALL=(ALL) ALL

pacman -Syu

That’s enough for now. Logout from ssh (type exit) and connect
again, but as user who was created. Similiar to previous:
ssh common_user@ip.address. From now, you’ll need to type “sudo” in
front of every command, which is possibly danger. I will warn you in
next chapter.

We must be sure that after reboot RPi will reconnect.

Now try if you are connected to the internet. Type ping 8.8.8.8. If
you don’t see ping: unknown host 8.8.8.8 it’s good! If you do, your
internet connection is not working. Try to find out why - unfortunately
it is not possible to solve it here.

Warning Try also ping google.com. It may not work even pinging
8.8.8.8 worked. The reason is bad DNS servers (doesn’t matter what it
is). To solve this you have to find “DNS servers of your IPS”. Try to
google it. If you find them, add them to resolv.conf.

Reboot you rpi using systemctl reboot. You must be able to connect
to it again after one minute. If not, somthing is wrong… In that case,
you need to find out why connection stoped working - if you have
keyboard and monitor, you can repair it. If not, you can try to edit
mistake on other computer by inserting SD card. Otherwise, reinstall…

Installing some sugar candy

For our purpouses we will install usefull things, which will help as
maintaing the system. So, run this:
pacman -S vim zsh wget ranger htop lynx

Do you see:

error: you cannot perform this operation unless you are root.

Then you need to type sudo pacman -S I will not write it in
future and it is not in other guides. So sometimes you might be confused
whel you’ll read some tutorials and autor implicitly use sudo without
mentioning it.

We will also need these in next chapters:
pacman -S nginx sshguard vsftpd

You can notice that is really few packages! And thats true! Isn’t it
great? No needs of tons of crap in your device.

What are these? Just short summary - you can find more about it in
manual pages (man <name_of_pacakge>) or find something usefull on
the internet. * vim - powerfull text editor (that’s what you will
do 99% of time). First few days are horrible, but keep using it :) .
* zsh - doesn’t matter. Just install it and install
this [https://github.com/robbyrussell/oh-my-zsh] * wget - just
for downloading things without browser * ranger - file manager (you
can browse files, folders…) * htop - task manager - you can see
what tasks are running, how much CPU/MEM is used, kill processes and so
on * lynx - browser - no kidding :)

Some configurations

I assume you installed zsh with oh-my-zsh (changed your shell)
and also vim. You are connected as created user (from now, I will name
him bob). You are in Bob’s home directory - check it with typing
pwd. It will print /home/bob.

Make vim usable

Edit .vimrc file: vim .vimrc and insert this:

syntax on
set number
set ruler
set nocompatible
set ignorecase
set backspace=eol,start,indent
set whichwrap+=<,>,h,l
set smartcase
set hlsearch
set incsearch
set magic
set showmatch
set mat=2
set expandtab
set smarttab
set shiftwidth=4
set tabstop=4
set lbr
set tw=500
set ai
set si
set wrap
set paste
set background=dark
vnoremap <silent> * :call VisualSelection('f')<CR>
vnoremap <silent> # :call VisualSelection('b')<CR>

it will customize vim a bit, so it will be easier to edit files in it.

Journaling

Journaling is one of the most important things you need to have. It just
record everything systemd does. It is part of systemd quite
customizable. We will save journals in memory, because of limited wear
of SD cards. We will also compress them and then limit size for them on
40 MB.

Open file /etc/system/journal.conf and uncomment these lines:

[Journal]
Storage=volatile
Compress=yes
...
RuntimeMaxUse=40M

Network configuration

For reasons I will mention in future, we need to set RPi to connect with
static ip. This will assure that the IP address of RPi will be still
the same and you can connect it. Right now is probably getting
automatically assigned IP address from router (it’s called dhcp).

We will use systemd-networkd.

Type ip addr. It should shows something like this:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
2: ifb0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN group default qlen 32
 link/ether 22:2b:20:5b:8e:b0 brd ff:ff:ff:ff:ff:ff
3: ifb1: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN group default qlen 32
 link/ether 6a:68:fb:64:2f:c3 brd ff:ff:ff:ff:ff:ff
4: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
 link/ether b8:27:eb:2d:25:18 brd ff:ff:ff:ff:ff:ff
 inet 192.168.0.201/24 brd 192.168.0.255 scope global eth0
 valid_lft forever preferred_lft forever

you are interested just in name eth0. If it is there, it is ok. In
future versions of system it can change to something other, for example
enp0s1. Don’t be afraid of it and just use that instead in next
chapters.

In this part you’ll need to get address of your router. How to obtain
it [http://compnetworking.about.com/od/workingwithipaddresses/f/getrouteripaddr.htm]?

And how to choose static address? As you know your
router is assigning IP address automatically (it is called DHCP). But
not randomly in full range. It has some range of IP addresses which it
can assign. Standard is this: router has standard IP adress
192.168.0.1 and assign addresses from 192.168.0.2 to
192.168.0.254. Second standard is 10.0.0.138 for router and it
assignes addresses from 10.0.0.139 to 10.0.0.254. But it can
be anything else.

Interesting - and what the hell should you do that? I suggest to set one
the address on the end from this range. You can notice, that my “eth0”
has IP address 192.168.0.201.

Open this file /etc/systemd/network/ethernet_static.network (how?
just use vim as in the previous - but don’t forgot to use sudo
in front of vim, or you’ll not be able to save it!) and paste this:

[Match]
Name=eth0

[Network]
Address=the.static.address.rpi/24
Gateway=your.router.ip.address

my example:

[Match]
Name=eth0

[Network]
Address=192.168.0.111/24
Gateway=192.168.0.1

Now you need to remove old non-static default profile /etc/systemd/network/eth0.network. Move it to your home folder just to be safe if something didn’t work.

Try to restart RPi and try to SSH again. If you just can’t connect, try to find out if RPi hadn’t connected at all or it just doesn’t use IP specified IP address (try to ssh to old IP, look into your router DHCP table, nmap…). If you want to get it back, just turn off RPi (plug off the power cable), take out SD card, plug in to your PC, move eth0.network from home directory to /etc/systemd/network/, turn RPi back and try it again.

If you successfuly connected, check how is systemd-networkd doing. To find out, type: systemctl status systemd-networkd. Does it
shows “active (running)” and something like gained carrier?

â systemd-networkd.service - Network Service
 Loaded: loaded (/usr/lib/systemd/system/systemd-networkd.service; enabled)
 Active: active (running) since Wed 2014-06-11 18:42:13 CEST; 2 weeks 1 days ago
 Docs: man:systemd-networkd.service(8)
 Main PID: 213 (systemd-network)
 Status: "Processing requests..."
 CGroup: /system.slice/systemd-networkd.service
 ââ213 /usr/lib/systemd/systemd-networkd

Jun 17 17:52:01 smecpi systemd-networkd[213]: eth0: lost carrier
Jun 17 17:52:02 smecpi systemd-networkd[213]: eth0: gained carrier

Timesynchronization

You’ve maybe noticed that time is quite weird on your RPi. It is beacuse
it does not have real hardware clock. Every time RPi is waken up, it
thinks that is June 1970. You don’t have to care about it, but after
boot it would be fine that time is correctly set. You can do it by using
really great part of systemd. Go ahead and check service that
takes care about that: systemctl status systemd-timesyncd.

Configuring SSH

We will open RPi to world and in that case we need to secure it a bit.
Service, which takes care about SSH is called sshd. “Where” it is?
It is runned by systemd, so systemctl status sshd will show you some
info :). We will configure it a bit. This is not necessary, but highly
recommended! Brutal force attacks are really common (hundreds every day
on my little unimportant server).

Open file /etc/ssh/sshd_config and edit or add these lines as
follows:

Port 1234
PermitRootLogin no
PubkeyAuthentication yes

that’t enough. Restart sshd systemctl restart sshd.

Since now, you cannot login as a root by ssh and thats good. Also - we
changed the port of ssh. Think about “port” as a tunnel, which is used
for ssh. There are about 60 thousands of them and you can choose
whatever you want. As default there is port 22 used for ssh. We now
changed that to (example) 1234. It is because on port 22 there is to big
chance that someone will try to brutal force your credentials.

Since now, only ssh bob@ipadress is not enough. You will have to add
port which should be used (in default is assumed port 22).
ssh -p 1234 bob@ip.address will do it for you :) .

If you want to be really safe, the next thing you want to do is set up sshguard. More about it
here [https://wiki.ArchLinux.org/index.php/Sshguard]. You don’t need
more :) . Just remember to use your port (in my case 1234) for settings. Personally I stopped to use it, since just changing port what SSH use was enough to reduce uninvited connections.

It is anoying still typing same username and password when we want to
connect to RPi. And now, we have to add “-p 1234” also. We will make it
automatic. Here [http://www.linuxproblem.org/art_9.html] is quite
good guide how to do it. On PC from which you are connecting (no RPi),
edit ~/.ssh/config to this:

Host my_superpc
 HostName ipaddressofRPi
 IdentityFile /home/yourusername/.ssh/name_of_identityfile
 User bob
 port 1234

since now, when you wan’t to connect to RPi you can just type
ssh my_superpc and it will take care about rest.

Screen

You can live without that, but you shouldn’t! It makes you
more productive and you don’t need to be afraid of some mishmash caused
by accidently closing terminal during update or lossing connection.
Learn more about what the screen is
(here [http://www.tecmint.com/screen-command-examples-to-manage-linux-terminals/],
here [https://wiki.ArchLinux.org/index.php/GNU_Screen] and
here [http://www.thegeekstuff.com/2010/07/screen-command-examples/]),
install it (pacman -S screen), use it and love it.

It can be handy to automatically ssh into screen sesion. For that I use
this command (from PC I want to connect to RPi):

ssh my_superpc -t screen -dRS "mainScreen". You can make some alias
to something shorter (for example adding this to
alias ssh_connect_RPI="ssh my_superpc -t screen -dRUS mainScreen"
in .zshrc). Now all you need to do is type ssh_connect_RPI - it here
is now screen created, it will create new one. If it is, it will attach
it.

Speeding RPi up

Arch Linux ARM for RPi is prepared to be tweaked. And now it is possible
to speed RPi up by overclocking it’s processor without avoiding your
waranty. How to do it? Just edit file /boot/config.txt and find this
part:

##None
arm_freq=700
core_freq=250
sdram_freq=400
over_voltage=0

now comment it out. That means to add “#” in front of every line.
From now, it will be treated as text and not command. It will look like
this:

##None
#arm_freq=700
#core_freq=250
#sdram_freq=400
#over_voltage=0

and now uncoment this:

##Turbo
arm_freq=1000
core_freq=500
sdram_freq=500
over_voltage=6

After next boot your RPi will be able to get even to the 1000 MHz. That
means it is faster.

Other tweaks of /boot/config.txt

Since you don’t need any of gpu memory - which cares about shiny things
like windows etc., you can disable it in favor of the rest of memory
which we use. Don’t do this if you want to use monitor.

gpu_mem=16
#gpu_mem_512=316
#gpu_mem_256=128
#cma_lwm=16
#cma_hwm=32
#cma_offline_start=16

Making RPi visible from outside

Now we need to configure access from outside. You will need to configure
you router. You have to make a “port forwarding”. Remember port from
ssh? I told you to think about them as a tunnels. These tunnels are also
handy when you need to find out what is on there end.

What we will do here is this: We want to be able from anywhere on the
internet connect to our RPi server.

Example? ssh -p 1234 bob@what.the.hell.is.here. You know? There is
definetely not your local address (the one with 192.168…). There must
be your “public” IP address (more about this in Domains - take a
look there). But this public address points to your router (if you are
lucky). Where does it go next?

With every request there is also a port. With command ssh smt, you
are sending username, port (standard 22, if not otherwise stated) and IP
address. Ip address redirect it to router. Now router takes port and
looks to it’s internal database. In this database are pairs: port -
internal_ipaddress. For some port there is IP address, which it
redirects to. In another worlds: if router gets some request from
specific port (say, 1234) and it has in it’s database IP address

to which it has to redirect, it redirects this request there. In our
case, we need to redirect these ports we want (for example 1234 for ssh)
to RPi. So find a port forwarding settings for your router
(this [http://portforward.com/] might be helpful) and set there port
forward from port you setted for ssh to RPi. You can check if your port
is open (it means it accepts requests
here [http://www.yougetsignal.com/tools/open-ports/].

Since now, you can ssh from anywhere.

Webserver

Setting up nginx

Similiar to ssh handling sshish requests, Nginx is handling almost
everything else and even… WebServers! Install nginx with
pacman -S nginx. For security reasons create special user for it,
for example using: useradd -m -G wheel -s /usr/bin/zsh nginx and
also group groupadd webdata. Now create some folder for it. It can
be mkdir /var/www/ and now make them owners
chown nginx:webdata /var/www. Of course, enable and start nginx.

systemctl enable nginx. It will start after boot.

Now port forward port number 80 to RPi on your router.

Open /etc/nginx/nginx.conf, it can looks like this:

user nginx;
worker_processes 1;

error_log /var/log/nginx/error.log warn;

events {
 worker_connections 1024;
}

http {
 include mime.types;
 default_type application/octet-stream;
 server_names_hash_bucket_size 64;

 sendfile on;

 keepalive_timeout 15;

 server{
 listen 80;
 server_name ~^xxx.xxx.xxx.xxx(.*)$;

 location / {
 root /var/www/$1;
 index index.html index.htm;
 }
 }

}

next, create /var/www/test/index.html:

<html>
 <head>
 <title>Sample "Hello, World" Application</title>
 </head>
 <body bgcolor=white>

 <table border="0" cellpadding="10">
 <tr>
 <td>
 <h1>Sample "Hello, World" Application</h1>
 </td>
 </tr>
 </table>

 <p>This is the home page for the HelloWorld Web application. </p>
 <p>To prove that they work, you can execute either of the following links:

 To a JSP page.
 To a servlet.

 </body>
</html>

where xxx.xxx.xxx.xxx should be your public address. This will do this:
when you type in your browser “youripaddress/test:80”, you should see
index Hello world example. Try that without :80 - it will do the
same! Default port for webpages is 80 (similiar to 22 for SSH). So
it can be omited.

FTP

This will cover the most easy solution for FTP. Don’t use this
configuration in real, just for test purpouses. If you didn’t download
vsftp, do it now by pacman -S vsftp. Now we will create some
directory where all files and users will end up after connecting. Let it
be in /var/www/test. Now edit /etc/vsftpd.conf and add on the
top this line:

anon_root=/var/www/test

and make sure that this line is uncommented:

anonymous_enable=YES

and just start it: systemctl start vsftpd.

Now we’ll tell nginx about that. Add this to servers confs in
/etc/nginx/nginx.conf.

server{
 listen 80;
 server_name ~^123.123.32.13(.*)$;
 location / {
 ssi on;
 root /var/www/$1;
 index index.html index.htm;
 }
}

where you need to replace IP address in server_name directive to
your public IP.

What this little configuration does? It’s simple. Every time you type to
your brower your IP address and somthing behind it, it will transfer you
to this “something” in /var/www/.

Example I created index.html here /var/www/example/index.html. I
now type 123.123.32.13/test to my browser and voila!

This nginx configuration isn’t neccessary in our ftp example (it could
be simpler), but I just like it…

You can now connect to ftp by typing this in your browser:
ftp://your_ip_address or use your favorite FTP client (e.g.
filezilla).

CAUTION - again, don’t use this settings as default. There are great
guides on the internet how to grant access only some users, password
protected etc.

System analyzing and cleaning

Use your friend systemd-analyze. It will show you which units
load really long time. Also systemctl status is great for finding failed
units.

Disable things that you dont need

I guess you don’t use ipv6 (if you don’t know what it is, you don’t need
it :D). systemctl disable ip6tables. In case you use sshguard, you
need also edit file /cat /usr/lib/systemd/system/sshguard.service
and from Wants delete ip6tables.service.

Usefull utilites

Simple to use, just install them and run:

	nmon - for internet usage

	htop - for disk usage

Torrents

Your RPi is maybe running 24/7, so why not to use it for torrents? But
how, when there is no GUI? It’s pretty simple. We will use transmission
- popular torrent client. Install it by pacman -S transmission-cli
Installation should create a new user and group, called transmission. To
check that, you can take a look to /etc/passwd and /etc/group.
transmission will be runned by systemd. Let’s see it it’s
service file is configured properly. Check
/usr/lib/systemd/system/transmission.service:

[Unit]
Description=Transmission BitTorrent Daemon
After=network.target

[Service]
User=transmission
Type=notify
ExecStart=/usr/bin/transmission-daemon -f --log-error
ExecReload=/bin/kill -s HUP $MAINPID

[Install]
WantedBy=multi-user.target

User=transmission is important here (for security reasons). Next
thing we need to do is check, if transmission has place where it will
live. By default it is in /var/lib/transmission(-daemon). In this
dir should be also config file settings.json. There lays
configuration for it.Edit it ass you wish. It is covered
here [https://trac.transmissionbt.com/wiki/ConfigFiles] and
here [https://trac.transmissionbt.com/wiki/EditConfigFiles]. Maybe
you’ll need to forward ports as we did in previous chapters, you should
make that again without problems :) . No we can run transmission
daemon by systemctl start transmission. Now you can give it commands
using transmission-remote . The most usefull (and that’s all I need to
know and use :)) are these:

	transmission-remote <port> -a "magnetlink/url" - adds torrent and
starts download it

	transmission-remote <port> -l - list all torrents that are
currently running

files should be stored in /var/lib/transmission/Downloads. It can be
configured in config file :) .

Backups

For backups I choosed rdiff-backup. It’s so stupid but works
(almost) as expected. More about it’s usage you can find in it’s manual
pages. For my example I’ll redirect you to dir with configs in this
repo. These are inserted to cron (you have it by default installed)
to do SSH backup every day in 4AM. If I’m on local network I also do
backup to my disc on other PC.

Final

That’s all for now! I will see if this is used by someone and than I
will see if I will continue.

Troubleshooting

	RPi don’t boot - unplug everything from USB ports (there may be not
enough of power to boot up and supply USB)

 Installing the IMU to the Raspberry Pi

Installing the IMU to the Raspberry Pi

About the sensor

	where to buy, how much

	link to datasheet of the models available at LSA

How to physically connect it to the RPi

	describe power requirements

	bill of materials if required (ftdi, cables, etc)

	show fritzing schematics to connect the sensors, power, other boards, etc

How to install the driver and its depedencies

	how to install software depedencies and drivers the required

Known limitations of the sensor

describe here any known limitation of the sensor or its drivers so the next student is aware of it.

How to test it

	basic testing to see if the sensor is working on the RPi

_images/figure10.png

_images/figure11.png

_images/donnie-elet3.png
Ultrasonic Sensors

Vibration Motors

Polymer Lithium
Ion Battery -
ven . . Endstops
(for Bumpers)

°
Arduino Mega ’
Buzzer

&. M
Voltage regulator 5V Motors
driver Logic
Level
Converter
Motor and encoders Servomotor \lIJV?lg

fritzing

Ultrasonic
Sensor

Speakers

Raspberry Pi T

_images/figure1.png

_images/figure3.png
XX]
L X X

_images/figure4.png

_images/figure12.jpeg

_images/figure2.png
(a)

(b)

_images/figure6.png

_images/figure7.png

_images/beltrobot.png
Computer Robot

Rapberry Pi

Player Server

rangertovib
g ranger value

Arduino

Firmware

command

Belt

Arduino

_images/beltstage.png
Computer

rangertovib

command
Belt

Arduino

_images/Blue2.png
1 Raspberry Pi Software Configuration Tool (raspi-config) ——0m—|

SSH
VHC
sP1
120
Serial
1-Wire

Enable/Disable
Enable/Disable
Enable/Disable
Enable/Disable
Enable/Disable
Enable/Disable
Remote GPIO Enable/Disable

<select>

remote command line access to your Pi using SSH
graphical remote access to your Pi using RealVNC
automatic loading of SPI kernel module

automatic loading of 12C kernel module

shell and kernel messages on the serial connection
one-wire interface

remote access to GPIO pins

<Back>

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

_images/RaspShield.jpg
GPIO4
N (=}
~— o
POWER_B
GND; ¢ LR
R5 2[0
|
3V
JP1 RXR e \ GND
—‘2' 5V SDA g—iOm R3 10K
= 5V SCL. P—=() apa
v 1f S5y TXA
117 18 TXR
w10 O—— 3.3v TXO
a1 O RXR
sek PPLo e COMM SERVO
21 12 [ls. vcc 3
miso [=—0O 7
most 210 ses el 7 ECHO7 =l2 . vee
ceo LD i3 . I TRIG4 =] SERVO
26 1 i E SERVO
ce1 =—=0 w14 =l o L
cps | GPIO4 = [TXA 4
GP17 1;—1ij5 -2 GP1022 ,;_ ECHO7
cri8# 21O w12 v 1 TRIG4
g GND Gp22 P2 GPIO22] B vce
GND Gp23 - L]
;3 GND GP24 %%—— G
GND GP25 [*5— » & ~
P11 L 2 GND GP27 13—10JP9 E S g 2
RASPBERRYPI-GPIOPTH TXR . m@n o RXA
o
so
~
=
o~

Donnie-RaspShield

13/07/2016 15:51

Sheet: 1/1

2 3 4 5 ! 6

_images/code.png
do(
sendRequestConfig () /request a robot config from driver
cmd = readCommand () /freceive rbot config
power_update () /check battery stanus

}while (cmd != CONFIGPACK) //wait until robot config received

7/ main loop
while (TRUE) {
cmd = readCommand () /Read incoming command from serial port
processCommand (cmd) //Execute requested command
updateSensors () /Read each sensor and update variables
updateIndicators () /Update leds, vibs and buzzer indicators
sendData () //Send data to serial port
updateTicks () Alncrement the tickCnt each Ims (1000us)

_images/figure9.png

nav.xhtml

 Table of Contents

 		
 Donnie Assistive Robot: Developer Manual

 		
 Getting Started

 		
 About Donnie

 		
 Features

 		
 How to Install Donnie's Software

 		
 Operating System Requirement

 		
 Compile and Install Donnie Software on a Desktop Computer

 		
 How to Build Your Own Donnie Robot

 		
 Install Donnie’s Software on an Embedded Computer (Raspberry Pi)

 		
 Donnie Programming Environment

 		
 Introduction

 		
 GoDonnie Programming Language

 		
 GoDonnie Interpreter

 		
 Player Robotic Middleware

 		
 Introduction

 		
 Software Organization

 		
 Explain the Cfg File

 		
 Build a Cfg for Multiple Robots

 		
 Stage Multi Robot Simulator

 		
 Introduction

 		
 How to Create a New Environment

 		
 Building an Empty World

 		
 Models

 		
 Describing the Player/Stage Window

 		
 How to Create an Environment with Multiple Robots

 		
 Building Your Donnie Robot

 		
 Introduction

 		
 Required Material

 		
 Production Phase

 		
 Modifying Donnie’s Body

 		
 Visualization

 		
 Assembly the Arduino Part

 		
 Donnie’s PCB

 		
 Manufacturing the boards

 		
 Send the Gerber for manufacturing

 		
 Arduino Shield

 		
 Raspberry Pi Shield

 		
 Assembly

 		
 Change the PCB Design

 		
 Setting Up the Raspberry Pi

 		
 Installing the OS

 		
 Setting Up the OS

 		
 Installing Donnie

 		
 How to install the driver and its depedencies

 		
 Known limitations

 		
 How to test it

 		
 Hooking Up Peripherals to the Rpi board

 		
 Raspicam

 		
 Setup Video streamming

 		
 Testing the Rpi

 		
 Possible Faults

 		
 Arduino

 		
 Arduino Firmware

 		
 Firmware Overview Section

 		
 Detailed Firmware Section

 		
 Building Your Vibrating Belt

 		
 Introduction

 		
 Manufacturing

 		
 Assembly

 		
 Firmware

 		
 Building Donnie Robot Environment

 		
 Braille Cell Manual

 		
 Drawing the Parts

 		
 Cutting the Parts

 		
 Assembling the Parts

 		
 Donnie Contributors

_images/Belt.png

_images/raspberrypi2.jpg

_images/Blue1.png
1 Raspberry Pi Software Configuration Tool (raspi-config) ——0m—|

1
2
3
4

Change User Password Change password for the default user (pi)
Hostname Set the visible name for this Pi on a network

Boot Options Configure options for start-up
Localisation

o match

Interfacin
overclock Configure overclocking for your Pi
Advanced Options Configure advanced settings

Update Update this tool to the latest version

About raspi-config Information about this configuration tool

<select>

<Finish>

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

_images/schematiceagle.png
Bl 9901 yy
17 000
RXO GND
18y meser 10SP ReseT
19
_ 2 oo 5v
Shield Qut o O A7
D3 A6
o || 2] o> A5
Q7 = RESET A4
& D6 BUTTON a3
3 25
O = o7 A2
> %
oo g .
O = oo Mini-B AD
USB
— 21 bwo AREF
21 ou 3v3
L b2 D13
—J

TFFTFFTFFEEER
HEER

ARDUINO NANO1

_images/firmware.png
Computer Robot

Rapberry Pi

Player Server
command

GoDonnie command

Arduino

_images/ArduinoShield.jpg
2 4 5 74 8
SONAR1 SONAR4 M1
1]
GND __6ND [<o GND __6ND [oo P I AO2
=J4 RX2_ARD =5 AO1
]2 Tx2_ArD ECHO1_ECHO [..o ECHO4_ECHO [_ o i GND
=}2 RX3_ARD | MI1_A
=}t TX3_ARD TRIGL __TRIG | oo TRIG1 __TRIG | Lo -l f \I\;Iclc_zB
s s S o veer __vee | o, veer __vee | o, LT}
2 Tz Tz HC-SR04 HC-SR04 L2
-] 8- VCC1 [TYR— YR o bt BO2
“I-_cchor SONAR?2 SONARS Sl BO1
~}6 TRIG4 GND __6ND [<o GND __6ND [oo i GND
=15 SERVO P b= -l M2_A
~}4 RX0_ARD GND ECHO2__ECHO [.o ECHOS5_ECHO [.o]2 M2_B
=]3 TX0_ARD \ / \ / il [vcez
__i_RST b 4 e 4 TRIG2 __TRIG | Lo TRIG2 __TRIG | Lo ||
= i e 3¢ o N O
= o £] b 2] veer __vee | o, veer __vee | o,
1Cop ¥ __ECHO6 ¥ __ECHO3
N HC-SR04 HC-SR04
o I - a9 8
. SONAR3 SONARG6
\ / \ / GND __GND | \p GND __6ND |)
vcez z 3 z 2 ECHO3_ECHO | ..o ECHO6_ECHO | ..o GND
o) ¢] i =] R5
¥ ¥ TRIG3 _TRIG | o6 TRIG3 _TRIG | o6 2 - AWA—— LED_POWER
TB6612 4 =2 SAW\—— LED_CONNECTION
SONAR1 SONAR2 vcel vee vcel vee 6 5 =B BUZZER
VBAT ——— VBAT PWMA —;\I’\”\"\gA 2 2 VIBL N 8 7 o VIB1 P
vee2 —— vee2 AIN2 —— HC-SR04 HC-SR04 VIB2_N___10 9 VIB2_P
GND — GnD aN1 —— AINL - -
A0l —— ao01 stpy |—— STBY SDIO
AO2 —— a02 pint —— BINI
BO2 ——— 802 pin2 ——— BIN2
BO1 —| Bo1 pwMB f—r PWMB
GND —— GND1 GND2 |—— GND
[ala) [ayaNala]
[~ [~~~ ,\;g BUMPER
u2 o < o <<<< %% 6 GND
028282 5 JJg9g g©gey £33 5 BUMP1
o Gimi<<Ea & sz f[fzife o =1 BUMP2
= -3 BUMP3
I .]2 BUMP4
7 afpegnfs vcel 1 GND
| O | Z| o] | =] o <[1| ©] N o] o] of i -
e I s e s s T N S ~ ol o] el il Ao ot] e e e e e B |
o
X2-1 (ot VBAT 2 VIN_ARD JEWSANERTT mEYRTONRy gegdgggsd 50 S_VI SV, i
IMP1 T g EgEeb2n Y TRIGL , 22 23 TRIG4
x2-20—~(==2—— 5V_UBEC i SHRRZARNTRIG2 54 24 25 ol SERVO
| TRIG3 5 26 27 55
x2-3O—(=2 GHD < g & 2 5 veez
MSTBA3 > 30 % 33 31 Wi B
32 ==) -
M2.B 5. 34 35 o T
ARDUINO MEGA 2560 VIBRATIONL ag_36 37 4
VIBRATION2 44 z_g % 36 = c1
490 = = a4 22N T
vce2 42 42 43 = 100 nF
49 X 45 45
46 6 47 | BUMP4 VIBRATION1
BUZZER .o 48 49 BUMP3
LED_C NsL . | Bump2 VIB1_P
14 VBAT_SENSOR s . LED_PQWER 52 53 . | BUMP1 VIB1_N
Veaz 0o onamyin gyp. SNBMD.. o VIB2_P
Zo4a2585% gEgerres 227ZZzax VIB2_N
LM358
IC1G1 ERNEEEEE EEEEEEEEEEEEEEEEE lGnD
Z £ v o =| Z| > << << <<
o Wi glo
S
[a) [a) o = NOOQO o
2z Z = 0 Ozzw o
[C] [C] [C] & gwcm:' 9
E w
S 9 VIBRATION2
=
<<
o
= PN2222A
Donnie-ArduinoShield
13/07/2016 15:44
Sheet: 1/1
2 4 5 7 l 8

_images/package.png
Message Length

- >
1 byte 1 byte 1 byte 1 byte n bytes 1 byte
Message "
Sync0 Synct Length Type DataField Checksum

Checksum Range

_images/vibbelt.png
| N

Approximate schematic Simplified schematic
of Landa Tianrui HM0019 for use in the circuit
-] P
A
Considering Vibration N
Motor's red cable as + <=====>
and black as - e
]
A
Gnd Vcc Sig
I

o

N
5Vdc input
I

ONVN
onInguy 4@
(=

fritzing

_images/vlc.png
- Open Media

¥] Fie Disc | %" Network | B Capture Device

Network Protocol
Please enter a network URL:
hitp://192.168.1.100:8160

[show more options

Py

Cancel

_images/screenshot.png

_images/simplewo