
dd_api Documentation
Release 1.0

Yamuna Krishnamurthy

Apr 25, 2017

Contents

1 Contents 3
1.1 Installation . 3
1.2 DD API Operations . 3

2 Links 7

3 Indices and tables 9

Python Module Index 11

i

ii

dd_api Documentation, Release 1.0

Domain Discovery is the process of acquiring, understanding and exploring data for a specific domain. Some example
domains include human trafficking, illegal sale of weapons and micro-cap fraud. While acquiring knowledge about
a domain humans usually start with a conception of that domain. This conception is based on prior knowledge of
parts of the domain. The process of gaining a more complete knowledge of the domain involves using this prior
knowledge to obtain content that provides additional information about that domain that was previously unknown.
This new knowledge of the domain now becomes prior knowledge leading to an iterative process of domain discovery
as illustrated in Figure 2. The goals of this iterative domain discovery process are:

• complete the human’s knowledge of the domain

• acquire sufficient content that captures the human coginition of the domain to translate into a computational
model

The Domain Discovery API formalizes the human domain discovery process by defining a set of operations that
capture the essential tasks that lead to domain discovery on the Web as we have discovered in interacting with the
Subject Matter Experts (SME)s. The API facilitates:

• Creation of different user interfaces to satisfy different DD needs

• Configure and understand different DD workflows

• Scripting DD

Contents 1

dd_api Documentation, Release 1.0

2 Contents

CHAPTER 1

Contents

Installation

Building and deploying the Domain Discovery can be done using its Makefile to create a local development environ-
ment. The conda build environment is currently only supported on 64-bit OS X and Linux.

First install conda, either through the Anaconda or miniconda installers provided by Continuum. You will also need
Git, a Java Development Kit and Maven. These are system tools that are generally not provided by conda.

Clone the DD API repository and enter it:

>>> git clone https://github.com/ViDA-NYU/domain_discovery_API
>>> cd domain_discovery_API

Use the make command to build DD API and download/install its dependencies.

>>> make

Now you can use the API

DD API Operations

models.domain_discovery_model.random()→ x in the interval [0, 1).

Acquire Content

class models.domain_discovery_model.DomainModel

queryWeb(terms, max_url_count=100, session=None)
Issue query on the web: results are stored in elastic search, nothing returned here.

3

dd_api Documentation, Release 1.0

Parameters: terms (string): Search query string max_url_count (int): Number of pages to query. Maxi-
mum allowed = 100 session (json): should have domainId

Returns: None

uploadUrls(urls_str, session)
Download pages corresponding to already known set of domain URLs

Parameters: urls_str (string): Space separated list of URLs session (json): should have domainId

Returns: number of pages downloaded (int)

getForwardLinks(urls, session)
The content can be extended by crawling the given pages one level forward. The assumption here is that a
relevant page will contain links to other relevant pages.

Parameters: urls (list): list of urls to crawl forward session (json): should have domainId

Return: None (Results are downloaded into elasticsearch)

getBackwardLinks(urls, session)
The content can be extended by crawling the given pages one level back to the pages that link to them.
The assumption here is that a page containing the link to the given relevant page will contain links to other
relevant pages.

Parameters: urls (list): list of urls to crawl backward session (json): should have domainId

Return: None (Results are downloaded into elasticsearch)

Annotate Content

class models.domain_discovery_model.DomainModel

setPagesTag(pages, tag, applyTagFlag, session)
Tag the pages with the given tag which can be a custom tag or ‘Relevant’/’Irrelevant’ which indicate
relevance or irrelevance to the domain of interest. Tags help in clustering and categorizing the pages. They
also help build computational models of the domain.

Parameters: pages (urls): list of urls to apply tag tag (string): custom tag, ‘Relevant’, ‘Irrelevant’ apply-
TagFlag (bool): True - Add tag, False - Remove tag session (json): Should contain domainId

Returns: Returns string “Completed Process”

setTermsTag(terms, tag, applyTagFlag, session)
Tag the terms as ‘Positive’/’Negative’ which indicate relevance or irrelevance to the domain of interest.
Tags help in reranking terms to show the ones relevan to the domain.

Parameters: terms (string): list of terms to apply tag tag (string): ‘Positive’ or ‘Negative’ applyTagFlag
(bool): True - Add tag, False - Remove tag session (json): Should contain domainId

Returns: None

Summarize Content

class models.domain_discovery_model.DomainModel

extractTerms(opt_maxNumberOfTerms=40, session=None)
Extract most relevant unigrams, bigrams and trigrams that summarize the pages. These could provide
unknown information about the domain. This in turn could suggest further queries for searching content.

4 Chapter 1. Contents

dd_api Documentation, Release 1.0

Parameters: opt_maxNumberOfTerms (int): Number of terms to return

session (json): should have domainId

Returns: array: [[term, frequencyInRelevantPages, frequencyInIrrelevantPages, tags], ...]

make_topic_model(session, tokenizer, vectorizer, model, ntopics)
Build topic model from the corpus of the supplied DDT domain.

The topic model is represented as a topik.TopikProject object, and is persisted in disk, recording the model
parameters and the location of the data. The output of the topic model itself is stored in Elasticsearch.

Parameters:

domain (str): DDT domain name as stored in Elasticsearch, so lowercase and with underscores
in place of spaces.

tokenizer (str): A tokenizer from topik.tokenizer.registered_tokenizers

vectorizer (str): A vectorization method from topik.vectorizers.
registered_vectorizers

model (str): A topic model from topik.vectorizers.registered_models

ntopics (int): The number of topics to be used when modeling the corpus.

Returns:

model: topik model, encoding things like term frequencies, etc.

Organize Content

class models.domain_discovery_model.DomainModel

getPagesProjection(session)
Organize content by some criteria such as relevance, similarity or category which allows to easily analyze
groups of pages. The ‘x’,’y’ co-ordinates returned project the page in 2D maintaining clustering based on
the projection chosen. The projection criteria is specified in the session object

Parameters: session: Should Contain ‘domainId’ Should contain ‘activeProjectionAlg’ which takes val-
ues ‘tsne’, ‘pca’ or ‘kmeans’ currently

Returns dictionary in the format:{ ‘last_downloaded_url_epoch’: 1432310403 (in seconds) ‘pages’: [[url1, x, y, tags, retrieved], (tags are a list, potentially empty) [url2, x, y, tags, retrieved], [url3, x, y, tags, retrieved],
] }

Filter Content

class models.domain_discovery_model.DomainModel

getPages(session)
Find pages that satisfy the specified criteria. One or more of the following criteria are specified in the
session object as ‘pageRetrievalCriteria’:

‘Most Recent’, ‘More like’, ‘Queries’, ‘Tags’, ‘Model Tags’, ‘Maybe relevant’, ‘Maybe irrelevant’, ‘Un-
sure’

and filter by keywords specified in the session object as ‘filter’

Parameters: session (json): Should contain ‘domainId’,’pageRetrievalCriteria’ or ‘filter’

1.2. DD API Operations 5

dd_api Documentation, Release 1.0

Returns: json: {url1: {snippet, image_url, title, tags, retrieved}} (tags are a list, potentially empty)

Generate Model

class models.domain_discovery_model.DomainModel

createModel(session, zip=True)
Create an ACHE model to be applied to SeedFinder and focused crawler. It saves the classifiers, features,
the training data in the <project>/data/<domain> directory. If zip=True all generated files and folders are
zipped into a file.

Parameters: session (json): should have domainId

Returns: None

6 Chapter 1. Contents

CHAPTER 2

Links

• GitHub repository

7

https://github.com/ViDA-NYU/domain_discovery_API

dd_api Documentation, Release 1.0

8 Chapter 2. Links

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

9

dd_api Documentation, Release 1.0

10 Chapter 3. Indices and tables

Python Module Index

m
models.domain_discovery_model, 3

11

dd_api Documentation, Release 1.0

12 Python Module Index

Index

C
createModel() (models.domain_discovery_model.DomainModel

method), 6

D
DomainModel (class in mod-

els.domain_discovery_model), 3–6

E
extractTerms() (models.domain_discovery_model.DomainModel

method), 4

G
getBackwardLinks() (mod-

els.domain_discovery_model.DomainModel
method), 4

getForwardLinks() (mod-
els.domain_discovery_model.DomainModel
method), 4

getPages() (models.domain_discovery_model.DomainModel
method), 5

getPagesProjection() (mod-
els.domain_discovery_model.DomainModel
method), 5

M
make_topic_model() (mod-

els.domain_discovery_model.DomainModel
method), 5

models.domain_discovery_model (module), 3

Q
queryWeb() (models.domain_discovery_model.DomainModel

method), 3

R
random() (in module models.domain_discovery_model),

3

S
setPagesTag() (models.domain_discovery_model.DomainModel

method), 4
setTermsTag() (models.domain_discovery_model.DomainModel

method), 4

U
uploadUrls() (models.domain_discovery_model.DomainModel

method), 4

13

	Contents
	Installation
	DD API Operations

	Links
	Indices and tables
	Python Module Index

