iotagent-json Documentation
Release 0.2.0at

Matheus Magalhaes

Oct 02, 2018

Contents:

Concepts 3
LT MQTT . .o e e e 3
1.2 Kafka o e 3
Operation 5
2.1 Configuration o L e e e e e e e e e e e e e e e e e 5
2.2 Receiving messages from DeviceManager viaKaftka o000 000, 6
2.3 Sending messages to other components viaKaftka.o o000 10
2.4 Receiving messages from devices via MQTT o o 10
How to build/update/translate documentation 13
3.1 Build . . e 13
3.2 Update workflow L e e e e e e 13
How does it work 15
How to build 17
How to run 19
6.1 How do I know if it is working properly? e 19

iotagent-json Documentation, Release 0.2.0a1

IoT agents are responsible for receiving messages from physical devices (directly or through a gateway) and sending
them commands in order to configure them. This iotagent-json, in particular, receives messages via MQTT with JSON
payloads.

Contents: 1

https://opensource.org/licenses/GPL-3.0
https://hub.docker.com/r/dojot/iotagent-json/
https://travis-ci.org/dojot/iotagent-json

iotagent-json Documentation, Release 0.2.0a1

2 Contents:

CHAPTER 1

Concepts

1.1 MQTT

MQTT is a somewhat simple protocol: it follows a publish/subscriber paradigm and messages are exchanged using
topics. These topics are simple strings such as /admin/cafe/attrs. A publisher can, well, publish messages
by sending them to a MQTT broker using a particular topic and all the subscribers that are listening to that topic will
receive a copy of the message.

Subscribers can listen not only to specific topics, but also to topics with wildcards. For instance, one could use a
‘+’ to indicate that any token will match the subscribed topic, such as /admin/+/attrs - messages sent to both
/admin/cafe/attrs and /admin/4593/attrs, for instance, will be received by this subscriber. Another
possibility is to create a subscription to all remainder tokens in the topic, such as /admin/#. All messages sent to
topics beginning with /admin/ will be received by this subscriber.

1.2 Kafka

Kafka is, in fact, a project from the Apache Foundation. It is a messaging system that is similar to MQTT in the sense
that both are based on publisher/subscriber. Kafka is way more complex and robust - it deals with multiple subscribers
belonging to the same group (and performs load-balancing between them), stores and replays messages, and so on.
The side effect is that its clients are not that simple, which could be a heavy burden for tiny devices.

https://kafka.apache.org

iotagent-json Documentation, Release 0.2.0a1

4 Chapter 1. Concepts

CHAPTER 2

Operation

2.1 Configuration

iotagent-json configuration is pretty simple. The main and only configuration file is config. json, placed at the

repository root directory. For instance, the default configuration file looks like:

{

" mqtt " . {
"host": "mgtt",
"port" : 1883,

"protocolId": "MQIsdp",
"protocolVersion": 3,
"secure": false,

"tls": {
"key": "certs/iotagent.key",
"cert": "certs/iotagent.crt",
"ca": ["certs/ca.crt" 1],
"version": "TLSv1_2_ method"

}
b
"broker": {

"host": "zookeeper:2181",
"type": "kafka",
"subject": "device-data",
"contextBroker": "http://data-broker"
}I
"device_manager": {
"consumerOptions": ({
"kafkaHost" : "kafka:9092",
"sessionTimeout": 15000,
"groupId": "iotagent"
}I
"inputSubject": "dojot.device-manager

}y

.device"

(continues on next page)

iotagent-json Documentation, Release 0.2.0a1

(continued from previous page)

"tenancy": {
"manager": "http://auth:5000",
"subject": "dojot.tenancy",
"consumerOptions": ({
"kafkaHost" : "kafka:9092",
"sessionTimeout": 15000,
"groupId": "iotagent"

There are four things to configure:
e MQTT: where the device messages will come from.

e MQTT Security: if used (and you should be using), these are the things that must be configured. They are
related to the communication between iotagent-json and the physical device.

» Data broker: where to send device information updates. There is support for Kafka (sending a message to every
component that is interested in device updates) and for Orion (context broker from Fiware project).

* Device manager access: how the device manager will send device notifications to iotagent (creation, update and
removal).

Tenancy: how iotagent-json will get tenant-related information, such as which are the tenants currently config-
ured in dojot.

Check dojot documentation if you don’t know or don’t remember all the components and how and why they commu-
nicate to each other.

2.2 Receiving messages from DeviceManager via Kafka

Messages containing device operations should be in this format:

{

"event": "create",
"meta": {
"service": "admin"
}I
"data": {
"id": "cafe",
"attrs" : {

These messages are related to device creation, update, removal and actuation. For creation and update operations, it
contains the device data model to be added or updated. For removal operation, it will contain only the device ID being
removed. The actuation operation will contain all attributes previously created with their respective values.

The documentation related to this message can be found in DeviceManager Messages.

6 Chapter 2. Operation

http://dojotdocs.readthedocs.io/en/latest/
http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/kafka-messages.html

iotagent-json Documentation, Release 0.2.0a1

2.2.1 Device configuration for iotagent-json

The following device attributes are considered by iotagent-json. All these attributes are of meta type (with the excep-
tion of translator instructions, with type is meta-translator and their values are in static_value attribute

property.

Table 2.1: Device attributes for iotagent-json

Attribute Description Example
topic Topic to which the device will pub- | /admin/efac/attrs
lish messages.
topic-config Topic from which the device willac- | /admin/efac/
cept actuation messages. configuration
id-location Where can the physical device iden- | Check ID-location structure table.
tifier be located.
translator Instructions to transform the mes-
sage sent by the device to a simple | [
key-value JSON structure. "op": "move",
"from": "/data/Coils/e/
—1/bv",
"path": "/temperature",

"optional": true

}

Keep in mind that this JSON should
be “stringified”, i.e., all special car-
acters should be escaped.

This follows the JSON patch def-
initions with one important differ-
ence: if the patch can’t be applied
(because the message has no such
attribute), the procedure won’t fail -
that’s the purpose of the optional
attribute. Also, check the defini-
tion of a JSON pointer to understand
how to reference items inside a list.

The translator described in the table would move the value from /data/Coils/e/1/bv to /temperature,
transforming the message published by the device:

{

"data" : {
"Coils" : {
"e": [
{ "bv" : 0.5 },
{ "bv" : 27.5 }
]
}
}
}
into:
{
"temperature" : 27.5

}

2.2. Receiving messages from DeviceManager via Kafka 7

http://jsonpatch.com/
http://jsonpatch.com/#json-pointer

iotagent-json Documentation, Release 0.2.0a1

If the device can’t be updated to send messages using the identifier specified by dojot, iotagent-json can be configured
to detect whatever “physical” ID (let’s call it as physical device ID) this device has in order to properly map it to the
dojot one (let’s call it dojot device ID). This configuration is done by the id-1location device attribute, which is
described by the table below. If none is specified, then iotagent-json will assume a default behavior, which considers
the ID as the second token of MQTT topic, such as: /admin/efac/attrs with physical device ID being efac.

Table 2.2: ID-location structure

Attribute Description Example
type Where does the device physical ID | Possible values are:
can be found. * mgtt-topic: The

physical device ID is in
MQTT topic, such as
/mqtt/admin/efac/attrs
* message—-attribute:

The physical device ID is
somewhere in the message
which will be sent from the
device. An example would

be:
- {"attrl" : 10,
"device-id"
"efac"}
attribute_name Which attribute has the physical | device-id, for a message
device ID, if id-location is | like {"attrl" : 10,
mgtt-message. "device-id" : "efac"}
regexp Regular expression applyied to | \/.x?\/(.%?)\/.* which ex-

MQTT topic or selected attribute in | tracts efac from /admin/efac/
order to extract physical device ID. | attrs

id The physical device ID BAFE88420 (any identifier specific
to a device)
xid Any message attribute that maps di- | /c/devices/mgtt/ (the topic
rectly to these device ID resolution | used by all devices)
instructions.

The x1id attribute should be understood as “I have these instructions for locating the device ID, but I don’t know which
one to use for this message - thus I'll test the xid attribute from each one of them against it”. Currently, the xid is
the MQTT topic used to publish the message.

Example

The following message serves as an example of a device with all attributes used by iotagent-json.

{

"label": "Thermometer Template",
"attrs": |
{
"label": "translator",
"type": "meta-translator",
"value_type": "string",
"static_value": "{ \"op\": \"move\", \"from\": \"/data/Coils/e/1/bv\", \"path\
—": \"/temperature\", \"optional\": true }"

by

(continues on next page)

8 Chapter 2. Operation

iotagent-json Documentation, Release 0.2.0a1

(continued from previous page)

"label": "id-location",

thpell . "meta"’

"value_type": "string",

"static_value": "{\"xid\":\"/agent/main/000BABC80F4A/devinfol",\"id\":\

—"000BABC8OF4A\", \"type\":\"mgtt-topic\", \"regexp\" :\"\\/.x2\\/.*2\\/ (.*2)\\/.«\"}"

by
{

"label": "topic",

"type": "meta",

"value_type": "string",

"static_value": "/agent/main/000BABC80F4A/devinfo"
}I
{

"label": "topic-config",

"type": "meta",

"value_type": "string",

"static_value": "/agent/main/000BABC80F4A/config"
}I
{

"label": "temperature",

"type": "dynamic",

"value_type": "float"
}I
{

"label": "reset",

"type": "actuator",

"value_type": "boolean"

For the sake of readability, below are both values for translator and id-location, with no escape characters.

translator:
{
llop" . "move",
"from": "/data/Coils/e/1/bv",
"path": "/temperature",

"optional": true

id-location:

{

"xid": "/agent/main/000BABC80F4A/devinfo™",
"id": "OOOBABC80F4A",
"type": "mgtt-topic",

"regexp": "\\/.x2\\/.x2\\/ (.x?2)\\/. %"

These configurations indicate that:
* The device will publish its messages to /agent /main/000BABC80F4A/devinfo topic;

* The device will receive commands via MQTT from topic /agent /main/000BABC80F4A/config

2.2. Receiving messages from DeviceManager via Kafka

iotagent-json Documentation, Release 0.2.0a1

e Its ID is in MQTT topic, which can be extracted using the regular expression \/.*?\/.x2\/ (.*2)\/.*
and its ID should match 000BABC80F4A.

» The message should be transformed from:

{
"data" : {
"Coils" : {
"e": [
{ "bv" : 0.5 },
{ "bv" : 27.5 }
]
}
}
}
into:
{
"temperature" : 27.5
}

* These instructions should be applied whenever a message to the topic /agent/main/000BABC80F4A/
devinfo is received.

2.3 Sending messages to other components via Kafka

When iotagent-json receives a new message from a particular device, it must publish the new data to other components.
The default subject used to publish this information is “device-data”. Check data-broker documentation to check how
these subjects are translated into Kafka topics.

The message sent by iotagent-json is like this one:

{

"metadata": {
"deviceid": "efac",
"protocol": "mgtt",
"payload": "json"

by

"attrs": {

}
}

As previously stated, the “attrs™ attribute is the same as the one from DeviceManager Messages.

2.4 Receiving messages from devices via MQTT

Any message payload sent to iotagent-json must be in JSON format. Preferably, they should follow a simple key-value
structure, such as:

{
"speed": 100.0,
"weight": 50.2,

(continues on next page)

10 Chapter 2. Operation

https://github.com/dojot/data-broker
http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/kafka-messages.html

iotagent-json Documentation, Release 0.2.0a1

(continued from previous page)

"id": "truck-001"

If not possible, you could make use of translator attributes so that you get more flexibility on device message
formats.

2.4.1 Example

This example uses mosquitto_pub tool, available with mosquitto_clients package. To send a message to
iotagent-json via MQTT, just execute this command:

mosquitto_pub -h localhost -t /admin/efac/attrs -m '{"speed" : 10}

This command will send the message containing one value for attribute speed. The device ID is efac. -t flag sets
the topic to which this message will be published.

This command assumes that you are running iotagent-json in your machine (it also works if you use dojot’s docker-
compose).

2.4. Receiving messages from devices via MQTT 11

https://github.com/dojot/docker-compose
https://github.com/dojot/docker-compose

iotagent-json Documentation, Release 0.2.0a1

12 Chapter 2. Operation

CHAPTER 3

How to build/update/translate documentation

If you have a local clone of this repository and you want to change the documentation, then you should follow this
simple guide.

3.1 Build

The readable version of this documentation can be generated by means of sphinx. In order to do so, please follow the
steps below. Those are actually based off ReadTheDocs documentation.

pip install sphinx sphinx—-autobuild sphinx_rtd_theme sphinx-intl
make html

For that to work, you must have pip installed on the machine used to build the documentation. To install pip on an
Ubuntu machine:

sudo apt-get install python-pip

To build the documentation in Brazilian Portuguese language, run the following extra commands:

sphinx—-intl -c¢ conf.py build -d locale
make html BUILDDIR=build/html-pt_BR O='-d build/doctrees/ -D language=pt_ BR'

3.2 Update workflow

To update the documentation, follow the steps below:
1. Update the source files for the english version

2. Extract translatable messages from the english version

13

https://docs.readthedocs.io/en/latest/getting_started.html

iotagent-json Documentation, Release 0.2.0a1

’make gettext

3. Update the message catalog (PO Files) for pt_BR language

sphinx-intl -c conf.py update -p build/gettext -1 pt_BR

4. Translate the messages in the pt_BR language PO files

This workflow is based on the Sphinx i18n guide.

14 Chapter 3. How to build/update/translate documentation

http://www.sphinx-doc.org/en/stable/intl.html

CHAPTER 4

How does it work

iotagent-json depends on two things: a Kafka broker, so that it can receive messages informing it about new devices
(and, in extension, about their updates and removals), and a MQTT broker, so that it can receive messages from the
devices. It waits for messages sent through these two elements: from the device manager with a management operation
on a device and from the MQTT broker with a message sent by a device.

15

iotagent-json Documentation, Release 0.2.0a1

16 Chapter 4. How does it work

CHAPTER B

How to build

As this is a npm-based project, building it is as simple as

npm install
npm run-script build

If everything runs fine, the generated code should be in . /build folder.

17

iotagent-json Documentation, Release 0.2.0a1

18 Chapter 5. How to build

CHAPTER O

How to run

As simple as:

npm run-script start ./config.json

Remember that you should already have a Kafka node (with a zookeeper instance) and a MQTT broker (such as
Eclipse Mosquitto)

6.1 How do | know if it is working properly?

Simply put: you won’t. In fact you can implement a simple Kafka publisher to emulate the behaviour of a device
manager instance and a listener to check what messages it is generating. But it seems easier to get the real components
- they are not that hard to start and to use (given that you use dojot’s docker-compose). Check also DeviceManager
documentation for further information about how to create a new device.

19

https://mosquitto.org
https://github.com/dojot/docker-compose
http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/
http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/

	Concepts
	MQTT
	Kafka

	Operation
	Configuration
	Receiving messages from DeviceManager via Kafka
	Sending messages to other components via Kafka
	Receiving messages from devices via MQTT

	How to build/update/translate documentation
	Build
	Update workflow

	How does it work
	How to build
	How to run
	How do I know if it is working properly?

