

Contents

	Overview
	Installation

	Example Usage

	Motivation

	Patterns

	Thread Safety

	More Documentation

	Development

	Installation

	Reference
	dogstatsd_collector

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	0.0.2 (2019-08-14)

	0.0.1 (2019-05-02)

Indices and tables

	Index

	Module Index

	Search Page

Overview

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/dogstatsd-collector]

	tests

	
[image: Travis-CI Build Status] [https://travis-ci.org/roverdotcom/dogstatsd-collector]

[image: Coverage Status] [https://codecov.io/github/roverdotcom/dogstatsd-collector]

	package

	
[image: PyPI Package latest release] [https://pypi.python.org/pypi/dogstatsd-collector] [image: PyPI Wheel] [https://pypi.python.org/pypi/dogstatsd-collector] [image: Supported versions] [https://pypi.python.org/pypi/dogstatsd-collector]

[image: Commits since latest release] [https://github.com/roverdotcom/dogstatsd-collector/compare/v0.1.0...master]

dogstatsd-collector is a library to make it easy to collect DataDog-style
StatsD counters [https://docs.datadoghq.com/developers/dogstatsd/data_types/#counters]
and histograms [https://docs.datadoghq.com/developers/dogstatsd/data_types/#histograms]
with tags and control when they are flushed. It
gives you a drop-in wrapper for the DogStatsD [https://docs.datadoghq.com/developers/dogstatsd/] library for counters and
histograms and allows you to defer flushing the metrics until you choose to. This
capability enables you to collect StatsD metrics at arbitrary granularity, for
example on a per-web request or per-job basis (instead of the per-flush
interval basis).

Counters and histograms are tracked separately for each metric series (unique
set of tag key-value pairs) and a single metric is emitted for each series when
the collector is flushed. You don’t have to think about tracking your metric
series separately; you just use the DogstatsdCollector object as you would the
normal DogStatsD object, and flush when you’re ready; the library will take
care of emitting all the series for you.

	Free software: BSD 3-Clause License

Installation

pip install dogstatsd-collector

Example Usage

Imagine you want to track a distribution of the number of queries issued by
requests to your webapp, and tag them by which database is queried and which
verb is used. You collect the following metrics as you issue your queries:

collector = DogstatsdCollector(dogstatsd)
...
collector.histogram('query', tags=['database:master','verb:insert'])
collector.histogram('query', tags=['database:master','verb:update'])
collector.histogram('query', tags=['database:master','verb:update'])
collector.histogram('query', tags=['database:replica','verb:select'])
collector.histogram('query', tags=['database:replica','verb:select'])

Then, at the end of your web request, when you flush the collector, the
following metrics will be pushed to DogStatsD (shown in DogStatsD datagram
format [https://docs.datadoghq.com/developers/dogstatsd/datagram_shell/#datagram-format]):

collector.flush()
query:1|h|#database:master,verb:insert
query:2|h|#database:master,verb:update
query:2|h|#database:replica,verb:select

Base Tags

The collector object also supports specifying a set of base tags, which will be
included on every metric that gets emitted.

base_tags = ['mytag:myvalue']
collector = DogstatsdCollector(dogstatsd, base_tags=base_tags)
collector.histogram('query', tags=['database:master','verb:insert'])
collector.histogram('query', tags=['database:master','verb:update'])
collector.flush()
query:1|h|#database:master,verb:insert,mytag:myvalue
query:1|h|#database:master,verb:update,mytag:myvalue

Motivation

The StatsD model is to run an agent on each server/container in your
infrastructure and periodically flush aggregations at a regular interval to a
centralized location. This model scales very well because the volume of metrics
sent to the centralized location grows very slowly even as you scale
your application; each StatsD agent calculates aggregations to flush to the
backend instead of every datapoint, so the storage volume is quite low even for
a large application with lots of volume.

A drawback to this model is that you don’t have much control of the granularity
that your metrics represent. When your aggregations reach the centralized
location (DataDog in this case), you only know the counts or distributions
within the flush interval. You can’t represent any other execution
granularity beyond “across X seconds” (where X is the flush interval). This
limitation precludes you from easily representings metrics on a “per-request”
basis, for example.

The purpose of this library is to make it simple to control when your StatsD
metrics are emitted so that you can defer emission of the metrics until a point
you determine. This allows you to represent a finer granularity than “across X
seconds” such as “across a web request” or “across a cron job.” It also
preserves metric tags by emitting each series independently when the collector
is flushed, which ensures you don’t lose any of the benefit of tagging
your metrics (such as aggregating/slicing in DataDog).

Patterns

The DogstatsdCollector object is a singleton that provides a similar
interface as the DogStatsD increment [https://datadogpy.readthedocs.io/en/latest/#datadog.dogstatsd.base.DogStatsd.increment]
and histogram [https://datadogpy.readthedocs.io/en/latest/#datadog.dogstatsd.base.DogStatsd.histogram]
methods. As you invoke these methods, you collect counters and histograms for
each series (determined by any tags you include). After calling flush(),
each series is separately emitted as a StatsD metric.

Simple Request Metrics

You can collect various metrics over a request and emit them at the end of the
request to get per-request granularity.

In Django:

from datadog.dogstatsd.base import DogStatsd
from dogstatsd_collector import DogstatsdCollector

Middleware
class MetricsMiddleware:
 def __init__(self, get_response):
 self.get_response = get_response
 self.dogstatsd = DogStatsd()

 def __call__(self, request):
 request.metrics = DogstatsdCollector(self.dogstatsd)
 response = self.get_response(request)
 request.metrics.flush()

 return response

Inside a view
def my_view(request):
 # Do some stuff...
 request.metrics.increment('my.count')
 request.metrics.histogram('my.time', 0.5)
 return HttpResponse('ok')

In Flask:

from datadog.dogstatsd.base import DogStatsd
from dogstatsd_collector import DogstatsdCollector

from flask import Flask
from flask import request

app = Flask(__name__)
dogstatsd = DogStatsd()

@app.before_request
def init_metrics():
 request.metrics = DogstatsdCollector(dogstatsd)

@app.after_request
def flush_metrics():
 request.metrics.flush()

@app.route('/')
def my_view():
 # Do some stuff...
 request.metrics.increment('my.count')
 request.metrics.histogram('my.time', 0.5)
 return 'ok'

Celery Task Metrics

Same as above, but over a Celery task.

from datadog.dogstatsd.base import DogStatsd
from dogstatsd_collector import DogstatsdCollector

from celery import Celery
from celery import current_task
from celery.signals import task_prerun
from celery.signals import task_postrun

app = Celery('tasks', broker='pyamqp://guest@localhost//')

dogstatsd = DogStatsd()

@task_prerun.connect
def init_metrics(task_id, task, *args, **kwargs):
 task.request.metrics = DogstatsdCollector(dogstatsd)

@task_postrun.connect
def flush_metrics(task_id, task, *args, **kwargs):
 task.request.metrics.flush()

@app.task
def my_task():
 # Do some stuff...
 current_task.request.metrics.increment('my.count')
 current_task.request.metrics.histogram('my.time', 0.5)

Metrics Within a Function

Emit a set of metrics for a particular function you execute.

from datadog.dogstatsd.base import DogStatsd
from dogstatsd_collector import DogstatsdCollector

dogstatsd = DogStatsd()

def do_stuff(metrics):
 # Do some stuff...
 metrics.increment('my.count')
 metrics.histogram('my.time', 0.5)

metrics = DogstatsdCollector(dogstatsd)
do_stuff(metrics)
metrics.flush()

Thread Safety

The DogstatsdCollector singleton is not threadsafe. Do not share a
single DogstatsdCollector object among multiple threads.

More Documentation

Full documentation can be found on ReadTheDocs:

https://dogstatsd-collector.readthedocs.io/

Development

To run the all tests run:

tox

Installation

At the command line:

pip install dogstatsd-collector

Reference

	dogstatsd_collector

dogstatsd_collector

	
class dogstatsd_collector.DogstatsdCollector(dogstatsd, base_tags=None)

	A singleton for collecting DogStatsD-style metrics with tags. Collects
metrics in-memory and then emits them when flush() is called. Each series
(metric and all combination of tag key-value pairs) is emitted separately.

	Parameters

	
	dogstatsd (datadog.dogstatsd.base.DogStatsD) – The DogStatsD object to use for emitting metrics.

	base_tags (list) – A list of tags to be included on every metric emitted from
the collector. Should be of the form [‘tag:value’, …]

	
SUPPORTED_DOGSTATSD_METRICS = ['histogram', 'increment']

	The DogStatsD metrics supported by the collector.

	
flush()

	Flush all metrics, emitting each metric once per series (combination of
tag key-value pairs).

	
histogram(metric, value, tags=None)

	Track a DogStatsD histogram metric.

	
increment(metric, value=1, tags=None)

	Track a DogStatsD counter metric.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/roverdotcom/dogstatsd-collector/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

We could always use more documentation, whether as part of the
official docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/roverdotcom/dogstatsd-collector/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Code contributions are always welcome :)

Development

To set up dogstatsd-collector for local development:

	Fork dogstatsd-collector [https://github.com/roverdotcom/dogstatsd-collector]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:your_name_here/dogstatsd-collector.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, run all the checks, doc builder and spell checker with tox [http://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/roverdotcom/dogstatsd-collector/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- py.test -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

	Alex Landau - https://www.rover.com/

Changelog

0.0.2 (2019-08-14)

	Add base_tags optional kwarg to support tags added to all metrics that get
flushed.

0.0.1 (2019-05-02)

	First release on PyPI.

 Python Module Index

 d

 		 	

 		
 d	

 	
 	
 dogstatsd_collector	

Index

 D
 | F
 | H
 | I
 | S

D

 	
 	dogstatsd_collector (module)

 	
 	DogstatsdCollector (class in dogstatsd_collector)

F

 	
 	flush() (dogstatsd_collector.DogstatsdCollector method)

H

 	
 	histogram() (dogstatsd_collector.DogstatsdCollector method)

I

 	
 	increment() (dogstatsd_collector.DogstatsdCollector method)

S

 	
 	SUPPORTED_DOGSTATSD_METRICS (dogstatsd_collector.DogstatsdCollector attribute)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Overview

 		
 Installation

 		
 Example Usage

 		
 Base Tags

 		
 Motivation

 		
 Patterns

 		
 Simple Request Metrics

 		
 Celery Task Metrics

 		
 Metrics Within a Function

 		
 Thread Safety

 		
 More Documentation

 		
 Development

 		
 Installation

 		
 Reference

 		
 dogstatsd_collector

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 0.0.2 (2019-08-14)

 		
 0.0.1 (2019-05-02)

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

