

 Navigation

 	
 index

 	
 next |

 	Doctrine DBAL 2.1.0 documentation

Welcome to Doctrine DBAL’s documentation!

Contents:

	1. Introduction

	2. Architecture

	3. Configuration

	4. Data Retrieval And Manipulation

	5. SQL Query Builder

	6. Transactions

	7. Platforms

	8. Types

	9. Schema-Manager

	10. Schema-Representation

	11. Events

	12. Security

	13. Sharding

	14. SQLAzure Sharding Tutorial

	15. Supporting Other Databases

	16. Portability

	17. Caching

	18. Known Vendor Issues

Indices and tables

	Search Page

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

1. Introduction

The Doctrine database abstraction & access layer (DBAL) offers a
lightweight and thin runtime layer around a PDO-like API and a lot
of additional, horizontal features like database schema
introspection and manipulation through an OO API.

The fact that the Doctrine DBAL abstracts the concrete PDO API away
through the use of interfaces that closely resemble the existing
PDO API makes it possible to implement custom drivers that may use
existing native or self-made APIs. For example, the DBAL ships with
a driver for Oracle databases that uses the oci8 extension under
the hood.

The following database vendors are currently supported:

	MySQL

	Oracle

	Microsoft SQL Server

	PostgreSQL

	SAP Sybase SQL Anywhere

	SQLite

	Drizzle

The Doctrine 2 database layer can be used independently of the
object-relational mapper. In order to use the DBAL all you need is
the Doctrine\Common and Doctrine\DBAL namespaces. Once you
have the Common and DBAL namespaces you must setup a class loader
to be able to autoload the classes:

<?php
use Doctrine\Common\ClassLoader;

require '/path/to/doctrine/lib/Doctrine/Common/ClassLoader.php';

$classLoader = new ClassLoader('Doctrine', '/path/to/doctrine');
$classLoader->register();

Now you are able to load classes that are in the
/path/to/doctrine directory like
/path/to/doctrine/Doctrine/DBAL/DriverManager.php which we will
use later in this documentation to configure our first Doctrine
DBAL connection.

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

2. Architecture

As already said, the DBAL is a thin layer on top of PDO. PDO itself
is mainly defined in terms of 2 classes: PDO and
PDOStatement. The equivalent classes in the DBAL are
Doctrine\DBAL\Connection and Doctrine\DBAL\Statement. A
Doctrine\DBAL\Connection wraps a
Doctrine\DBAL\Driver\Connection and a
Doctrine\DBAL\Statement wraps a
Doctrine\DBAL\Driver\Statement.

Doctrine\DBAL\Driver\Connection and
Doctrine\DBAL\Driver\Statement are just interfaces. These
interfaces are implemented by concrete drivers. For all PDO based
drivers, PDO and PDOStatement are the implementations of
these interfaces. Thus, for PDO-based drivers, a
Doctrine\DBAL\Connection wraps a PDO instance and a
Doctrine\DBAL\Statement wraps a PDOStatement instance. Even
more, a Doctrine\DBAL\Connection is a
Doctrine\DBAL\Driver\Connection and a
Doctrine\DBAL\Statement is a
Doctrine\DBAL\Driver\Statement.

What does a Doctrine\DBAL\Connection or a
Doctrine\DBAL\Statement add to the underlying driver
implementations? The enhancements include SQL logging, events and
control over the transaction isolation level in a portable manner,
among others.

A DBAL driver is defined to the outside in terms of 3 interfaces:
Doctrine\DBAL\Driver, Doctrine\DBAL\Driver\Connection and
Doctrine\DBAL\Driver\Statement. The latter two resemble (a
subset of) the corresponding PDO API.

A concrete driver implementation must provide implementation
classes for these 3 interfaces.

The DBAL is separated into several different packages that
perfectly separate responsibilities of the different RDBMS layers.

2.1. Drivers

The drivers abstract a PHP specific database API by enforcing two
interfaces:

	\Doctrine\DBAL\Driver\Driver

	\Doctrine\DBAL\Driver\Statement

The above two interfaces require exactly the same methods as PDO.

2.2. Platforms

The platforms abstract the generation of queries and which database
features a platform supports. The
\Doctrine\DBAL\Platforms\AbstractPlatform defines the common
denominator of what a database platform has to publish to the
userland, to be fully supportable by Doctrine. This includes the
SchemaTool, Transaction Isolation and many other features. The
Database platform for MySQL for example can be used by all 3 MySQL
extensions, PDO, Mysqli and ext/mysql.

2.3. Logging

The logging holds the interface and some implementations for
debugging of Doctrine SQL query execution during a request.

2.4. Schema

The schema offers an API for each database platform to execute DDL
statements against your platform or retrieve metadata about it. It
also holds the Schema Abstraction Layer which is used by the
different Schema Management facilities of Doctrine DBAL and ORM.

2.5. Types

The types offer an abstraction layer for the converting and
generation of types between Databases and PHP. Doctrine comes
bundled with some common types but offers the ability for
developers to define custom types or extend existing ones easily.

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

3. Configuration

3.1. Getting a Connection

You can get a DBAL Connection through the
Doctrine\DBAL\DriverManager class.

<?php
$config = new \Doctrine\DBAL\Configuration();
//..
$connectionParams = array(
 'dbname' => 'mydb',
 'user' => 'user',
 'password' => 'secret',
 'host' => 'localhost',
 'driver' => 'pdo_mysql',
);
$conn = \Doctrine\DBAL\DriverManager::getConnection($connectionParams, $config);

Or, using the simpler URL form:

<?php
$config = new \Doctrine\DBAL\Configuration();
//..
$connectionParams = array(
 'url' => 'mysql://user:secret@localhost/mydb',
);
$conn = \Doctrine\DBAL\DriverManager::getConnection($connectionParams, $config);

The DriverManager returns an instance of
Doctrine\DBAL\Connection which is a wrapper around the
underlying driver connection (which is often a PDO instance).

The following sections describe the available connection parameters
in detail.

3.1.1. Connecting using a URL

The easiest way to specify commonly used connection parameters is
using a database URL. The scheme is used to specify a driver, the
user and password in the URL encode user and password for the
connection, followed by the host and port parts (the “authority”).
The path after the authority part represents the name of the
database, sans the leading slash. Any query parameters are used as
additional connection parameters.

The scheme names representing the drivers are either the regular
driver names (see below) with any underscores in their name replaced
with a hyphen (to make them legal in URL scheme names), or one of the
following simplified driver names that serve as aliases:

	db2: alias for ibm_db2

	mssql: alias for pdo_sqlsrv

	mysql/mysql2: alias for pdo_mysql

	pgsql/postgres/postgresql: alias for pdo_pgsql

	sqlite/sqlite3: alias for pdo_sqlite

For example, to connect to a “foo” MySQL DB using the pdo_mysql
driver on localhost port 4486 with the charset set to UTF-8, you
would use the following URL:

mysql://localhost:4486/foo?charset=UTF-8

This is identical to the following connection string using the
full driver name:

pdo-mysql://localhost:4486/foo?charset=UTF-8

If you wanted to use the drizzle_pdo__mysql driver instead:

drizzle-pdo-mysql://localhost:4486/foo?charset=UTF-8

In the two last example above, mind the dashes instead of the
underscores in the URL schemes.

For connecting to an SQLite database, the authority portion of the
URL is obviously irrelevant and thus can be omitted. The path part
of the URL is, like for all other drivers, stripped of its leading
slash, resulting in a relative file name for the database:

sqlite:///somedb.sqlite

This would access somedb.sqlite in the current working directory
and is identical to the following:

sqlite://ignored:ignored@ignored:1234/somedb.sqlite

To specify an absolute file path, e.g. /usr/local/var/db.sqlite,
simply use that as the database name, which results in two leading
slashes for the path part of the URL, and four slashes in total after
the URL scheme name and its following colon:

sqlite:////usr/local/var/db.sqlite

Which is, again, identical to supplying ignored user/pass/authority:

sqlite://notused:inthis@case//usr/local/var/db.sqlite

To connect to an in-memory SQLite instance, use :memory:: as the
database name:

sqlite:///:memory:

Note

Any information extracted from the URL overwrites existing values
for the parameter in question, but the rest of the information
is merged together. You could, for example, have a URL without
the charset setting in the query string, and then add a
charset connection parameter next to url, to provide a
default value in case the URL doesn’t contain a charset value.

3.1.2. Driver

The driver specifies the actual implementations of the DBAL
interfaces to use. It can be configured in one of three ways:

	driver: The built-in driver implementation to use. The
following drivers are currently available:
	pdo_mysql: A MySQL driver that uses the pdo_mysql PDO
extension.

	drizzle_pdo_mysql: A Drizzle driver that uses pdo_mysql PDO
extension.

	mysqli: A MySQL driver that uses the mysqli extension.

	pdo_sqlite: An SQLite driver that uses the pdo_sqlite PDO
extension.

	pdo_pgsql: A PostgreSQL driver that uses the pdo_pgsql PDO
extension.

	pdo_oci: An Oracle driver that uses the pdo_oci PDO
extension.
Note that this driver caused problems in our tests. Prefer the oci8 driver if possible.

	pdo_sqlsrv: A Microsoft SQL Server driver that uses pdo_sqlsrv PDO
Note that this driver caused problems in our tests. Prefer the sqlsrv driver if possible.

	sqlsrv: A Microsoft SQL Server driver that uses the sqlsrv PHP extension.

	oci8: An Oracle driver that uses the oci8 PHP extension.

	sqlanywhere: A SAP Sybase SQL Anywhere driver that uses the sqlanywhere PHP extension.

	driverClass: Specifies a custom driver implementation if no
‘driver’ is specified. This allows the use of custom drivers that
are not part of the Doctrine DBAL itself.

	pdo: Specifies an existing PDO instance to use.

3.1.3. Wrapper Class

By default a Doctrine\DBAL\Connection is wrapped around a
driver Connection. The wrapperClass option allows to
specify a custom wrapper implementation to use, however, a custom
wrapper class must be a subclass of Doctrine\DBAL\Connection.

3.1.4. Connection Details

The connection details identify the database to connect to as well
as the credentials to use. The connection details can differ
depending on the used driver. The following sections describe the
options recognized by each built-in driver.

Note

When using an existing PDO instance through the pdo
option, specifying connection details is obviously not necessary.

3.1.4.1. pdo_sqlite

	user (string): Username to use when connecting to the
database.

	password (string): Password to use when connecting to the
database.

	path (string): The filesystem path to the database file.
Mutually exclusive with memory. path takes precedence.

	memory (boolean): True if the SQLite database should be
in-memory (non-persistent). Mutually exclusive with path.
path takes precedence.

3.1.4.2. pdo_mysql

	user (string): Username to use when connecting to the
database.

	password (string): Password to use when connecting to the
database.

	host (string): Hostname of the database to connect to.

	port (integer): Port of the database to connect to.

	dbname (string): Name of the database/schema to connect to.

	unix_socket (string): Name of the socket used to connect to
the database.

	charset (string): The charset used when connecting to the
database.

3.1.4.3. drizzle_pdo_mysql

Requires drizzle plugin mysql_protocol or mysql_unix_socket_protocol to be enabled.
On Ubuntu this can be done by editing /etc/drizzle/conf.d/mysql-protocol.cnf
or /etc/drizzle/conf.d/mysql-unix-socket-protocol.cnf and restart drizzled daemon.

	user (string): Username to use when connecting to the
database. Only needed if authentication is configured for drizzled.

	password (string): Password to use when connecting to the
database. Only needed if authentication is configured for drizzled.

	host (string): Hostname of the database to connect to.

	port (integer): Port of the database to connect to.

	dbname (string): Name of the database/schema to connect to.

	unix_socket (string): Name of the socket used to connect to
the database.

3.1.4.4. mysqli

	user (string): Username to use when connecting to the
database.

	password (string): Password to use when connecting to the
database.

	host (string): Hostname of the database to connect to.

	port (integer): Port of the database to connect to.

	dbname (string): Name of the database/schema to connect to.

	unix_socket (string): Name of the socket used to connect to
the database.

	charset (string): The charset used when connecting to the
database.

	driverOptions Any supported flags for mysqli found on http://www.php.net/manual/en/mysqli.real-connect.php

3.1.4.5. pdo_pgsql

	user (string): Username to use when connecting to the
database.

	password (string): Password to use when connecting to the
database.

	host (string): Hostname of the database to connect to.

	port (integer): Port of the database to connect to.

	dbname (string): Name of the database/schema to connect to.

	charset (string): The charset used when connecting to the
database.

	sslmode (string): Determines whether or with what priority
a SSL TCP/IP connection will be negotiated with the server.
See the list of available modes:
http://www.postgresql.org/docs/9.1/static/libpq-connect.html#LIBPQ-CONNECT-SSLMODE

PostgreSQL behaves differently with regard to booleans when you use
PDO::ATTR_EMULATE_PREPARES or not. To switch from using 'true'
and 'false' as strings you can change to integers by using:
$conn->getDatabasePlatform()->setUseBooleanTrueFalseStrings($flag).

3.1.4.6. pdo_oci / oci8

	user (string): Username to use when connecting to the
database.

	password (string): Password to use when connecting to the
database.

	host (string): Hostname of the database to connect to.

	port (integer): Port of the database to connect to.

	dbname (string): Name of the database/schema to connect to.

	servicename (string): Optional name by which clients can
connect to the database instance. Will be used as Oracle’s
SID connection parameter if given and defaults to Doctrine’s
dbname connection parameter value.

	service (boolean): Whether to use Oracle’s SERVICE_NAME
connection parameter in favour of SID when connecting. The
value for this will be read from Doctrine’s servicename if
given, dbname otherwise.

	pooled (boolean): Whether to enable database resident
connection pooling.

	charset (string): The charset used when connecting to the
database.

	instancename (string): Optional parameter, complete whether to
add the INSTANCE_NAME parameter in the connection. It is generally used
to connect to an Oracle RAC server to select the name of a particular instance.

3.1.4.7. pdo_sqlsrv / sqlsrv

	user (string): Username to use when connecting to the
database.

	password (string): Password to use when connecting to the
database.

	host (string): Hostname of the database to connect to.

	port (integer): Port of the database to connect to.

	dbname (string): Name of the database/schema to connect to.

3.1.4.8. sqlanywhere

	user (string): Username to use when connecting to the
database.

	password (string): Password to use when connecting to the
database.

	server (string): Name of a running database server to connect to.

	host (string): Hostname of the database to connect to.

	port (integer): Port of the database to connect to.

	dbname (string): Name of the database/schema to connect to.

	persistent (boolean): Whether to establish a persistent connection.

Depending on the used underlying platform version, you can specify
any other connection parameter that is supported by the particular
platform version via the driverOptions option.
You can find a list of supported connection parameters for each
platform version here:

	SQL Anywhere 10.0.1 [http://dcx.sybase.com/index.html#1001/en/dbdaen10/da-conmean.html]

	SQL Anywhere 11.0.0 [http://dcx.sybase.com/index.html#1100/en/dbadmin_en11/conmean.html]

	SQL Anywhere 11.0.1 [http://dcx.sybase.com/index.html#1101/en/dbadmin_en11/conmean.html]

	SQL Anywhere 12.0.0 [http://dcx.sybase.com/index.html#1200/en/dbadmin/da-conparm.html]

	SQL Anywhere 12.0.1 [http://dcx.sybase.com/index.html#1201/en/dbadmin/da-conparm.html]

	SAP Sybase SQL Anywhere 16.0 [http://dcx.sybase.com/index.html#sa160/en/dbadmin/da-conparm.html]

3.1.5. Automatic platform version detection

Doctrine ships with different database platform implementations for some vendors
to support version specific features, dialect and behaviour.
As of Doctrine DBAL 2.5 the appropriate platform implementation for the underlying
database server version can be detected at runtime automatically for nearly all drivers.
Before 2.5 you had to configure Doctrine to use a certain platform implementation
explicitly with the platform connection parameter (see section below).
Otherwise Doctrine always used a default platform implementation. For example if
your application was backed by a SQL Server 2012 database, Doctrine would still use
the SQL Server 2008 platform implementation as it is the default, unless you told
Doctrine explicitly to use the SQL Server 2012 implementation.

The following drivers support automatic database platform detection out of the box
without any extra configuration required:

	pdo_mysql

	mysqli

	pdo_pgsql

	pdo_sqlsrv

	sqlsrv

Some drivers cannot provide the version of the underlying database server without
having to query for it explicitly. For performance reasons (to save one extra query
on every connect), Doctrine does not enable automatic database platform version
detection for the following drivers:

	sqlanywhere

If you still want to tell Doctrine which database server version you are using in
order to choose the appropriate platform implementation, you can pass the
serverVersion option with a vendor specific version string that matches the
database server version you are using.
You can also pass this option if you want to disable automatic database platform
detection for a driver that natively supports it and choose the platform version
implementation explicitly.

3.1.6. Custom Platform

Each built-in driver uses a default implementation of
Doctrine\DBAL\Platforms\AbstractPlatform. If you wish to use a
customized or custom implementation, you can pass a precreated
instance in the platform option.

3.1.7. Custom Driver Options

The driverOptions option allows to pass arbitrary options
through to the driver. This is equivalent to the fourth argument of
the PDO constructor [http://php.net/manual/en/pdo.construct.php].

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

4. Data Retrieval And Manipulation

Doctrine DBAL follows the PDO API very closely. If you have worked with PDO
before you will get to know Doctrine DBAL very quickly. On top of the API provided
by PDO there are tons of convenience functions in Doctrine DBAL.

4.1. Data Retrieval

Using a database implies retrieval of data. It is the primary use-case of a database.
For this purpose each database vendor exposes a Client API that can be integrated into
programming languages. PHP has a generic abstraction layer for this
kind of API called PDO (PHP Data Objects). However because of disagreements
between the PHP community there are often native extensions for each database
vendor that are much more maintained (OCI8 for example).

Doctrine DBAL API builds on top of PDO and integrates native extensions by
wrapping them into the PDO API as well. If you already have an open connection
through the Doctrine\DBAL\DriverManager::getConnection() method you
can start using this API for data retrieval easily.

Start writing an SQL query and pass it to the query() method of your
connection:

<?php
use Doctrine\DBAL\DriverManager;

$conn = DriverManager::getConnection($params, $config);

$sql = "SELECT * FROM articles";
$stmt = $conn->query($sql); // Simple, but has several drawbacks

The query method executes the SQL and returns a database statement object.
A database statement object can be iterated to retrieve all the rows that matched
the query until there are no more rows:

<?php

while ($row = $stmt->fetch()) {
 echo $row['headline'];
}

The query method is the most simple one for fetching data, but it also has
several drawbacks:

	There is no way to add dynamic parameters to the SQL query without modifying
$sql itself. This can easily lead to a category of security
holes called SQL injection, where a third party can modify the SQL executed
and even execute their own queries through clever exploiting of the security hole.

	Quoting dynamic parameters for an SQL query is tedious work and requires lots
of use of the Doctrine\DBAL\Connection#quote() method, which makes the
original SQL query hard to read/understand.

	Databases optimize SQL queries before they are executed. Using the query method
you will trigger the optimization process over and over again, although
it could re-use this information easily using a technique called prepared statements.

This three arguments and some more technical details hopefully convinced you to investigate
prepared statements for accessing your database.

4.1.1. Dynamic Parameters and Prepared Statements

Consider the previous query, now parameterized to fetch only a single article by id.
Using ext/mysql (still the primary choice of MySQL access for many developers) you had to escape
every value passed into the query using mysql_real_escape_string() to avoid SQL injection:

<?php
$sql = "SELECT * FROM articles WHERE id = '" . mysql_real_escape_string($id, $link) . "'";
$rs = mysql_query($sql);

If you start adding more and more parameters to a query (for example in UPDATE or INSERT statements)
this approach might lead to complex to maintain SQL queries. The reason is simple, the actual
SQL query is not clearly separated from the input parameters. Prepared statements separate
these two concepts by requiring the developer to add placeholders to the SQL query (prepare) which
are then replaced by their actual values in a second step (execute).

<?php
// $conn instanceof Doctrine\DBAL\Connection

$sql = "SELECT * FROM articles WHERE id = ?";
$stmt = $conn->prepare($sql);
$stmt->bindValue(1, $id);
$stmt->execute();

Placeholders in prepared statements are either simple positional question marks (?) or named labels starting with
a double-colon (:name1). You cannot mix the positional and the named approach. The approach
using question marks is called positional, because the values are bound in order from left to right
to any question mark found in the previously prepared SQL query. That is why you specify the
position of the variable to bind into the bindValue() method:

<?php
// $conn instanceof Doctrine\DBAL\Connection

$sql = "SELECT * FROM articles WHERE id = ? AND status = ?";
$stmt = $conn->prepare($sql);
$stmt->bindValue(1, $id);
$stmt->bindValue(2, $status);
$stmt->execute();

Named parameters have the advantage that their labels can be re-used and only need to be bound once:

<?php
// $conn instanceof Doctrine\DBAL\Connection

$sql = "SELECT * FROM users WHERE name = :name OR username = :name";
$stmt = $conn->prepare($sql);
$stmt->bindValue("name", $name);
$stmt->execute();

The following section describes the API of Doctrine DBAL with regard to prepared statements.

Note

Support for positional and named prepared statements varies between the different
database extensions. PDO implements its own client side parser so that both approaches
are feasible for all PDO drivers. OCI8/Oracle only supports named parameters, but
Doctrine implements a client side parser to allow positional parameters also.

4.1.2. Using Prepared Statements

There are three low-level methods on Doctrine\DBAL\Connection that allow you to
use prepared statements:

	prepare($sql) - Create a prepared statement of the type Doctrine\DBAL\Statement.
Using this method is preferred if you want to re-use the statement to execute several
queries with the same SQL statement only with different parameters.

	executeQuery($sql, $params, $types) - Create a prepared statement for the passed
SQL query, bind the given params with their binding types and execute the query.
This method returns the executed prepared statement for iteration and is useful
for SELECT statements.

	executeUpdate($sql, $params, $types) - Create a prepared statement for the passed
SQL query, bind the given params with their binding types and execute the query.
This method returns the number of affected rows by the executed query and is useful
for UPDATE, DELETE and INSERT statements.

A simple usage of prepare was shown in the previous section, however it is useful to
dig into the features of a Doctrine\DBAL\Statement a little bit more. There are essentially
two different types of methods available on a statement. Methods for binding parameters and types
and methods to retrieve data from a statement.

	bindValue($pos, $value, $type) - Bind a given value to the positional or named parameter
in the prepared statement.

	bindParam($pos, &$param, $type) - Bind a given reference to the positional or
named parameter in the prepared statement.

If you are finished with binding parameters you have to call execute() on the statement, which
will trigger a query to the database. After the query is finished you can access the results
of this query using the fetch API of a statement:

	fetch($fetchStyle) - Retrieves the next row from the statement or false if there are none.
Moves the pointer forward one row, so that consecutive calls will always return the next row.

	fetchColumn($column) - Retrieves only one column of the next row specified by column index.
Moves the pointer forward one row, so that consecutive calls will always return the next row.

	fetchAll($fetchStyle) - Retrieves all rows from the statement.

The fetch API of a prepared statement obviously works only for SELECT queries.

If you find it tedious to write all the prepared statement code you can alternatively use
the Doctrine\DBAL\Connection#executeQuery() and Doctrine\DBAL\Connection#executeUpdate()
methods. See the API section below on details how to use them.

Additionally there are lots of convenience methods for data-retrieval and manipulation
on the Connection, which are all described in the API section below.

4.2. Binding Types

Doctrine DBAL extends PDOs handling of binding types in prepared statement
considerably. Besides the well known \PDO::PARAM_* constants you
can make use of two very powerful additional features.

4.2.1. DoctrineDBALTypes Conversion

If you don’t specify an integer (through a PDO::PARAM* constant) to
any of the parameter binding methods but a string, Doctrine DBAL will
ask the type abstraction layer to convert the passed value from
its PHP to a database representation. This way you can pass \DateTime
instances to a prepared statement and have Doctrine convert them
to the appropriate vendors database format:

<?php
$date = new \DateTime("2011-03-05 14:00:21");
$stmt = $conn->prepare("SELECT * FROM articles WHERE publish_date > ?");
$stmt->bindValue(1, $date, "datetime");
$stmt->execute();

If you take a look at Doctrine\DBAL\Types\DateTimeType you will see that
parts of the conversion is delegated to a method on the current database platform,
which means this code works independent of the database you are using.

Note

Be aware this type conversion only works with Statement#bindValue(),
Connection#executeQuery() and Connection#executeUpdate(). It
is not supported to pass a doctrine type name to Statement#bindParam(),
because this would not work with binding by reference.

4.2.2. List of Parameters Conversion

Note

This is a Doctrine 2.1 feature.

One rather annoying bit of missing functionality in SQL is the support for lists of parameters.
You cannot bind an array of values into a single prepared statement parameter. Consider
the following very common SQL statement:

SELECT * FROM articles WHERE id IN (?)

Since you are using an IN expression you would really like to use it in the following way
(and I guess everybody has tried to do this once in his life, before realizing it doesn’t work):

<?php
$stmt = $conn->prepare('SELECT * FROM articles WHERE id IN (?)');
// THIS WILL NOT WORK:
$stmt->bindValue(1, array(1, 2, 3, 4, 5, 6));
$stmt->execute();

Implementing a generic way to handle this kind of query is tedious work. This is why most
developers fallback to inserting the parameters directly into the query, which can open
SQL injection possibilities if not handled carefully.

Doctrine DBAL implements a very powerful parsing process that will make this kind of prepared
statement possible natively in the binding type system.
The parsing necessarily comes with a performance overhead, but only if you really use a list of parameters.
There are two special binding types that describe a list of integers or strings:

	\Doctrine\DBAL\Connection::PARAM_INT_ARRAY

	\Doctrine\DBAL\Connection::PARAM_STR_ARRAY

Using one of this constants as a type you can activate the SQLParser inside Doctrine that rewrites
the SQL and flattens the specified values into the set of parameters. Consider our previous example:

<?php
$stmt = $conn->executeQuery('SELECT * FROM articles WHERE id IN (?)',
 array(array(1, 2, 3, 4, 5, 6)),
 array(\Doctrine\DBAL\Connection::PARAM_INT_ARRAY)
);

The SQL statement passed to Connection#executeQuery is not the one actually passed to the
database. It is internally rewritten to look like the following explicit code that could
be specified as well:

<?php
// Same SQL WITHOUT usage of Doctrine\DBAL\Connection::PARAM_INT_ARRAY
$stmt = $conn->executeQuery('SELECT * FROM articles WHERE id IN (?, ?, ?, ?, ?, ?)',
 array(1, 2, 3, 4, 5, 6),
 array(\PDO::PARAM_INT, \PDO::PARAM_INT, \PDO::PARAM_INT, \PDO::PARAM_INT, \PDO::PARAM_INT, \PDO::PARAM_INT)
);

This is much more complicated and is ugly to write generically.

Note

The parameter list support only works with Doctrine\DBAL\Connection::executeQuery()
and Doctrine\DBAL\Connection::executeUpdate(), NOT with the binding methods of
a prepared statement.

4.3. API

The DBAL contains several methods for executing queries against
your configured database for data retrieval and manipulation. Below
we’ll introduce these methods and provide some examples for each of
them.

4.3.1. prepare()

Prepare a given SQL statement and return the
\Doctrine\DBAL\Driver\Statement instance:

<?php
$statement = $conn->prepare('SELECT * FROM user');
$statement->execute();
$users = $statement->fetchAll();

/*
array(
 0 => array(
 'username' => 'jwage',
 'password' => 'changeme'
)
)
*/

4.3.2. executeUpdate()

Executes a prepared statement with the given SQL and parameters and
returns the affected rows count:

<?php
$count = $conn->executeUpdate('UPDATE user SET username = ? WHERE id = ?', array('jwage', 1));
echo $count; // 1

The $types variable contains the PDO or Doctrine Type constants
to perform necessary type conversions between actual input
parameters and expected database values. See the
Types section for more information.

4.3.3. executeQuery()

Creates a prepared statement for the given SQL and passes the
parameters to the execute method, then returning the statement:

<?php
$statement = $conn->executeQuery('SELECT * FROM user WHERE username = ?', array('jwage'));
$user = $statement->fetch();

/*
array(
 0 => 'jwage',
 1 => 'changeme'
)
*/

The $types variable contains the PDO or Doctrine Type constants
to perform necessary type conversions between actual input
parameters and expected database values. See the
Types section for more information.

4.3.4. fetchAll()

Execute the query and fetch all results into an array:

<?php
$users = $conn->fetchAll('SELECT * FROM user');

/*
array(
 0 => array(
 'username' => 'jwage',
 'password' => 'changeme'
)
)
*/

4.3.5. fetchArray()

Numeric index retrieval of first result row of the given query:

<?php
$user = $conn->fetchArray('SELECT * FROM user WHERE username = ?', array('jwage'));

/*
array(
 0 => 'jwage',
 1 => 'changeme'
)
*/

4.3.6. fetchColumn()

Retrieve only the given column of the first result row.

<?php
$username = $conn->fetchColumn('SELECT username FROM user WHERE id = ?', array(1), 0);
echo $username; // jwage

4.3.7. fetchAssoc()

Retrieve assoc row of the first result row.

<?php
$user = $conn->fetchAssoc('SELECT * FROM user WHERE username = ?', array('jwage'));
/*
array(
 'username' => 'jwage',
 'password' => 'changeme'
)
*/

There are also convenience methods for data manipulation queries:

4.3.8. delete()

Delete all rows of a table matching the given identifier, where
keys are column names.

<?php
$conn->delete('user', array('id' => 1));
// DELETE FROM user WHERE id = ? (1)

4.3.9. insert()

Insert a row into the given table name using the key value pairs of
data.

<?php
$conn->insert('user', array('username' => 'jwage'));
// INSERT INTO user (username) VALUES (?) (jwage)

4.3.10. update()

Update all rows for the matching key value identifiers with the
given data.

<?php
$conn->update('user', array('username' => 'jwage'), array('id' => 1));
// UPDATE user (username) VALUES (?) WHERE id = ? (jwage, 1)

By default the Doctrine DBAL does no escaping. Escaping is a very
tricky business to do automatically, therefore there is none by
default. The ORM internally escapes all your values, because it has
lots of metadata available about the current context. When you use
the Doctrine DBAL as standalone, you have to take care of this
yourself. The following methods help you with it:

4.3.11. quote()

Quote a value:

<?php
$quoted = $conn->quote('value');
$quoted = $conn->quote('1234', \PDO::PARAM_INT);

4.3.12. quoteIdentifier()

Quote an identifier according to the platform details.

<?php
$quoted = $conn->quoteIdentifier('id');

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

5. SQL Query Builder

Doctrine 2.1 ships with a powerful query builder for the SQL language. This QueryBuilder object has methods
to add parts to an SQL statement. If you built the complete state you can execute it using the connection
it was generated from. The API is roughly the same as that of the DQL Query Builder.

You can access the QueryBuilder by calling Doctrine\DBAL\Connection#createQueryBuilder:

<?php

$conn = DriverManager::getConnection(array(/*..*/));
$queryBuilder = $conn->createQueryBuilder();

5.1. Security: Safely preventing SQL Injection

It is important to understand how the query builder works in terms of
preventing SQL injection. Because SQL allows expressions in almost
every clause and position the Doctrine QueryBuilder can only prevent
SQL injections for calls to the methods setFirstResult() and
setMaxResults().

All other methods cannot distinguish between user- and developer input
and are therefore subject to the possibility of SQL injection.

To safely work with the QueryBuilder you should NEVER pass user
input to any of the methods of the QueryBuilder and use the placeholder
? or :name syntax in combination with
$queryBuilder->setParameter($placeholder, $value) instead:

<?php

$queryBuilder
 ->select('id', 'name')
 ->from('users')
 ->where('email = ?')
 ->setParameter(0, $userInputEmail)
;

Note

Due to an API design error the numerical parameters in the QueryBuilder API
start with the needle 0, not with 1 as in the PDO API. This is very
unfortunate, but we have found no BC way to fix this.

5.2. Building a Query

The \Doctrine\DBAL\Query\QueryBuilder supports building SELECT,
INSERT, UPDATE and DELETE queries. Which sort of query you
are building depends on the methods you are using.

For SELECT queries you start with invoking the select() method

<?php

$queryBuilder
 ->select('id', 'name')
 ->from('users');

For INSERT, UPDATE and DELETE queries you can pass the
table name into the insert($tableName), update($tableName)
and delete($tableName):

<?php

$queryBuilder
 ->insert('users')
;

$queryBuilder
 ->update('users')
;

$queryBuilder
 ->delete('users')
;

You can convert a query builder to its SQL string representation
by calling $queryBuilder->getSQL() or casting the object to string.

5.2.1. WHERE-Clause

The SELECT, UPDATE and DELETE types of queries allow where
clauses with the following API:

<?php

$queryBuilder
 ->select('id', 'name')
 ->from('users')
 ->where('email = ?')
;

Calling where() overwrites the previous clause and you can prevent
this by combining expressions with andWhere() and orWhere() methods.
You can alternatively use expressions to generate the where clause.

5.2.2. Table alias

The from() method takes an optional second parameter with which a table
alias can be specified.

<?php

$queryBuilder
 ->select('u.id', 'u.name')
 ->from('users', 'u')
 ->where('u.email = ?')
;

5.2.3. GROUP BY and HAVING Clause

The SELECT statement can be specified with GROUP BY and HAVING clauses.
Using having() works exactly like using where() and there are
corresponding andHaving() and orHaving() methods to combine predicates.
For the GROUP BY you can use the methods groupBy() which replaces
previous expressions or addGroupBy() which adds to them:

<?php
$queryBuilder
 ->select('DATE(last_login) as date', 'COUNT(id) AS users')
 ->from('users')
 ->groupBy('DATE(last_login)')
 ->having('users > 10')
;

5.2.4. Join Clauses

For SELECT clauses you can generate different types of joins: INNER,
LEFT and RIGHT. The RIGHT join is not portable across all platforms
(Sqlite for example does not support it).

A join always belongs to one part of the from clause. This is why you have to
specify the alias of the FROM part the join belongs to as the first
argument.

As a second and third argument you can then specify the name and alias of the
join-table and the fourth argument contains the ON clause.

<?php
$queryBuilder
 ->select('u.id', 'u.name', 'p.number')
 ->from('users', 'u')
 ->innerJoin('u', 'phonenumbers', 'p', 'u.id = p.user_id')

The method signature for join(), innerJoin(), leftJoin() and
rightJoin() is the same. join() is a shorthand syntax for
innerJoin().

5.2.5. Order-By Clause

The orderBy($sort, $order = null) method adds an expression to the ORDER
BY clause. Be aware that the optional $order parameter is not safe for
user input and accepts SQL expressions.

<?php
$queryBuilder
 ->select('id', 'name')
 ->from('users')
 ->orderBy('username', 'ASC')
 ->addOrderBy('last_login', 'ASC NULLS FIRST')
;

Use the addOrderBy method to add instead of replace the orderBy clause.

5.2.6. Limit Clause

Only a few database vendors have the LIMIT clause as known from MySQL,
but we support this functionality for all vendors using workarounds.
To use this functionality you have to call the methods setFirstResult($offset)
to set the offset and setMaxResults($limit) to set the limit of results
returned.

<?php
$queryBuilder
 ->select('id', 'name')
 ->from('users')
 ->setFirstResult(10)
 ->setMaxResults(20);

5.2.7. VALUES Clause

For the INSERT clause setting the values for columns to insert can be
done with the values() method on the query builder:

<?php

$queryBuilder
 ->insert('users')
 ->values(
 array(
 'name' => '?',
 'password' => '?'
)
)
 ->setParameter(0, $username)
 ->setParameter(1, $password)
;
// INSERT INTO users (name, password) VALUES (?, ?)

Each subsequent call to values() overwrites any previous set values.
Setting single values instead of all at once is also possible with the
setValue() method:

<?php

$queryBuilder
 ->insert('users')
 ->setValue('name', '?')
 ->setValue('password', '?')
 ->setParameter(0, $username)
 ->setParameter(1, $password)
;
// INSERT INTO users (name, password) VALUES (?, ?)

Of course you can also use both methods in combination:

<?php

$queryBuilder
 ->insert('users')
 ->values(
 array(
 'name' => '?'
)
)
 ->setParameter(0, $username)
;
// INSERT INTO users (name) VALUES (?)

if ($password) {
 $queryBuilder
 ->setValue('password', '?')
 ->setParameter(1, $password)
 ;
 // INSERT INTO users (name, password) VALUES (?, ?)
}

Not setting any values at all will result in an empty insert statement:

<?php

$queryBuilder
 ->insert('users')
;
// INSERT INTO users () VALUES ()

5.2.8. Set Clause

For the UPDATE clause setting columns to new values is necessary
and can be done with the set() method on the query builder.
Be aware that the second argument allows expressions and is not safe for
user-input:

<?php

$queryBuilder
 ->update('users', 'u')
 ->set('u.logins', 'u.logins + 1')
 ->set('u.last_login', '?')
 ->setParameter(0, $userInputLastLogin)
;

5.3. Building Expressions

For more complex WHERE, HAVING or other clauses you can use expressions
for building these query parts. You can invoke the expression API, by calling
$queryBuilder->expr() and then invoking the helper method on it.

Most notably you can use expressions to build nested And-/Or statements:

<?php

$queryBuilder
 ->select('id', 'name')
 ->from('users')
 ->where(
 $queryBuilder->expr()->andX(
 $queryBuilder->expr()->eq('username', '?'),
 $queryBuilder->expr()->eq('email', '?')
)
);

The andX() and orX() methods accept an arbitrary amount
of arguments and can be nested in each other.

There is a bunch of methods to create comparisons and other SQL snippets
on the Expression object that you can see on the API documentation.

5.4. Binding Parameters to Placeholders

It is often not necessary to know about the exact placeholder names
during the building of a query. You can use two helper methods
to bind a value to a placeholder and directly use that placeholder
in your query as a return value:

<?php

$queryBuilder
 ->select('id', 'name')
 ->from('users')
 ->where('email = ' . $queryBuilder->createNamedParameter($userInputEmail))
;
// SELECT id, name FROM users WHERE email = :dcValue1

$queryBuilder
 ->select('id', 'name')
 ->from('users')
 ->where('email = ' . $queryBuilder->createPositionalParameter($userInputEmail))
;
// SELECT id, name FROM users WHERE email = ?

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

6. Transactions

A Doctrine\DBAL\Connection provides a PDO-like API for
transaction management, with the methods
Connection#beginTransaction(), Connection#commit() and
Connection#rollback().

Transaction demarcation with the Doctrine DBAL looks as follows:

<?php
$conn->beginTransaction();
try{
 // do stuff
 $conn->commit();
} catch(Exception $e) {
 $conn->rollback();
 throw $e;
}

Alternatively, the control abstraction
Connection#transactional($func) can be used to make the code
more concise and to make sure you never forget to rollback the
transaction in the case of an exception. The following code snippet
is functionally equivalent to the previous one:

<?php
$conn->transactional(function($conn) {
 // do stuff
});

The Doctrine\DBAL\Connection also has methods to control the
transaction isolation level as supported by the underlying
database. Connection#setTransactionIsolation($level) and
Connection#getTransactionIsolation() can be used for that purpose.
The possible isolation levels are represented by the following
constants:

<?php
Connection::TRANSACTION_READ_UNCOMMITTED
Connection::TRANSACTION_READ_COMMITTED
Connection::TRANSACTION_REPEATABLE_READ
Connection::TRANSACTION_SERIALIZABLE

The default transaction isolation level of a
Doctrine\DBAL\Connection is chosen by the underlying platform
but it is always at least READ_COMMITTED.

6.1. Transaction Nesting

A Doctrine\DBAL\Connection also adds support for nesting
transactions, or rather propagating transaction control up the call
stack. For that purpose, the Connection class keeps an internal
counter that represents the nesting level and is
increased/decreased as beginTransaction(), commit() and

rollback() are invoked. beginTransaction() increases the

	nesting level whilst

	commit() and rollback() decrease the nesting level. The nesting level starts at 0. Whenever the nesting level transitions from 0 to 1, beginTransaction() is invoked on the underlying driver connection and whenever the nesting level transitions from 1 to 0, commit() or rollback() is invoked on the underlying driver, depending on whether the transition was caused by Connection#commit() or Connection#rollback().

What this means is that transaction control is basically passed to
code higher up in the call stack and the inner transaction block is
ignored, with one important exception that is described further
below. Do not confuse this with “real” nested transactions or
savepoints. These are not supported by Doctrine. There is always
only a single, real database transaction.

To visualize what this means in practice, consider the following
example:

<?php
// $conn instanceof Doctrine\DBAL\Connection
$conn->beginTransaction(); // 0 => 1, "real" transaction started
try {

 ...

 // nested transaction block, this might be in some other API/library code that is
 // unaware of the outer transaction.
 $conn->beginTransaction(); // 1 => 2
 try {
 ...

 $conn->commit(); // 2 => 1
 } catch (Exception $e) {
 $conn->rollback(); // 2 => 1, transaction marked for rollback only
 throw $e;
 }

 ...

 $conn->commit(); // 1 => 0, "real" transaction committed
} catch (Exception $e) {
 $conn->rollback(); // 1 => 0, "real" transaction rollback
 throw $e;
}

However,
a rollback in a nested transaction block will always mark the current transaction so that the only possible outcome of the transaction is to be rolled back.
That means in the above example, the rollback in the inner
transaction block marks the whole transaction for rollback only.
Even if the nested transaction block would not rethrow the
exception, the transaction is marked for rollback only and the
commit of the outer transaction would trigger an exception, leading
to the final rollback. This also means that you can not
successfully commit some changes in an outer transaction if an
inner transaction block fails and issues a rollback, even if this
would be the desired behavior (i.e. because the nested operation is
“optional” for the purpose of the outer transaction block). To
achieve that, you need to restructure your application logic so as
to avoid nesting transaction blocks. If this is not possible
because the nested transaction blocks are in a third-party API
you’re out of luck.

All that is guaruanteed to the inner transaction is that it still
happens atomically, all or nothing, the transaction just gets a
wider scope and the control is handed to the outer scope.

Note

The transaction nesting described here is a debated
feature that has its critics. Form your own opinion. We recommend
avoiding nesting transaction blocks when possible, and most of the
time, it is possible. Transaction control should mostly be left to
a service layer and not be handled in data access objects or
similar.

Warning

Directly invoking PDO#beginTransaction(),
PDO#commit() or PDO#rollback() or the corresponding methods
on the particular Doctrine\DBAL\Driver\Connection instance in
use bypasses the transparent transaction nesting that is provided
by Doctrine\DBAL\Connection and can therefore corrupt the
nesting level, causing errors with broken transaction boundaries
that may be hard to debug.

6.2. Auto-commit mode

A Doctrine\DBAL\Connection supports setting the auto-commit mode
to control whether queries should be automatically wrapped into a
transaction or directly be committed to the database.
By default a connection runs in auto-commit mode which means
that it is non-transactional unless you start a transaction explicitly
via beginTransaction(). To have a connection automatically open up
a new transaction on connect() and after commit() or rollback(),
you can disable auto-commit mode with setAutoCommit(false).

<?php
// define connection parameters $params and initialize driver $driver

$conn = new \Doctrine\DBAL\Connection($params, $driver);

$conn->setAutoCommit(false); // disables auto-commit
$conn->connect(); // connects and immediately starts a new transaction

try {
 // do stuff
 $conn->commit(); // commits transaction and immediately starts a new one
} catch (\Exception $e) {
 $conn->rollback(); // rolls back transaction and immediately starts a new one
}

// still transactional

Note

Changing auto-commit mode during an active transaction, implicitly
commits active transactions for that particular connection.

<?php
// define connection parameters $params and initialize driver $driver

$conn = new \Doctrine\DBAL\Connection($params, $driver);

// we are in auto-commit mode
$conn->beginTransaction();

// disable auto-commit, commits currently active transaction
$conn->setAutoCommit(false); // also causes a new transaction to be started

// no-op as auto-commit is already disabled
$conn->setAutoCommit(false);

// enable auto-commit again, commits currently active transaction
$conn->setAutoCommit(true); // does not start a new transaction automatically

Committing or rolling back an active transaction will of course only
open up a new transaction automatically if the particular action causes
the transaction context of a connection to terminate.
That means committing or rolling back nested transactions are not affected
by this behaviour.

<?php
// we are not in auto-commit mode, transaction is active

try {
 // do stuff

 $conn->beginTransaction(); // start inner transaction, nesting level 2

 try {
 // do stuff
 $conn->commit(); // commits inner transaction, does not start a new one
 } catch (\Exception $e) {
 $conn->rollback(); // rolls back inner transaction, does not start a new one
 }

 // do stuff

 $conn->commit(); // commits outer transaction, and immediately starts a new one
} catch (\Exception $e) {
 $conn->rollback(); // rolls back outer transaction, and immediately starts a new one
}

To initialize a Doctrine\DBAL\Connection with auto-commit disabled,
you can also use the Doctrine\DBAL\Configuration container to modify the
default auto-commit mode via Doctrine\DBAL\Configuration::setAutoCommit(false)
and pass it to a Doctrine\DBAL\Connection when instantiating.

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

7. Platforms

Platforms abstract query generation and the subtle differences of
the supported database vendors. In most cases you don’t need to
interact with the Doctrine\DBAL\Platforms package a lot, but
there might be certain cases when you are programming database
independent where you want to access the platform to generate
queries for you.

The platform can be accessed from any Doctrine\DBAL\Connection
instance by calling the getDatabasePlatform() method.

<?php
$platform = $conn->getDatabasePlatform();

Each database driver has a platform associated with it by default.
Several drivers also share the same platform, for example PDO_OCI
and OCI8 share the OraclePlatform.

Doctrine provides abstraction for different versions of platforms
if necessary to represent their specific features and dialects.
For example has Microsoft added support for sequences in their 2012
version. Therefore Doctrine offers a separate platform class for this
extending the previous 2008 version. The 2008 version adds support
for additional data types which in turn don’t exist in the previous
2005 version and so on.
A list of available platform classes that can be used for each vendor
can be found as follows:

7.1. MySQL

	MySqlPlatform for version 5.0 and above.

	MySQL57Platform for version 5.7 and above.

7.2. Oracle

	OraclePlatform for all versions.

7.3. Microsoft SQL Server

	SQLServerPlatform for version 2000 and above.

	SQLServer2005Platform for version 2005 and above.

	SQLServer2008Platform for version 2008 and above.

	SQLServer2012Platform for version 2012 and above.

7.4. PostgreSQL

	PostgreSqlPlatform for all versions.

	PostgreSQL91Platform for version 9.1 and above.

	PostgreSQL92Platform for version 9.2 and above.

7.5. SAP Sybase SQL Anywhere

	SQLAnywherePlatform for version 10 and above.

	SQLAnywhere11Platform for version 11 and above.

	SQLAnywhere12Platform for version 12 and above.

	SQLAnywhere16Platform for version 16 and above.

7.6. SQLite

	SqlitePlatform for all versions.

7.7. Drizzle

	DrizzlePlatform for all versions.

It is highly encouraged to use the platform class that matches your
database vendor and version best. Otherwise it is not guaranteed
that the compatibility in terms of SQL dialect and feature support
between Doctrine DBAL and the database server will always be given.

If you want to overwrite parts of your platform you can do so when
creating a connection. There is a platform option you can pass
an instance of the platform you want the connection to use:

<?php
$myPlatform = new MyPlatform();
$options = array(
 'driver' => 'pdo_sqlite',
 'path' => 'database.sqlite',
 'platform' => $myPlatform
);
$conn = DriverManager::getConnection($options);

This way you can optimize your schema or generated SQL code with
features that might not be portable for instance, however are
required for your special needs. This can include using triggers or
views to simulate features or adding behaviour to existing SQL
functions.

Platforms are also responsible to know which database type
translates to which PHP Type. This is a very tricky issue across
all the different database vendors, for example MySQL BIGINT and
Oracle NUMBER should be handled as integer. Doctrine 2 offers a
powerful way to abstract the database to php and back conversion,
which is described in the next section.

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

8. Types

Besides abstraction of SQL one needs a translation between database
and PHP data-types to implement database independent applications.
Doctrine 2 has a type translation system baked in that supports the
conversion from and to PHP values from any database platform,
as well as platform independent SQL generation for any Doctrine
Type.

Using the ORM you generally don’t need to know about the Type
system. This is unless you want to make use of database vendor
specific database types not included in Doctrine 2.

Types are flyweights. This means there is only ever one instance of
a type and it is not allowed to contain any state. Creation of type
instances is abstracted through a static get method
Doctrine\DBAL\Types\Type::getType().

Types are abstracted across all the supported database
vendors.

8.1. Reference

The following chapter gives an overview of all available Doctrine 2
types with short explanations on their context and usage.
The type names listed here equal those that can be passed to the
Doctrine\DBAL\Types\Type::getType() factory method in order to retrieve
the desired type instance.

<?php

// Returns instance of \Doctrine\DBAL\Types\IntegerType
$type = \Doctrine\DBAL\Types\Type::getType('integer');

8.1.1. Numeric types

Types that map numeric data such as integers, fixed and floating point
numbers.

8.1.1.1. Integer types

Types that map numeric data without fractions.

8.1.1.1.1. smallint

Maps and converts 2-byte integer values.
Unsigned integer values have a range of 0 to 65535 while signed
integer values have a range of −32768 to 32767.
If you know the integer data you want to store always fits into one of these ranges
you should consider using this type.
Values retrieved from the database are always converted to PHP’s integer type
or null if no data is present.

Note

Not all of the database vendors support unsigned integers, so such an assumption
might not be propagated to the database.

8.1.1.1.2. integer

Maps and converts 4-byte integer values.
Unsigned integer values have a range of 0 to 4294967295 while signed
integer values have a range of −2147483648 to 2147483647.
If you know the integer data you want to store always fits into one of these ranges
you should consider using this type.
Values retrieved from the database are always converted to PHP’s integer type
or null if no data is present.

Note

Not all of the database vendors support unsigned integers, so such an assumption
might not be propagated to the database.

8.1.1.1.3. bigint

Maps and converts 8-byte integer values.
Unsigned integer values have a range of 0 to 18446744073709551615 while signed
integer values have a range of −9223372036854775808 to 9223372036854775807.
If you know the integer data you want to store always fits into one of these ranges
you should consider using this type.
Values retrieved from the database are always converted to PHP’s string type
or null if no data is present.

Note

For compatibility reasons this type is not converted to an integer
as PHP can only represent big integer values as real integers on
systems with a 64-bit architecture and would fall back to approximated
float values otherwise which could lead to false assumptions in applications.

Not all of the database vendors support unsigned integers, so such an assumption
might not be propagated to the database.

8.1.1.2. Decimal types

Types that map numeric data with fractions.

8.1.1.2.1. decimal

Maps and converts numeric data with fixed-point precision.
If you need an exact precision for numbers with fractions, you should consider using
this type.
Values retrieved from the database are always converted to PHP’s string type
or null if no data is present.

Note

For compatibility reasons this type is not converted to a double
as PHP can only preserve the precision to a certain degree. Otherwise
it approximates precision which can lead to false assumptions in
applications.

8.1.1.2.2. float

Maps and converts numeric data with floating-point precision.
If you only need an approximate precision for numbers with fractions, you should
consider using this type.
Values retrieved from the database are always converted to PHP’s
float/double type or null if no data is present.

8.1.2. String types

Types that map string data such as character and binary text.

8.1.2.1. Character string types

Types that map string data of letters, numbers, and other symbols.

8.1.2.1.1. string

Maps and converts string data with a maximum length.
If you know that the data to be stored always fits into the specified length,
you should consider using this type.
Values retrieved from the database are always converted to PHP’s string type
or null if no data is present.

Note

Database vendors have different limits for the maximum length of a
varying string. Doctrine internally maps the string type to the
vendor’s text type if the maximum allowed length is exceeded.
This can lead to type inconsistencies when reverse engineering the
type from the database.

8.1.2.1.2. text

Maps and converts string data without a maximum length.
If you don’t know the maximum length of the data to be stored, you should
consider using this type.
Values retrieved from the database are always converted to PHP’s string type
or null if no data is present.

8.1.2.1.3. guid

Maps and converts a “Globally Unique Identifier”.
If you want to store a GUID, you should consider using this type, as some
database vendors have a native data type for this kind of data which offers
the most efficient way to store it. For vendors that do not support this
type natively, this type is mapped to the string type internally.
Values retrieved from the database are always converted to PHP’s string type
or null if no data is present.

8.1.2.2. Binary string types

Types that map binary string data including images and other types of
information that are not interpreted by the database.
If you know that the data to be stored always is in binary format, you
should consider using one of these types in favour of character string
types, as it offers the most efficient way to store it.

8.1.2.2.1. binary

Maps and converts binary string data with a maximum length.
If you know that the data to be stored always fits into the specified length,
you should consider using this type.
Values retrieved from the database are always converted to PHP’s resource type
or null if no data is present.

Note

Database vendors have different limits for the maximum length of a
varying binary string. Doctrine internally maps the binary type to the
vendor’s blob type if the maximum allowed length is exceeded.
This can lead to type inconsistencies when reverse engineering the
type from the database.

8.1.2.2.2. blob

Maps and converts binary string data without a maximum length.
If you don’t know the maximum length of the data to be stored, you should
consider using this type.
Values retrieved from the database are always converted to PHP’s resource type
or null if no data is present.

8.1.3. Bit types

Types that map bit data such as boolean values.

8.1.3.1. boolean

Maps and converts boolean data.
If you know that the data to be stored always is a boolean (true or false),
you should consider using this type.
Values retrieved from the database are always converted to PHP’s boolean type
or null if no data is present.

Note

As most of the database vendors do not have a native boolean type,
this type silently falls back to the smallest possible integer or
bit data type if necessary to ensure the least possible data storage
requirements are met.

8.1.4. Date and time types

Types that map date, time and timezone related values such as date only,
date and time, date, time and timezone or time only.

8.1.4.1. date

Maps and converts date data without time and timezone information.
If you know that the data to be stored always only needs to be a date
without time and timezone information, you should consider using this type.
Values retrieved from the database are always converted to PHP’s \DateTime object
or null if no data is present.

8.1.4.2. datetime

Maps and converts date and time data without timezone information.
If you know that the data to be stored always only needs to be a date
with time but without timezone information, you should consider using this type.
Values retrieved from the database are always converted to PHP’s \DateTime object
or null if no data is present.

Warning

Before 2.5 this type always required a specific format,
defined in $platform->getDateTimeFormatString(), which
could cause quite some troubles on platforms that had various
microtime precision formats.
Starting with 2.5 whenever the parsing of a date fails with
the predefined platform format, the date_create()
function will be used to parse the date.

This could cause some troubles when your date format is weird
and not parsed correctly by date_create(), however since
databases are rather strict on dates there should be no problem.

8.1.4.3. datetimetz

Maps and converts date with time and timezone information data.
If you know that the data to be stored always contains date, time and timezone
information, you should consider using this type.
Values retrieved from the database are always converted to PHP’s \DateTime object
or null if no data is present.

8.1.4.4. time

Maps and converts time data without date and timezone information.
If you know that the data to be stored only needs to be a time
without date, time and timezone information, you should consider using this type.
Values retrieved from the database are always converted to PHP’s \DateTime object
or null if no data is present.

Note

See the Known Vendor Issue section
for details about the different handling of microseconds and
timezones across all the different vendors.

Warning

All date types assume that you are exclusively using the default timezone
set by date_default_timezone_set() [http://docs.php.net/manual/en/function.date-default-timezone-set.php]
or by the php.ini configuration date.timezone.

If you need specific timezone handling you have to handle this
in your domain, converting all the values back and forth from UTC.

8.1.5. Array types

Types that map array data in different variations such as simple arrays,
real arrays or JSON format arrays.

8.1.5.1. array

Maps and converts array data based on PHP serialization.
If you need to store an exact representation of your array data,
you should consider using this type as it uses serialization
to represent an exact copy of your array as string in the database.
Values retrieved from the database are always converted to PHP’s array type
using deserialization or null if no data is present.

Note

This type will always be mapped to the database vendor’s text type
internally as there is no way of storing a PHP array representation
natively in the database.
Furthermore this type requires a SQL column comment hint so that it can be
reverse engineered from the database. Doctrine cannot map back this type
properly on vendors not supporting column comments and will fall back to
text type instead.

8.1.5.2. simple_array

Maps and converts array data based on PHP comma delimited imploding and exploding.
If you know that the data to be stored always is a scalar value based one-dimensional
array, you should consider using this type as it uses simple PHP imploding and
exploding techniques to serialize and deserialize your data.
Values retrieved from the database are always converted to PHP’s array type
using comma delimited explode() or null if no data is present.

Note

This type will always be mapped to the database vendor’s text type
internally as there is no way of storing a PHP array representation
natively in the database.
Furthermore this type requires a SQL column comment hint so that it can be
reverse engineered from the database. Doctrine cannot map back this type
properly on vendors not supporting column comments and will fall back to
text type instead.

Warning

You should never rely on a specific PHP type like boolean,
integer, float or null when retrieving values from
the database as the explode() deserialization technique used
by this type converts every single array item to string.
This basically means that every array item other than string
will loose its type awareness.

8.1.5.3. json_array

Maps and converts array data based on PHP’s JSON encoding functions.
If you know that the data to be stored always is in a valid UTF-8
encoded JSON format string, you should consider using this type.
Values retrieved from the database are always converted to PHP’s array type
using PHP’s json_decode() function.

Note

Some vendors have a native JSON type and Doctrine will use it if possible
and otherwise silently fall back to the vendor’s text type to ensure
the most efficient storage requirements.
If the vendor does not have a native JSON type, this type requires a SQL
column comment hint so that it can be reverse engineered from the database.
Doctrine cannot map back this type properly on vendors not supporting column
comments and will fall back to text type instead.

8.1.6. Object types

Types that map to objects such as POPOs.

8.1.6.1. object

Maps and converts object data based on PHP serialization.
If you need to store an exact representation of your object data,
you should consider using this type as it uses serialization
to represent an exact copy of your object as string in the database.
Values retrieved from the database are always converted to PHP’s object type
using deserialization or null if no data is present.

Note

This type will always be mapped to the database vendor’s text type
internally as there is no way of storing a PHP object representation
natively in the database.
Furthermore this type requires a SQL column comment hint so that it can be
reverse engineered from the database. Doctrine cannot map back this type
properly on vendors not supporting column comments and will fall back to
text type instead.

Warning

Because the build-in text type of PostgreSQL does not support NULL bytes,
the object type will cause deserialization errors on PostgreSQL. A workaround is
to serialize()/unserialize() and base64_encode()/base64_decode() PHP objects and store
them into a text field manually.

8.2. Mapping Matrix

The following table shows an overview of Doctrine’s type abstraction.
The matrix contains the mapping information for how a specific Doctrine
type is mapped to the database and back to PHP.
Please also notice the mapping specific footnotes for additional information.

	Doctrine
	PHP
	Database vendor

	Name
	Version
	Type

	smallint
	integer
	MySQL
	all
	SMALLINT UNSIGNED [10] AUTO_INCREMENT [11]

	Drizzle
	all
	INT UNSIGNED [10] AUTO_INCREMENT [11]

	PostgreSQL
	all
	SMALLINT

	Oracle
	all
	NUMBER(5)

	SQL Server
	all
	SMALLINT IDENTITY [11]

	SQL Anywhere
	all
	UNSIGNED [10] SMALLINT IDENTITY [11]

	SQLite
	all
	INTEGER [16]

	integer
	integer
	MySQL
	all
	INT UNSIGNED [10] AUTO_INCREMENT [11]

	Drizzle

	PostgreSQL
	all
	INT [12]

	SERIAL [11]

	Oracle
	all
	NUMBER(10)

	SQL Server
	all
	INT IDENTITY [11]

	SQL Anywhere
	all
	UNSIGNED [10] INT IDENTITY [11]

	SQLite
	all
	INTEGER [16]

	bigint
	string
[8]
	MySQL
	all
	BIGINT UNSIGNED [10] AUTO_INCREMENT [11]

	Drizzle

	PostgreSQL
	all
	BIGINT [12]

	BIGSERIAL [11]

	Oracle
	all
	NUMBER(20)

	SQL Server
	all
	BIGINT IDENTITY [11]

	SQL Anywhere
	all
	UNSIGNED [10] BIGINT IDENTITY [11]

	SQLite
	all
	INTEGER [16]

	decimal [7]
	string
[9]
	MySQL
	all
	NUMERIC(p, s)

	PostgreSQL

	Oracle

	SQL Server

	SQL Anywhere

	SQLite

	Drizzle

	float
	float
	MySQL
	all
	DOUBLE PRECISION

	PostgreSQL

	Oracle

	SQL Server

	SQL Anywhere

	SQLite

	Drizzle

	string
[2] [5]
	string
	MySQL
	all
	VARCHAR(n) [3]

	PostgreSQL

	SQL Anywhere
	CHAR(n) [4]

	SQLite

	Drizzle
	all
	VARCHAR(n)

	Oracle
	all
	VARCHAR2(n) [3]

	CHAR(n) [4]

	SQL Server
	all
	NVARCHAR(n) [3]

	NCHAR(n) [4]

	text
	string
	MySQL
	all
	TINYTEXT [17]

	TEXT [18]

	MEDIUMTEXT [19]

	LONGTEXT [20]

	PostgreSQL
	all
	TEXT

	SQL Anywhere

	Drizzle

	Oracle
	all
	CLOB

	SQLite

	SQL Server
	all
	VARCHAR(MAX)

	**guid **
	string
	MySQL
	all
	VARCHAR(255) [1]

	Oracle

	SQLite

	Drizzle

	SQL Server
	all
	UNIQUEIDENTIFIER

	SQL Anywhere

	PostgreSQL
	all
	UUID

	binary
[2] [6]
	resource
	MySQL
	all
	VARBINARY(n) [3]

	SQL Server

	BINARY(n) [4]

	SQL Anywhere

	Drizzle
	all
	VARBINARY(n)

	Oracle
	all
	RAW(n)

	PostgreSQL
	all
	BYTEA [16]

	SQLite
	all
	BLOB [16]

	blob
	resource
	MySQL
	all
	TINYBLOB [17]

	BLOB [18]

	MEDIUMBLOB [19]

	LONGBLOB [20]

	Oracle
	all
	BLOB

	SQLite

	Drizzle

	SQL Server
	all
	VARBINARY(MAX)

	SQL Anywhere
	all
	LONG BINARY

	PostgreSQL
	all
	BYTEA

	boolean
	boolean
	MySQL
	all
	TINYINT(1)

	PostgreSQL
	all
	BOOLEAN

	SQLite

	Drizzle

	SQL Server
	all
	BIT

	SQL Anywhere

	Oracle
	all
	NUMBER(1)

	date
	\DateTime
	MySQL
	all
	DATE

	PostgreSQL

	Oracle

	SQL Anywhere

	SQLite

	Drizzle

	SQL Server
	>= 2008

	< 2008
	DATETIME [16]

	datetime
	\DateTime
	MySQL
	all
	DATETIME [13]

	Drizzle
	TIMESTAMP [14]

	SQL Server
	all
	DATETIME

	SQL Anywhere

	SQLite

	PostgreSQL
	all
	TIMESTAMP(0) WITHOUT TIME ZONE

	Oracle
	all
	TIMESTAMP(0)

	datetimetz
	\DateTime
	MySQL
	all
	DATETIME [15] [16]

	Drizzle

	SQLite

	SQL Server
	< 2008

	>= 2008
	DATETIMEOFFSET(6)

	PostgreSQL
	all
	TIMESTAMP(0) WITH TIME ZONE

	Oracle

	SQL Anywhere
	< 12
	DATETIME [15] [16]

	>= 12
	TIMESTAMP WITH TIME ZONE

	time
	\DateTime
	MySQL
	all
	TIME

	SQL Anywhere

	SQLite

	Drizzle

	PostgreSQL
	all
	TIME(0) WITHOUT TIME ZONE

	Oracle
	all
	DATE [16]

	SQL Server
	< 2008
	DATETIME [16]

	>= 2008
	TIME(0)

	array [1]
	array
	MySQL
	all
	TINYTEXT [17]

	simple array
[1]
	TEXT [18]

	MEDIUMTEXT [19]

	LONGTEXT [20]

	PostgreSQL
	all
	TEXT

	SQL Anywhere

	Drizzle

	Oracle
	all
	CLOB

	SQLite

	SQL Server
	all
	VARCHAR(MAX)

	json_array
	array
	MySQL [1]
	all
	TINYTEXT [17]

	TEXT [18]

	MEDIUMTEXT [19]

	LONGTEXT [20]

	PostgreSQL
	>= 9.2
	JSON

	< 9.2
	TEXT [1]

	SQL Anywhere
	all

	Drizzle

	Oracle
	all
	CLOB [1]

	SQLite

	SQL Server
	all
	VARCHAR(MAX) [1]

	object [1]
	object
	MySQL
	all
	TINYTEXT [17]

	TEXT [18]

	MEDIUMTEXT [19]

	LONGTEXT [20]

	PostgreSQL
	all
	TEXT

	SQL Anywhere

	Drizzle

	Oracle
	all
	CLOB

	SQLite

	SQL Server
	all
	VARCHAR(MAX)

	[1]	(1, 2, 3, 4, 5, 6, 7, 8) Requires hint in the column comment for proper reverse engineering of the appropriate
Doctrine type mapping.

	[2]	(1, 2) n is the length attribute set in the column definition (defaults to 255 if omitted).

	[3]	(1, 2, 3, 4) Chosen if the column definition has the fixed attribute set to false (default).

	[4]	(1, 2, 3, 4) Chosen if the column definition has the fixed attribute set to true.

	[5]	Silently maps to the vendor specific text type if the given length attribute for
n exceeds the maximum length the related platform allows. If this is the case, please
see [16].

	[6]	Silently maps to the vendor specific blob type if the given length attribute for
n exceeds the maximum length the related platform allows. If this is the case, please
see [16].

	[7]	p is the precision and s the scale set in the column definition.
The precision defaults to 10 and the scale to 0 if not set.

	[8]	Returns PHP string type value instead of integer because of maximum integer value
implications on non 64bit platforms.

	[9]	Returns PHP string type value instead of double because of PHP’s limitation in
preserving the exact precision when casting to double.

	[10]	(1, 2, 3, 4, 5, 6, 7) Used if unsigned attribute is set to true in the column definition (default false).

	[11]	(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) Used if autoincrement attribute is set to true in the column definition (default false).

	[12]	(1, 2) Chosen if the column definition has the autoincrement attribute set to false (default).

	[13]	Chosen if the column definition not contains the version option inside the platformOptions
attribute array or is set to false which marks it as a non-locking information column.

	[14]	Chosen if the column definition contains the version option inside the platformOptions
attribute array and is set to true which marks it as a locking information column.

	[15]	(1, 2) Fallback type as the vendor does not support a native date time type with timezone information.
This means that the timezone information gets lost when storing a value.

	[16]	(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) Cannot be safely reverse engineered to the same Doctrine type as the vendor does not have a
native distinct data type for this mapping. Using this type with this vendor can therefore
have implications on schema comparison (online vs offline schema) and PHP type safety
(data conversion from database to PHP value) because it silently falls back to its
appropriate Doctrine type.

	[17]	(1, 2, 3, 4, 5) Chosen if the column length is less or equal to 2 ^ 8 - 1 = 255.

	[18]	(1, 2, 3, 4, 5) Chosen if the column length is less or equal to 2 ^ 16 - 1 = 65535.

	[19]	(1, 2, 3, 4, 5) Chosen if the column length is less or equal to 2 ^ 24 - 1 = 16777215.

	[20]	(1, 2, 3, 4, 5) Chosen if the column length is less or equal to 2 ^ 32 - 1 = 4294967295 or empty.

8.3. Detection of Database Types

When calling table inspection methods on your connections
SchemaManager instance the retrieved database column types are
translated into Doctrine mapping types. Translation is necessary to
allow database abstraction and metadata comparisons for example for
Migrations or the ORM SchemaTool.

Each database platform has a default mapping of database types to
Doctrine types. You can inspect this mapping for platform of your
choice looking at the
AbstractPlatform::initializeDoctrineTypeMappings()
implementation.

If you want to change how Doctrine maps a database type to a
Doctrine\DBAL\Types\Type instance you can use the
AbstractPlatform::registerDoctrineTypeMapping($dbType, $doctrineType)
method to add new database types or overwrite existing ones.

Note

You can only map a database type to exactly one Doctrine type.
Database vendors that allow to define custom types like PostgreSql
can help to overcome this issue.

8.4. Custom Mapping Types

Just redefining how database types are mapped to all the existing
Doctrine types is not at all that useful. You can define your own
Doctrine Mapping Types by extending Doctrine\DBAL\Types\Type.
You are required to implement 4 different methods to get this
working.

See this example of how to implement a Money object in PostgreSQL.
For this we create the type in PostgreSQL as:

CREATE DOMAIN MyMoney AS DECIMAL(18,3);

Now we implement our Doctrine\DBAL\Types\Type instance:

<?php
namespace My\Project\Types;

use Doctrine\DBAL\Types\Type;
use Doctrine\DBAL\Platforms\AbstractPlatform;

/**
 * My custom datatype.
 */
class MoneyType extends Type
{
 const MONEY = 'money'; // modify to match your type name

 public function getSqlDeclaration(array $fieldDeclaration, AbstractPlatform $platform)
 {
 return 'MyMoney';
 }

 public function convertToPHPValue($value, AbstractPlatform $platform)
 {
 return new Money($value);
 }

 public function convertToDatabaseValue($value, AbstractPlatform $platform)
 {
 return $value->toDecimal();
 }

 public function getName()
 {
 return self::MONEY;
 }
}

The job of Doctrine-DBAL is to transform your type into SQL declaration. You can modify the SQL declaration Doctrine will produce. At first, you must to enable this feature by overriding the canRequireSQLConversion method:

<?php
public function canRequireSQLConversion()
{
 return true;
}

Then you override the methods convertToPhpValueSQL and convertToDatabaseValueSQL :

<?php
public function convertToPHPValueSQL($sqlExpr, $platform)
{
 return 'MyMoneyFunction(\''.$sqlExpr.'\') ';
}

public function convertToDatabaseValueSQL($sqlExpr, AbstractPlatform $platform)
{
 return 'MyFunction('.$sqlExpr.')';
}

Now we have to register this type with the Doctrine Type system and
hook it into the database platform:

<?php
Type::addType('money', 'My\Project\Types\MoneyType');
$conn->getDatabasePlatform()->registerDoctrineTypeMapping('MyMoney', 'money');

This would allow to use a money type in the ORM for example and
have Doctrine automatically convert it back and forth to the
database.

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

9. Schema-Manager

A Schema Manager instance helps you with the abstraction of the
generation of SQL assets such as Tables, Sequences, Foreign Keys
and Indexes.

To retrieve the SchemaManager for your connection you can use
the getSchemaManager() method:

<?php
$sm = $conn->getSchemaManager();

Now with the SchemaManager instance in $sm you can use the
available methods to learn about your database schema:

Note

Parameters containing identifiers passed to the SchemaManager
methods are NOT quoted automatically! Identifier quoting is
really difficult to do manually in a consistent way across
different databases. You have to manually quote the identifiers
when you accept data from user- or other sources not under your
control.

9.1. listDatabases()

Retrieve an array of databases on the configured connection:

<?php
$databases = $sm->listDatabases();

9.2. listSequences()

Retrieve an array of Doctrine\DBAL\Schema\Sequence instances
that exist for a database:

<?php
$sequences = $sm->listSequences();

Or if you want to manually specify a database name:

<?php
$sequences = $sm->listSequences('dbname');

Now you can loop over the array inspecting each sequence object:

<?php
foreach ($sequences as $sequence) {
 echo $sequence->getName() . "\n";
}

9.3. listTableColumns()

Retrieve an array of Doctrine\DBAL\Schema\Column instances that
exist for the given table:

<?php
$columns = $sm->listTableColumns('user');

Now you can loop over the array inspecting each column object:

<?php
foreach ($columns as $column) {
 echo $column->getName() . ': ' . $column->getType() . "\n";
}

9.4. listTableDetails()

Retrieve a single Doctrine\DBAL\Schema\Table instance that
encapsulates all the details of the given table:

<?php
$table = $sm->listTableDetails('user');

Now you can call methods on the table to manipulate the in memory
schema for that table. For example we can add a new column:

<?php
$table->addColumn('email_address', 'string');

9.5. listTableForeignKeys()

Retrieve an array of Doctrine\DBAL\Schema\ForeignKeyConstraint
instances that exist for the given table:

<?php
$foreignKeys = $sm->listTableForeignKeys('user');

Now you can loop over the array inspecting each foreign key
object:

<?php
foreach ($foreignKeys as $foreignKey) {
 echo $foreignKey->getName() . ': ' . $foreignKey->getLocalTableName() ."\n";
}

9.6. listTableIndexes()

Retrieve an array of Doctrine\DBAL\Schema\Index instances that
exist for the given table:

<?php
$indexes = $sm->listTableIndexes('user');

Now you can loop over the array inspecting each index object:

<?php
foreach ($indexes as $index) {
 echo $index->getName() . ': ' . ($index->isUnique() ? 'unique' : 'not unique') . "\n";
}

9.7. listTables()

Retrieve an array of Doctrine\DBAL\Schema\Table instances that
exist in the connections database:

<?php
$tables = $sm->listTables();

Each Doctrine\DBAl\Schema\Table instance is populated with
information provided by all the above methods. So it encapsulates
an array of Doctrine\DBAL\Schema\Column instances that can be
retrieved with the getColumns() method:

<?php
foreach ($tables as $table) {
 echo $table->getName() . " columns:\n\n";
 foreach ($table->getColumns() as $column) {
 echo ' - ' . $column->getName() . "\n";
 }
}

9.8. listViews()

Retrieve an array of Doctrine\DBAL\Schema\View instances that
exist in the connections database:

<?php
$views = $sm->listViews();

Now you can loop over the array inspecting each view object:

<?php
foreach ($views as $view) {
 echo $view->getName() . ': ' . $view->getSql() . "\n";
}

9.9. createSchema()

For a complete representation of the current database you can use
the createSchema() method which returns an instance of
Doctrine\DBAL\Schema\Schema, which you can use in conjunction
with the SchemaTool or Schema Comparator.

<?php
$fromSchema = $sm->createSchema();

Now we can clone the $fromSchema to $toSchema and drop a
table:

<?php
$toSchema = clone $fromSchema;
$toSchema->dropTable('user');

Now we can compare the two schema instances in order to calculate
the differences between them and return the SQL required to make
the changes on the database:

<?php
$sql = $fromSchema->getMigrateToSql($toSchema, $conn->getDatabasePlatform());

The $sql array should give you a SQL query to drop the user
table:

<?php
print_r($sql);

/*
array(
 0 => 'DROP TABLE user'
)
*/

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

10. Schema-Representation

Doctrine has a very powerful abstraction of database schemas. It
offers an object-oriented representation of a database schema with
support for all the details of Tables, Sequences, Indexes and
Foreign Keys. These Schema instances generate a representation that
is equal for all the supported platforms. Internally this
functionality is used by the ORM Schema Tool to offer you create,
drop and update database schema methods from your Doctrine ORM
Metadata model. Up to very specific functionality of your database
system this allows you to generate SQL code that makes your Domain
model work.

You will be pleased to hear, that Schema representation is
completly decoupled from the Doctrine ORM though, that is you can
also use it in any other project to implement database migrations
or for SQL schema generation for any metadata model that your
application has. You can easily generate a Schema, as a simple
example shows:

<?php
$schema = new \Doctrine\DBAL\Schema\Schema();
$myTable = $schema->createTable("my_table");
$myTable->addColumn("id", "integer", array("unsigned" => true));
$myTable->addColumn("username", "string", array("length" => 32));
$myTable->setPrimaryKey(array("id"));
$myTable->addUniqueIndex(array("username"));
$schema->createSequence("my_table_seq");

$myForeign = $schema->createTable("my_foreign");
$myForeign->addColumn("id", "integer");
$myForeign->addColumn("user_id", "integer");
$myForeign->addForeignKeyConstraint($myTable, array("user_id"), array("id"), array("onUpdate" => "CASCADE"));

$queries = $schema->toSql($myPlatform); // get queries to create this schema.
$dropSchema = $schema->toDropSql($myPlatform); // get queries to safely delete this schema.

Now if you want to compare this schema with another schema, you can
use the Comparator class to get instances of SchemaDiff,
TableDiff and ColumnDiff, as well as information about other
foreign key, sequence and index changes.

<?php
$comparator = new \Doctrine\DBAL\Schema\Comparator();
$schemaDiff = $comparator->compare($fromSchema, $toSchema);

$queries = $schemaDiff->toSql($myPlatform); // queries to get from one to another schema.
$saveQueries = $schemaDiff->toSaveSql($myPlatform);

The Save Diff mode is a specific mode that prevents the deletion of
tables and sequences that might occour when making a diff of your
schema. This is often necessary when your target schema is not
complete but only describes a subset of your application.

All methods that generate SQL queries for you make much effort to
get the order of generation correct, so that no problems will ever
occour with missing links of foreign keys.

10.1. Schema Assets

A schema asset is considered any abstract atomic unit in a database such as schemas,
tables, indexes, but also sequences, columns and even identifiers.
The following chapter gives an overview of all available Doctrine 2
schema assets with short explanations on their context and usage.
All schema assets reside in the Doctrine\DBAL\Schema namespace.

Note

This chapter is far from being completely documented.

10.1.1. Column

Represents a table column in the database schema.
A column consists of a name, a type, portable options, commonly supported options and
vendors specific options.

10.1.1.1. Portable options

The following options are considered to be fully portable across all database platforms:

	notnull (boolean): Whether the column is nullable or not. Defaults to true.

	default (integer|string): The default value of the column if no value was specified.
Defaults to null.

	autoincrement (boolean): Whether this column should use an autoincremented value if
no value was specified. Only applies to Doctrine’s smallint, integer
and bigint types. Defaults to false.

	length (integer): The maximum length of the column. Only applies to Doctrine’s
string and binary types. Defaults to null and is evaluated to 255
in the platform.

	fixed (boolean): Whether a string or binary Doctrine type column has
a fixed length. Defaults to false.

	precision (integer): The precision of a Doctrine decimal or float type
column that determines the overall maximum number of digits to be stored (including scale).
Defaults to 10.

	scale (integer): The exact number of decimal digits to be stored in a Doctrine
decimal or float type column. Defaults to 0.

	customSchemaOptions (array): Additional options for the column that are
supported by all vendors:
	unique (boolean): Whether to automatically add a unique constraint for the column.
Defaults to false.

10.1.1.2. Common options

The following options are not completely portable but are supported by most of the
vendors:

	unsigned (boolean): Whether a smallint, integer or bigint Doctrine
type column should allow unsigned values only. Supported by MySQL, SQL Anywhere
and Drizzle. Defaults to false.

	comment (integer|string): The column comment. Supported by MySQL, PostgreSQL,
Oracle, SQL Server, SQL Anywhere and Drizzle. Defaults to null.

10.1.1.3. Vendor specific options

The following options are completely vendor specific and absolutely not portable:

	columnDefinition: The custom column declaration SQL snippet to use instead
of the generated SQL by Doctrine. Defaults to null. This can useful to add
vendor specific declaration information that is not evaluated by Doctrine
(such as the ZEROFILL attribute on MySQL).

	customSchemaOptions (array): Additional options for the column that are
supported by some vendors but not portable:
	charset (string): The character set to use for the column. Currently only supported
on MySQL and Drizzle.

	collate (string): The collation to use for the column. Currently only supported on
SQL Server.

	check (string): The check constraint clause to add to the column.
Defaults to null.

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

11. Events

Both Doctrine\DBAL\DriverManager and
Doctrine\DBAL\Connection accept an instance of
Doctrine\Common\EventManager. The EventManager has a couple of
events inside the DBAL layer that are triggered for the user to
listen to.

11.1. PostConnect Event

Doctrine\DBAL\Events::postConnect is triggered right after the
connection to the database is established. It allows to specify any
relevant connection specific options and gives access to the
Doctrine\DBAL\Connection instance that is responsible for the
connection management via an instance of
Doctrine\DBAL\Event\ConnectionEventArgs event arguments
instance.

Doctrine ships with one implementation for the “PostConnect” event:

	Doctrine\DBAL\Event\Listeners\OracleSessionInit allows to
specify any number of Oracle Session related enviroment variables
that are set right after the connection is established.

You can register events by subscribing them to the EventManager
instance passed to the Connection factory:

<?php
$evm = new EventManager();
$evm->addEventSubscriber(new OracleSessionInit(array(
 'NLS_TIME_FORMAT' => 'HH24:MI:SS',
)));

$conn = DriverManager::getConnection($connectionParams, null, $evm);

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

12. Security

Allowing users of your website to communicate with a database can possibly have
security implications that you should be aware of. Databases allow very
powerful commands that not every user of your website should be able to
execute. Additionally the data in your database probably contains information
that should not be visible to everyone with access to the website.

The most dangerous security problem with regard to databases is the possibility
of SQL injections. An SQL injection security hole allows an attacker to
execute new or modify existing SQL statements to access information that he is
not allowed to access.

Neither Doctrine DBAL nor ORM can prevent such attacks if you are careless as a
developer. This section explains to you the problems of SQL injection and how
to prevent them.

12.1. SQL Injection: Safe and Unsafe APIs for User Input

A database library naturally falls touches the class of SQL injection security
vulnerabilities. You should read the following information carefully to
understand how Doctrine can and cannot help you to prevent SQL injection.

In general you should assume that APIs in Doctrine are not safe for user input.
There are however some exceptions.

The following APIs are designed to be SAFE from SQL injections:

	For Doctrine\DBAL\Connection#insert($table, $values, $types),
Doctrine\DBAL\Connection#update($table, $values, $where, $types) and
Doctrine\DBAL\Connection#delete($table, $where, $types) only the array
values of $values and $where. The table name and keys of $values
and $where are NOT escaped.

	Doctrine\DBAL\Query\QueryBuilder#setFirstResult($offset)

	Doctrine\DBAL\Query\QueryBuilder#setMaxResults($limit)

	Doctrine\DBAL\Platforms\AbstractPlatform#modifyLimitQuery($sql, $limit, $offset) for the $limit and $offset parameters.

Consider ALL other APIs to be not safe for user-input:

	Query methods on the Connection

	The QueryBuilder API

	The Platforms and SchemaManager APIs to generate and execute DML/DDL SQL statements

To escape user input in those scenarios use the Connection#quote() method.

12.2. User input in your queries

A database application necessarily requires user-input to passed to your queries.
There are wrong and right ways to do this and is very important to be very strict about this:

12.2.1. Wrong: String Concatenation

You should never ever build your queries dynamically and concatenate user-input into your
SQL or DQL query. For Example:

<?php
// Very wrong!
$sql = "SELECT * FROM users WHERE name = '" . $_GET['username']. "'";

An attacker could inject any value into the GET variable “username” to modify the query to his needs.

Although DQL is a wrapper around SQL that can prevent you from some security implications, the previous
example is also a threat to DQL queries.

<?php
// DQL is not safe against arbitrary user-input as well:
$dql = "SELECT u FROM User u WHERE u.username = '" . $_GET['username'] . "'";

In this scenario an attacker could still pass a username set to ' OR 1 = 1 and create a valid DQL query.
Although DQL will make use of quoting functions when literals are used in a DQL statement, allowing
the attacker to modify the DQL statement with valid literals cannot be detected by the DQL parser, it
is your responsibility.

12.2.2. Right: Prepared Statements

You should always use prepared statements to execute your queries. Prepared statements is a two-step
procedure, separating SQL query from the parameters. They are supported (and encouraged) for both
DBAL SQL queries and for ORM DQL queries.

Instead of using string concatenation to insert user-input into your SQL/DQL statements you just specify
either placeholders instead and then explain to the database driver which variable should be bound to
which placeholder. Each database vendor supports different placeholder styles:

	All PDO Drivers support positional (using question marks) and named placeholders (:param1, :foo, :bar).

	OCI8 only supports named parameters, but Doctrine DBAL has a thin layer around OCI8 and
also allows positional placeholders.

	Doctrine ORM DQL allows both named and positional parameters. The positional parameters however are not
just question marks, but suffixed with a number (?1, ?2, ?3, ...).

Following are examples of using prepared statements with SQL and DQL:

<?php
// SQL Prepared Statements: Positional
$sql = "SELECT * FROM users WHERE username = ?";
$stmt = $connection->prepare($sql);
$stmt->bindValue(1, $_GET['username']);
$stmt->execute();

// SQL Prepared Statements: Named
$sql = "SELECT * FROM users WHERE username = :user";
$stmt = $connection->prepare($sql);
$stmt->bindValue("user", $_GET['username']);
$stmt->execute();

// DQL Prepared Statements: Positional
$dql = "SELECT u FROM User u WHERE u.username = ?1";
$query = $em->createQuery($dql);
$query->setParameter(1, $_GET['username']);
$data = $query->getResult();

// DQL Prepared Statements: Named
$dql = "SELECT u FROM User u WHERE u.username = :name";
$query = $em->createQuery($dql);
$query->setParameter("name", $_GET['username']);
$data = $query->getResult();

You can see this is a bit more tedious to write, but this is the only way to write secure queries. If you
are using just the DBAL there are also helper methods which simplify the usage quite alot:

<?php
// bind parameters and execute query at once.
$sql = "SELECT * FROM users WHERE username = ?";
$stmt = $connection->executeQuery($sql, array($_GET['username']));

There is also executeUpdate which does not return a statement but the number of affected rows.

Besides binding parameters you can also pass the type of the variable. This allows Doctrine or the underyling
vendor to not only escape but also cast the value to the correct type. See the docs on querying and DQL in the
respective chapters for more information.

12.2.3. Right: Quoting/Escaping values

Although previously we said string concatenation is wrong, there is a way to do it correctly using
the Connection#quote method:

<?php
// Parameter quoting
$sql = "SELECT * FROM users WHERE name = " . $connection->quote($_GET['username'], \PDO::PARAM_STR);

This method is only available for SQL, not for DQL. For DQL it is always encouraged to use prepared
statements not only for security, but also for caching reasons.

12.3. Non-ASCII compatible Charsets in MySQL

Up until PHP 5.3.6 PDO has a security problem when using non ascii compatible charsets. Even if specifying
the charset using “SET NAMES”, emulated prepared statements and PDO#quote could not reliably escape
values, opening up to potential SQL injections. If you are running PHP 5.3.6 you can solve this issue
by passing the driver option “charset” to Doctrine PDO MySQL driver. Using SET NAMES does not suffice!

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

13. Sharding

Note

The sharding extension is currently in transition from a seperate Project
into DBAL. Class names may differ.

Starting with 2.3 Doctrine DBAL contains some functionality to simplify the
development of horizontally sharded applications. In this first release it
contains a ShardManager interface. This interface allows to programatically
select a shard to send queries to. At the moment there are no functionalities
yet to dynamically pick a shard based on ID, query or database row yet. That
means the sharding extension is primarily suited for:

	multi-tenant applications or

	applications with completely separated datasets (example: weather data).

Both kind of application will work with both DBAL and ORM.

Note

Horizontal sharding is an evasive architecture that will affect your application code and using this
extension to Doctrine will not make it work “magically”.

You have to understand and integrate the following drawbacks:

	Pre-generation of IDs that are unique across all shards required.

	No transaction support across shards.

	No foreign key support across shards (meaning no “real” relations).

	Very complex (or impossible) to query aggregates across shards.

	Denormalization: Composite keys required where normalized non-sharded db schemas don’t need them.

	Schema Operations have to be done on all shards.

The primary questions in a sharding architecture are:

	Where is my data located?

	Where should I save this new data to find it later?

To answer these questions you generally have to craft a function that will tell
you for a given ID, on which shard the data for this ID is located. To simplify
this approach you will generally just pick a table which is the root of a set of
related data and decide for the IDs of this table. All the related data that
belong to this table are saved on the same shard.

Take for example a multi-user blog application with the following tables:

	Blog [id, name]

	Post [id, blog_id, subject, body, author_id]

	Comment [id, post_id, comment, author_id]

	User [id, username]

A sensible sharding architecture will split the application by blog. That means
all the data for a particular blog will be on a single shard and scaling is
done by putting the amount of blogs on many different database servers.

Now users can post and comment on different blogs that reside on different
shards. This makes the database schema above slightly tricky, because both
author_id columns cannot have foreign keys to User (id). Instead the User
table is located in an entirely different “dimension” of the application in
terms of the sharding architecture.

To simplify working with this kind of multi-dimensional database schema, you
can replace the author_ids with something more “meaningful”, for example the
e-mail address of the users if that is always known. The “user” table can then
be separated from the database schema above and put on a second horizontally
scaled sharding architecture.

As you can see, even with just the four tables above, sharding actually becomes
quite complex to think about.

The rest of this section discusses Doctrine sharding functionality in technical
detail.

13.1. ID Generation

To solve the issue of unique ID-generation across all shards are several
approaches you should evaluate:

13.1.1. Use GUID/UUIDs

The most simple ID-generation mechanism for sharding are
universally unique identifiers. These are 16-byte
(128-bit) numbers that are guaranteed to be unique across different servers.
You can read up on UUIDs on Wikipedia [http://en.wikipedia.org/wiki/Universally_unique_identifier].

The drawback of UUIDs is the segmentation they cause on indexes. Because UUIDs
are not sequentially generated, they can have negative impact on index access
performance. Additionally they are much bigger
than numerical primary keys (which are normally 4-bytes in length).

At the moment Doctrine DBAL drivers MySQL and SQL Server support the generation
of UUID/GUIDs. You can use the following bit of code to generate them across
platforms:

<?php
use Doctrine\DBAL\DriverManager;

$conn = DriverManager::getConnection(/**..**/);
$guid = $conn->fetchColumn('SELECT ' . $conn->getDatabasePlatform()->getGuidExpression());

$conn->insert("my_table", array("id" => $guid, "foo" => "bar"));

In your application you should hide this details in Id-Generation services:

<?php
namespace MyApplication;

class IdGenerationService
{
 private $conn;

 public function generateCustomerId()
 {
 return $this->conn->fetchColumn('SELECT ' .
 $this->conn->getDatabasePlatform()->getGuidExpression()
);
 }
}

A good starting point to read up on GUIDs (vs numerical ids) is this blog post
Coding Horror: Primary Keys: IDs vs GUIDs [http://www.codinghorror.com/blog/2007/03/primary-keys-ids-versus-guids.html].

13.1.2. Table Generator

In some scenarios there is no way around a numerical, automatically
incrementing id. The way Auto incrementing IDs are implemented in MySQL and SQL
Server however is completely unsuitable for sharding. Remember in a sharding
architecture you have to know where the row for a specific ID is located and
IDs have to be globally unique across all servers. Auto-Increment Primary Keys
are missing both properties.

To get around this issue you can use the so-called “table-generator” strategy.
In this case you define a single database that is responsible for the
generation of auto-incremented ids. You create a table on this database and
through the use of locking create new sequential ids.

There are three important drawbacks to this strategy:

	Single point of failure

	Bottleneck when application is write-heavy

	A second independent database connection is needed to guarantee transaction
safety.

If you can live with this drawbacks then you can use table-generation with the
following code in Doctrine:

<?php
use Doctrine\DBAL\DriverManager;
use Doctrine\DBAL\Id\TableGenerator;

$conn = DriverManager::getConnection(/**..**); // connection 1

// creating the TableGenerator automatically opens a second connection.
$tableGenerator = new TableGenerator($conn, "sequences_tbl_name");

$id1 = $tableGenerator->nextValue("sequence_name1");
$id2 = $tableGenerator->nextValue("sequence_name2");

The table generator obviously needs a table to work. The schema of this table
is described in the TableGenerator class-docblock. Alternatively you
can use the Doctrine\DBAL\Id\TableGeneratorSchemaVisitor and apply it to your
Doctrine\DBAL\Schema\Schema instance. It will automatically add the required
sequence table.

13.1.3. Natural Identifiers

Sometimes you are lucky and your application data-model comes with a natural
id. This is mostly the case for applications who get their IDs generated
somewhere else (exogeneous ID-generation) or that work with temporal data. In
that case you can just define the natural primary key and shard your
application based on this data.

13.2. Transactions

Transactions in sharding can only work for data that is located on a single
shard. If you need transactions in your sharding architecture then you have to
make sure that the data updated during a transaction is located on a single
shard.

13.3. Foreign Keys

Since you cannot create foreign keys between remote database servers, in a
sharding architecture you should put the data on a shard that belongs to each
other. But even if you can isolate most of the rows on a single shard there may
exist relations between tables that exist on different shards. In this case
your application should be aware of the potential inconsistencies and handle
them graciously.

13.4. Complex Queries

GROUP BY, DISTINCT and ORDER BY are clauses that cannot be easily used in a
sharding architecture. If you have to execute these queries against multiple
shards then you cannot just append the different results to each other.

You have to be aware of this problem and design your queries accordingly or
shard the data in a way that you never have to query multiple shards to
calculate a result.

13.5. ShardManager Interface

The central API of the sharding extension is the ShardManager interface.
It contains two different groups of functions with regard to sharding.

First, it contains the Shard Selection API. You can pick a shard based on a
so-called “distribution-value” or reset the connection to the “global” shard,
a necessary database that often contains heavily cached, sharding independent
data such as meta tables or the “user/tenant” table.

<?php
use Doctrine\DBAL\DriverManager;
use Doctrine\Shards\DBAL\SQLAzure\SQLAzureShardManager;

$conn = DriverManager::getConnection(array(
 'sharding' => array(
 'federationName' => 'my_database',
 'distributionKey' => 'customer_id',
)
));
$shardManager = new SQLAzureShardManager($conn);

$currentCustomerId = 1234;
$shardManager->selectShard($currentCustomerId);
// all queries after this call hit the shard
// where customer with id 1234 is on.

$shardManager->selectGlobal();
// the global database is selected.

To access the currently selected distribution value use the following API
method:

<?php
$value = $shardManager->getCurrentDistributionValue();

The shard manager will prevent you switching shards when a transaction is open.
This is especially important when using sharding with the ORM. Because the ORM
uses a single transaction during the flush-operation this means that you can
only ever use one EntityManager with data from a single shard.

The second API is the “fan-out” query API. This allows you to execute queries against
ALL shards. The order of the results of this operation is undefined, that means
your query has to return the data in a way that works for the application, or
you have to sort the data in the application.

<?php
$sql = "SELECT * FROM customers";
$rows = $shardManager->queryAll($sql, $params);

13.6. Schema Operations: SchemaSynchronizer Interface

Schema Operations in a sharding architecture are tricky. You have to perform
them on all databases instances (shards) at the same time. Also Doctrine
has problems with this in particular as you cannot generate an SQL file with
changes on any development machine anymore and apply this on production. The
required changes depend on the amount of shards.

To allow the Doctrine Schema API operations on a sharding architecture we
performed a refactored from code inside ORM Doctrine\ORM\Tools\SchemaTool
class and extracted the code for operations on Schema instances into a new
Doctrine\Shards\DBAL\SchemaSynchronizer interface.

Every sharding implementation can implement this interface and allow schema
operations to take part on multiple shards.

13.7. SQL Azure Federations

Doctrine Shards ships with a custom implementation for Microsoft SQL
Azure. The Azure platform provides a native sharding functionality. In SQL
Azure the sharding functionality is called Federations. This
functionality applies the following restrictions (in line with the ones listed
above):

	IDENTITY columns are not allowed on sharded tables (federated tables)

	Each table may only have exactly one clustered index and this index has to
have the distribution key/sharding-id as one column.

	Every unique index (or primary key) has to contain the
distribution-key/sharding-id.

Especially the requirements 2 and 3 prevent normalized database schemas. You
have to put the distribution key on every sharded table, which can affect your
application code quite a bit. This may lead to the creation of composite keys
where you normally wouldn’t need them.

The benefit of SQL Azure Federations is that they implement all the
shard-picking logic on the server. You only have to make use of the USE
FEDERATION statement. You don’t have to maintain a list of all the shards
inside your application and more importantly, resizing shards is done
transparently on the server.

Features of SQL Azure are:

	Central server to log into federations architecture. No need to know all
connection details of all shards.

	Database level operation to split shards, taking away the tediousness of this
operation for application developers.

	A global tablespace that can contain global data to all shards.

	One or many different federations (this library only supports working with
one)

	Sharded or non-sharded tables inside federations

	Allows filtering SELECT queries on the database based on the selected
sharding key value. This allows to implement sharded Multi-Tenant Apps very easily.

To setup an SQL Azure ShardManager use the following code:

<?php
use Doctrine\DBAL\DriverManager;
use Doctrine\Shards\DBAL\SQLAzure\SQLAzureShardManager;

$conn = DriverManager::getConnection(array(
 'dbname' => 'my_database',
 'host' => 'tcp:dbname.windows.net',
 'user' => 'user@dbname',
 'password' => 'XXX',
 'sharding' => array(
 'federationName' => 'my_federation',
 'distributionKey' => 'customer_id',
 'distributionType' => 'integer',
)
));
$shardManager = new SQLAzureShardManager($conn);

Currently you are limited to one federation in your application.

You can inspect all the currently known shards on SQL Azure using the
ShardManager#getShards() function:

<?php
foreach ($shardManager->getShards() as $shard) {
 echo $shard['id'] . " " . $shard['rangeLow'] . " - " . $shard['rangeHigh'];
}

13.7.1. Schema Operations

Schema Operations on SQL Azure Federations are possible with the
SQLAzureSchemaSynchronizer. You can instantiate this from your code:

<?php
use Doctrine\Shards\DBAL\SQLAzure\SQLAzureSchemaSynchronizer;

$synchronizer = new SQLAzureSchemaSynchronizer($conn, $shardManager);

You can use the API such as createSchema($schema) then and it will be
distributed across all shards. The assumptions are:

	Using SchemaSynchronizer#createSchema() assumes the database is empty.
The federation is created during this operation.

	Using SchemaSynchronizer#updateSchema() assumes the database and the
federation exists. All shards of the federation are iterated and update is
applied to all shards consecutively.

For a schema with tables in the global or federated sub-schema you have to use
the Schema API to mark tables:

<?php
use Doctrine\DBAL\Schema\Schema;

$schema = new Schema();

// no options set, this table will be on the federation root
$users = $schema->createTable('Users');
//...

// marked as sharded, but no distribution column given:
// non-federated table inside the federation
$products = $schema->createTable('Products');
$products->addOption('azure.federated', true);
//...

// shared + distribution column:
// federated table
$customers = $schema->createTable('Customers');
$customers->addColumn('CustomerID', 'integer');
//...
$customers->addOption('azure.federated', true);
$customers->addOption('azure.federatedOnColumnName', 'CustomerID');

13.7.2. SQLAzure Filtering

SQL Azure comes with a powerful filtering feature, that allows you to
automatically implement a multi-tenant application for a formerly single-tenant
application. The restriction to make this work is that your application does not work with
IDENTITY columns.

Normally when you select a shard using ShardManager#selectShard() any query
executed against this shard will return data from ALL the tenants located on
this shard. With the “FILTERING=ON” flag on the USE FEDERATION query
however SQL Azure can automatically filter all SELECT queries with the chosen
distribution value. Additionally you can automatically set the currently
selected distribution value in every INSERT statement using a function for this
value as the DEFAULT part of the column. If you are using GUIDs for every
row then UPDATE and DELETE statements using only GUIDs will work out perfectly
as well, as they are by definition for unique rows. This feature allows you to
build multi-tenant applications, even though they were not originally designed
that way.

To enable filtering you can use the
SQLAzureShardManager#setFilteringEnabled() method. This method is not part
of the interface. You can also set a default value for filtering by passing it
as the “sharding.filteringEnabled” parameter to
DriverManager#getConnection().

13.8. Generic SQL Sharding Support

Besides the custom SQL Azure support there is a generic implementation that
works with all database drivers. It requires to specify all database
connections and will switch between the different connections under the hood
when using the ShardManager API. This is also the biggest drawback of this
approach, since fan-out queries need to connect to all databases in a single
request.

See the configuration for a sample sharding connection:

<?php
use Doctrine\DBAL\DriverManager;

$conn = DriverManager::getConnection(array(
 'wrapperClass' => 'Doctrine\Shards\DBAL\PoolingShardConnection',
 'driver' => 'pdo_sqlite',
 'global' => array('memory' => true),
 'shards' => array(
 array('id' => 1, 'memory' => true),
 array('id' => 2, 'memory' => true),
),
 'shardChoser' => 'Doctrine\Shards\DBAL\ShardChoser\MultiTenantShardChoser',
));

You have to configure the following options:

	‘wrapperClass’ - Selecting the PoolingShardConnection as above.

	‘global’ - An array of database parameters that is used for connecting to the
global database.

	‘shards’ - An array of shard database parameters. You have to specify an
‘id’ parameter for each of the shard configurations.

	‘shardChoser’ - Implementation of the
Doctrine\Shards\DBAL\ShardChoser\ShardChoser interface.

The Shard Choser interface maps the distribution value to a shard-id. This
gives you the freedom to implement your own strategy for sharding the data
horizontally.

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

14. SQLAzure Sharding Tutorial

Note

The sharding extension is currently in transition from a seperate Project
into DBAL. Class names may differ.

This tutorial builds upon the Brian Swans tutorial [http://blogs.msdn.com/b/silverlining/archive/2012/01/18/using-sql-azure-federations-via-php.aspx]
on SQLAzure Sharding and turns all the examples into examples using the Doctrine Sharding support.

It introduces SQL Azure Sharding, which is an abstraction layer in SQL Azure to
support sharding. Many features for sharding are implemented on the database
level, which makes it much easier to work with than generic sharding
implementations.

For this tutorial you need an Azure account. You don’t need to deploy the code
on Azure, you can run it from your own machine against the remote database.

Note

You can look at the code from the ‘examples/sharding’ directory.

14.1. Install Doctrine

For this tutorial we will install Doctrine and the Sharding Extension through
Composer [http://getcomposer.org] which is the easiest way to install
Doctrine. Composer is a new package manager for PHP. Download the
composer.phar from their website and put it into a newly created folder for
this tutorial. Now create a composer.json file in this project root with
the following content:

	{

	
	“require”: {

	“doctrine/dbal”: “2.2.2”,
“doctrine/shards”: “0.2”

}

}

Open up the commandline and switch to your tutorial root directory, then call
php composer.phar install. It will grab the code and install it into the
vendor subdirectory of your project. It also creates an autoloader, so that
we don’t have to care about this.

14.2. Setup Connection

The first thing to start with is setting up Doctrine and the database connection:

<?php
// bootstrap.php
use Doctrine\DBAL\DriverManager;
use Doctrine\Shards\DBAL\SQLAzure\SQLAzureShardManager;

require_once "vendor/autoload.php";

$conn = DriverManager::getConnection(array(
 'driver' => 'pdo_sqlsrv',
 'dbname' => 'SalesDB',
 'host' => 'tcp:dbname.windows.net',
 'user' => 'user@dbname',
 'password' => 'XXX',
 'platform' => new \Doctrine\DBAL\Platforms\SQLAzurePlatform(),
 'driverOptions' => array('MultipleActiveResultSets' => false),
 'sharding' => array(
 'federationName' => 'Orders_Federation',
 'distributionKey' => 'CustId',
 'distributionType' => 'integer',
)
));

$shardManager = new SQLAzureShardManager($conn);

14.3. Create Database

Create a new database using the Azure/SQL Azure management console.

14.4. Create Schema

Doctrine has a powerful schema API. We don’t need to use low-level DDL
statements to generate the database schema. Instead you can use an Object-Oriented API
to create the database schema and then have Doctrine turn it into DDL
statements.

We will recreate Brians example schema with Doctrine DBAL. Instead of having to
create federations and schema seperately as in his example, Doctrine will do it
all in one step:

<?php
// create_schema.php
use Doctrine\DBAL\Schema\Schema;
use Doctrine\Shards\DBAL\SQLAzure\SQLAzureSchemaSynchronizer;

require_once 'bootstrap.php';

$schema = new Schema();

$products = $schema->createTable('Products');
$products->addColumn('ProductID', 'integer');
$products->addColumn('SupplierID', 'integer');
$products->addColumn('ProductName', 'string');
$products->addColumn('Price', 'decimal', array('scale' => 2, 'precision' => 12));
$products->setPrimaryKey(array('ProductID'));
$products->addOption('azure.federated', true);

$customers = $schema->createTable('Customers');
$customers->addColumn('CustomerID', 'integer');
$customers->addColumn('CompanyName', 'string');
$customers->addColumn('FirstName', 'string');
$customers->addColumn('LastName', 'string');
$customers->setPrimaryKey(array('CustomerID'));
$customers->addOption('azure.federated', true);
$customers->addOption('azure.federatedOnColumnName', 'CustomerID');

$orders = $schema->createTable('Orders');
$orders->addColumn('CustomerID', 'integer');
$orders->addColumn('OrderID', 'integer');
$orders->addColumn('OrderDate', 'datetime');
$orders->setPrimaryKey(array('CustomerID', 'OrderID'));
$orders->addOption('azure.federated', true);
$orders->addOption('azure.federatedOnColumnName', 'CustomerID');

$orderItems = $schema->createTable('OrderItems');
$orderItems->addColumn('CustomerID', 'integer');
$orderItems->addColumn('OrderID', 'integer');
$orderItems->addColumn('ProductID', 'integer');
$orderItems->addColumn('Quantity', 'integer');
$orderItems->setPrimaryKey(array('CustomerID', 'OrderID', 'ProductID'));
$orderItems->addOption('azure.federated', true);
$orderItems->addOption('azure.federatedOnColumnName', 'CustomerID');

// Create the Schema + Federation:
$synchronizer = new SQLAzureSchemaSynchronizer($conn, $shardManager);
$synchronizer->createSchema($schema);

// Or jut look at the SQL:
echo implode("\n", $synchronizer->getCreateSchema($schema));

14.5. View Federation Members

To see how many shard instances (called Federation Members) your SQLAzure database currently has
you can ask the ShardManager to enumerate all shards:

<?php
// view_federation_members.php
require_once "bootstrap.php";

$shards = $shardManager->getShards();
foreach ($shards as $shard) {
 print_r($shard);
}

14.6. Insert Data

Now we want to insert some test data into the database to see the behavior when
we split the shards. We use the same test data as Brian, but use the Doctrine
API to insert them. To insert data into federated tables we have to select the
shard we want to put the data into. We can use the ShardManager to execute this
operation for us:

<?php
// insert_data.php
require_once "bootstrap.php";

$shardManager->selectShard(0);

$conn->insert("Products", array(
 "ProductID" => 386,
 "SupplierID" => 1001,
 "ProductName" => 'Titanium Extension Bracket Left Hand',
 "Price" => 5.25,
));
$conn->insert("Products", array(
 "ProductID" => 387,
 "SupplierID" => 1001,
 "ProductName" => 'Titanium Extension Bracket Right Hand',
 "Price" => 5.25,
));
$conn->insert("Products", array(
 "ProductID" => 388,
 "SupplierID" => 1001,
 "ProductName" => 'Fusion Generator Module 5 kV',
 "Price" => 10.50,
));
$conn->insert("Products", array(
 "ProductID" => 388,
 "SupplierID" => 1001,
 "ProductName" => 'Bypass Filter 400 MHz Low Pass',
 "Price" => 10.50,
));

$conn->insert("Customers", array(
 'CustomerID' => 10,
 'CompanyName' => 'Van Nuys',
 'FirstName' => 'Catherine',
 'LastName' => 'Abel',
));
$conn->insert("Customers", array(
 'CustomerID' => 20,
 'CompanyName' => 'Abercrombie',
 'FirstName' => 'Kim',
 'LastName' => 'Branch',
));
$conn->insert("Customers", array(
 'CustomerID' => 30,
 'CompanyName' => 'Contoso',
 'FirstName' => 'Frances',
 'LastName' => 'Adams',
));
$conn->insert("Customers", array(
 'CustomerID' => 40,
 'CompanyName' => 'A. Datum Corporation',
 'FirstName' => 'Mark',
 'LastName' => 'Harrington',
));
$conn->insert("Customers", array(
 'CustomerID' => 50,
 'CompanyName' => 'Adventure Works',
 'FirstName' => 'Keith',
 'LastName' => 'Harris',
));
$conn->insert("Customers", array(
 'CustomerID' => 60,
 'CompanyName' => 'Alpine Ski House',
 'FirstName' => 'Wilson',
 'LastName' => 'Pais',
));
$conn->insert("Customers", array(
 'CustomerID' => 70,
 'CompanyName' => 'Baldwin Museum of Science',
 'FirstName' => 'Roger',
 'LastName' => 'Harui',
));
$conn->insert("Customers", array(
 'CustomerID' => 80,
 'CompanyName' => 'Blue Yonder Airlines',
 'FirstName' => 'Pilar',
 'LastName' => 'Pinilla',
));
$conn->insert("Customers", array(
 'CustomerID' => 90,
 'CompanyName' => 'City Power & Light',
 'FirstName' => 'Kari',
 'LastName' => 'Hensien',
));
$conn->insert("Customers", array(
 'CustomerID' => 100,
 'CompanyName' => 'Coho Winery',
 'FirstName' => 'Peter',
 'LastName' => 'Brehm',
));

$conn->executeUpdate("DECLARE @orderId INT

 DECLARE @customerId INT

 SET @orderId = 10
 SELECT @customerId = CustomerId FROM Customers WHERE LastName = 'Hensien' and FirstName = 'Kari'

 INSERT INTO Orders (CustomerId, OrderId, OrderDate)
 VALUES (@customerId, @orderId, GetDate())

 INSERT INTO OrderItems (CustomerID, OrderID, ProductID, Quantity)
 VALUES (@customerId, @orderId, 388, 4)

 SET @orderId = 20
 SELECT @customerId = CustomerId FROM Customers WHERE LastName = 'Harui' and FirstName = 'Roger'

 INSERT INTO Orders (CustomerId, OrderId, OrderDate)
 VALUES (@customerId, @orderId, GetDate())

 INSERT INTO OrderItems (CustomerID, OrderID, ProductID, Quantity)
 VALUES (@customerId, @orderId, 389, 2)

 SET @orderId = 30
 SELECT @customerId = CustomerId FROM Customers WHERE LastName = 'Brehm' and FirstName = 'Peter'

 INSERT INTO Orders (CustomerId, OrderId, OrderDate)
 VALUES (@customerId, @orderId, GetDate())

 INSERT INTO OrderItems (CustomerID, OrderID, ProductID, Quantity)
 VALUES (@customerId, @orderId, 387, 3)

 SET @orderId = 40
 SELECT @customerId = CustomerId FROM Customers WHERE LastName = 'Pais' and FirstName = 'Wilson'

 INSERT INTO Orders (CustomerId, OrderId, OrderDate)
 VALUES (@customerId, @orderId, GetDate())

 INSERT INTO OrderItems (CustomerID, OrderID, ProductID, Quantity)
 VALUES (@customerId, @orderId, 388, 1)"
);

This puts the data into the currently only existing federation member. We
selected that federation member by picking 0 as distribution value, which is by
definition part of the only existing federation.

14.7. Split Federation

Now lets split the federation, creating a second federation member. SQL Azure
will automatically redistribute the data into the two federations after you
executed this command.

<?php
// split_federation.php
require_once 'bootstrap.php';

$shardManager->splitFederation(60);

This little script uses the shard manager with a special method only existing
on the SQL AZure implementation splitFederation. It accepts a value at
at which the split is executed.

If you reexecute the view_federation_members.php script you can now see
that there are two federation members instead of just one as before. You can
see with the rangeLow and rangeHigh parameters what customers and
related entries are now served by which federation.

14.8. Inserting Data after Split

Now after we splitted the data we now have to make sure to be connected to the
right federation before inserting data. Lets add a new customer with ID 55 and
have him create an order.

<?php
// insert_data_aftersplit.php
require_once 'bootstrap.php';

$newCustomerId = 55;

$shardManager->selectShard($newCustomerId);

$conn->insert("Customers", array(
 "CustomerID" => $newCustomerId,
 "CompanyName" => "Microsoft",
 "FirstName" => "Brian",
 "LastName" => "Swan",
));

$conn->insert("Orders", array(
 "CustomerID" => 55,
 "OrderID" => 37,
 "OrderDate" => date('Y-m-d H:i:s'),
));

$conn->insert("OrderItems", array(
 "CustomerID" => 55,
 "OrderID" => 37,
 "ProductID" => 387,
 "Quantity" => 1,
));

As you can see its very important to pick the right distribution key in your
sharded application. Otherwise you have to switch the shards very often, which
is not really easy to work with. If you pick the sharding key right then it
should be possible to select the shard only once per request for the major
number of use-cases.

Fan-out the queries accross multiple shards should only be necessary for a
small number of queries, because these kind of queries are complex.

14.9. Querying data with filtering off

To access the data you have to pick a shard again and then start selecting data
from it.

<?php
// query_filtering_off.php
require_once "bootstrap.php";

$shardManager->selectShard(0);

$data = $conn->fetchAll('SELECT * FROM Customers');
print_r($data);

This returns all customers from the shard with distribution value 0. This will
be all customers with id 10 to less than 60, since we split federations at 60.

14.10. Querying data with filtering on

One special feature of SQL Azure is the possibility to database level filtering
based on the sharding distribution values. This means that SQL Azure will add
WHERE clauses with distributionkey=current distribution value conditions to
each distribution key.

<?php
// query_filtering_on.php
require_once "bootstrap.php";

$shardManager->setFilteringEnabled(true);
$shardManager->selectShard(55);

$data = $conn->fetchAll('SELECT * FROM Customers');
print_r($data);

Now you only get the customer with id = 55. The same holds for queries on the
Orders and OrderItems table, which are restricted by customer id = 55.

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

15. Supporting Other Databases

To support a database which is not currently shipped with Doctrine
you have to implement the following interfaces and abstract
classes:

	\Doctrine\DBAL\Driver\Driver

	\Doctrine\DBAL\Driver\Statement

	\Doctrine\DBAL\Platforms\AbstractPlatform

	\Doctrine\DBAL\Schema\AbstractSchemaManager

For an already supported platform but unsupported driver you only
need to implement the first two interfaces, since the SQL
Generation and Schema Management is already supported by the
respective platform and schema instances. You can also make use of
several Abstract Unittests in the \Doctrine\Tests\DBAL package
to check if your platform behaves like all the others which is
necessary for SchemaTool support, namely:

	\Doctrine\Tests\DBAL\Platforms\AbstractPlatformTestCase

	\Doctrine\Tests\DBAL\Functional\Schema\AbstractSchemaManagerTestCase

We would be very happy if any support for new databases would be
contributed back to Doctrine to make it an even better product.

15.1. Implementation Steps in Detail

	Add your driver shortcut to class-name DoctrineDBALDriverManager.

	Make a copy of tests/dbproperties.xml.dev and adjust the values to your driver shortcut and testdatabase.

	Create three new classes implementing \Doctrine\DBAL\Driver\Driver, \Doctrine\DBAL\Driver\Statement
and Doctrine\DBAL\Driver. You can take a look at the Doctrine\DBAL\Driver\OCI8 driver.

	You can run the testsuite of your new database driver by calling “cd tests/ && phpunit -c myconfig.xml Doctrine/Tess/AllTests.php”

	Start implementing AbstractPlatform and AbstractSchemaManager. Other implementations should serve as good example.

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

16. Portability

There are often cases when you need to write an application or library that is portable
across multiple different database vendors. The Doctrine ORM is one example of such
a library. It is an abstraction layer over all the currently supported vendors (MySQL, Oracle,
PostgreSQL, SQLite, SAP SQL Anywhere and Microsoft SQL Server). If you want to use the DBAL
to write a portable application or library you have to follow lots of rules to make
all the different vendors work the same.

There are many different layers that you need to take care of, here is a quick list:

	Returning of data is handled differently across vendors.
Oracle converts empty strings to NULL, which means a portable application
needs to convert all empty strings to null.

	Additionally some vendors pad CHAR columns to their length, whereas others don’t.
This means all strings returned from a database have to be passed through rtrim().

	Case-sensitivity of column keys is handled differently in all databases, even depending
on identifier quoting or not. You either need to know all the rules or fix the cases
to lower/upper-case only.

	ANSI-SQL is not implemented fully by the different vendors. You have to make
sure that the SQL you write is supported by all the vendors you are targeting.

	Some vendors use sequences for identity generation, some auto-increment approaches.
Both are completely different (pre- and post-insert access) and therefore need
special handling.

	Every vendor has a list of keywords that are not allowed inside SQL. Some even
allow a subset of their keywords, but not at every position.

	Database types like dates, long text fields, booleans and many others are handled
very differently between the vendors.

	There are differences with the regard to support of positional, named or both styles of parameters
in prepared statements between all vendors.

For each point in this list there are different abstraction layers in Doctrine DBAL that you
can use to write a portable application.

16.1. Connection Wrapper

This functionality is only implemented with Doctrine 2.1 upwards.

To handle all the points 1-3 you have to use a special wrapper around the database
connection. The handling and differences to tackle are all taken from the great
PEAR MDB2 library [http://pear.php.net/package/MDB2/redirected].

Using the following code block in your initialization will:

	rtrim() all strings if necessary

	Convert all empty strings to null

	Return all associative keys in lower-case, using PDO native functionality or implemented in PHP userland (OCI8).

<?php
$params = array(
 // vendor specific configuration
 //...
 'wrapperClass' => 'Doctrine\DBAL\Portability\Connection',
 'portability' => \Doctrine\DBAL\Portability\Connection::PORTABILITY_ALL,
 'fetch_case' => \PDO::CASE_LOWER,
);

This sort of portability handling is pretty expensive because all the result
rows and columns have to be looped inside PHP before being returned to you.
This is why by default Doctrine ORM does not use this compability wrapper but
implements another approach to handle assoc-key casing and ignores the other
two issues.

16.2. Database Platform

Using the database platform you can generate bits of SQL for you, specifically
in the area of SQL functions to achieve portability. You should have a look
at all the different methods that the platforms allow you to access.

16.3. Keyword Lists

This functionality is only implemented with Doctrine 2.1 upwards.

Doctrine ships with lists of keywords for every supported vendor. You
can access a keyword list through the schema manager of the vendor you
are currently using or just instantiating it from the Doctrine\DBAL\Platforms\Keywords
namespace.

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

17. Caching

A Doctrine\DBAL\Statement can automatically cache result sets.

For this to work an instance of Doctrine\Common\Cache\Cache must be provided.
This can be set on the configuration object (optionally it can also be passed at query time):

<?php
$cache = new \Doctrine\Common\Cache\ArrayCache();
$config = $conn->getConfiguration();
$config->setResultCacheImpl($cache);

To get the result set of a query cached it is necessary to pass a
Doctrine\DBAL\Cache\QueryCacheProfile instance to the executeQuery or executeCacheQuery
instance. The difference between these two methods is that the former does not
require this instance, while the later has this instance as a required parameter:

<?php
$stmt = $conn->executeQuery($query, $params, $types, new QueryCacheProfile(0, "some key"));
$stmt = $conn->executeCacheQuery($query, $params, $types, new QueryCacheProfile(0, "some key"));

It is also possible to pass in a the Doctrine\Common\Cache\Cache instance into the
constructor of Doctrine\DBAL\Cache\QueryCacheProfile in which case it overrides
the default cache instance:

<?php
$cache = new \Doctrine\Common\Cache\FilesystemCache(__DIR__);
new QueryCacheProfile(0, "some key", $cache);

In order for the data to actually be cached its necessary to ensure that the entire
result set is read (easiest way to ensure this is to use fetchAll) and the statement
object is closed:

<?php
$stmt = $conn->executeCacheQuery($query, $params, $types, new QueryCacheProfile(0, "some key"));
$data = $stmt->fetchAll();
$stmt->closeCursor(); // at this point the result is cached

Warning

When using the cache layer not all fetch modes are supported. See the code of the ResultCacheStatement [https://github.com/doctrine/dbal/blob/master/lib/Doctrine/DBAL/Cache/ResultCacheStatement.php#L156] for details.

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Doctrine DBAL 2.1.0 documentation

18. Known Vendor Issues

This section describes known compatability issues with all the
supported database vendors:

18.1. PostgreSQL

18.1.1. DateTime, DateTimeTz and Time Types

Postgres has a variable return format for the datatype TIMESTAMP(n)
and TIME(n) if microseconds are allowed (n > 0). Whenever you save
a value with microseconds = 0. PostgreSQL will return this value in
the format:

2010-10-10 10:10:10 (Y-m-d H:i:s)

However if you save a value with microseconds it will return the
full representation:

2010-10-10 10:10:10.123456 (Y-m-d H:i:s.u)

Using the DateTime, DateTimeTz or Time type with microseconds
enabled columns can lead to errors because internally types expect
the exact format ‘Y-m-d H:i:s’ in combination with
DateTime::createFromFormat(). This method is twice a fast as
passing the date to the constructor of DateTime.

This is why Doctrine always wants to create the time related types
without microseconds:

	DateTime to TIMESTAMP(0) WITHOUT TIME ZONE

	DateTimeTz to TIMESTAMP(0) WITH TIME ZONE

	Time to TIME(0) WITHOUT TIME ZONE

If you do not let Doctrine create the date column types and rather
use types with microseconds you have replace the “DateTime”,
“DateTimeTz” and “Time” types with a more liberal DateTime parser
that detects the format automatically:

use Doctrine\DBAL\Types\Type;

Type::overrideType('datetime', 'Doctrine\DBAL\Types\VarDateTimeType');
Type::overrideType('datetimetz', 'Doctrine\DBAL\Types\VarDateTimeType');
Type::overrideType('time', 'Doctrine\DBAL\Types\VarDateTimeType');

18.1.2. Timezones and DateTimeTz

Postgres does not save the actual Timezone Name but UTC-Offsets.
The difference is subtle but can be potentially very nasty. Derick
Rethans explains it very well
in a blog post of his [http://derickrethans.nl/storing-date-time-in-database.html].

18.2. MySQL

18.2.1. DateTimeTz

MySQL does not support saving timezones or offsets. The DateTimeTz
type therefore behave like the DateTime type.

18.3. Sqlite

18.3.1. DateTime

Unlike most database management systems, Sqlite does not convert supplied
datetime strings to an internal storage format before storage. Instead, Sqlite
stores them as verbatim strings (i.e. as they are entered) and expects the user
to use the DATETIME() function when reading data which then converts the
stored values to datetime strings.
Because Doctrine is not using the DATETIME() function, you may end up with
“Could not convert database value ... to Doctrine Type datetime.” exceptions
when trying to convert database values to \DateTime objects using

\Doctrine\DBAL\Types\Type::getType('datetime')->convertToPhpValue(...)

18.3.2. DateTimeTz

Sqlite does not support saving timezones or offsets. The DateTimeTz
type therefore behave like the DateTime type.

18.3.3. Reverse engineering primary key order

SQLite versions < 3.7.16 only return that a column is part of the primary key,
but not the order. This is only a problem with tables where the order of the
columns in the table is not the same as the order in the primary key. Tables
created with Doctrine use the order of the columns as defined in the primary
key.

18.4. IBM DB2

18.4.1. DateTimeTz

DB2 does not save the actual Timezone Name but UTC-Offsets. The
difference is subtle but can be potentially very nasty. Derick
Rethans explains it very well
in a blog post of his [http://derickrethans.nl/storing-date-time-in-database.html].

18.5. Oracle

18.5.1. DateTimeTz

Oracle does not save the actual Timezone Name but UTC-Offsets. The
difference is subtle but can be potentially very nasty. Derick
Rethans explains it very well
in a blog post of his [http://derickrethans.nl/storing-date-time-in-database.html].

18.5.2. OCI8: SQL Queries with Question Marks

We had to implement a question mark to named parameter translation
inside the OCI8 DBAL Driver. It works as a very simple parser with two states: Inside Literal, Outside Literal.
From our perspective it should be working in all cases, but you have to be careful with certain
queries:

SELECT * FROM users WHERE name = 'bar?'

Could in case of a bug with the parser be rewritten into:

SELECT * FROM users WHERE name = 'bar:oci1'

For this reason you should always use prepared statements with
Oracle OCI8, never use string literals inside the queries. A query
for the user ‘bar?’ should look like:

$sql = 'SELECT * FROM users WHERE name = ?'
$stmt = $conn->prepare($sql);
$stmt->bindValue(1, 'bar?');
$stmt->execute();

18.5.3. OCI-LOB instances

Doctrine 2 always requests CLOB columns as strings, so that you as
a developer never get access to the OCI-LOB instance. Since we
are using prepared statements for all write operations inside the
ORM, using strings instead of the OCI-LOB does not cause any
problems.

18.6. Microsoft SQL Server

18.6.1. Unique and NULL

Microsoft SQL Server takes Unique very seriously. There is only
ever one NULL allowed contrary to the standard where you can have
multiple NULLs in a unique column.

18.6.2. DateTime, DateTimeTz and Time Types

SQL Server has a variable return format for the datatype DATETIME(n)
if microseconds are allowed (n > 0). Whenever you save
a value with microseconds = 0.

If you do not let Doctrine create the date column types and rather
use types with microseconds you have replace the “DateTime”,
“DateTimeTz” and “Time” types with a more liberal DateTime parser
that detects the format automatically:

use Doctrine\DBAL\Types\Type;

Type::overrideType('datetime', 'Doctrine\DBAL\Types\VarDateTime');
Type::overrideType('datetimetz', 'Doctrine\DBAL\Types\VarDateTime');
Type::overrideType('time', 'Doctrine\DBAL\Types\VarDateTime');

18.6.3. PDO_SQLSRV: VARBINARY/BLOB columns

The PDO_SQLSRV driver currently has a bug when binding values to
VARBINARY/BLOB columns with bindValue in prepared statements.
This raises an implicit conversion from data type error as it tries
to convert a character type value to a binary type value even if
you explicitly define the value as \PDO::PARAM_LOB type.
Therefore it is highly encouraged to use the native sqlsrv
driver instead which does not have this limitation.

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Doctrine DBAL 2.1.0 documentation

Index

 Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

 _static/ajax-loader.gif

_static/plus.png

_static/up-pressed.png

_static/up.png

_static/down.png

search.html

 Navigation

 		
 index

 		Doctrine DBAL 2.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/comment-close.png

_static/down-pressed.png

_static/file.png

_static/comment.png

_static/comment-bright.png

