

Python to ReadtheDocs Guide

A beginners guide to integrating a Python project with Read the Docs
to create great hassle-free documentation. Read More

Contents:

	Introduction

	Install Sphinx
	Pre-Work

	Sphinx Installation

	Configure Sphinx
	sphinx-quickstart

	Autodoc Your Code
	Tell autodoc how to Find your Code

	One-Off Creation of RST Files

	autodoc directives

	Documenting Your Code

	Create Content
	Updating the Index

	reStructuredText
	reStructuredText Conventions

	Headings

	Text Formatting

	Lists

	Code Blocks

	Hyperlinks

	Images

	Local Build

	UI Tweaks
	Themes

	Sidebar

	Read the Docs Integration
	Integrate with ReadtheDocs

	Autodoc Fix for External Module Dependencies

	Module Documentation
	example_module module

	example_module2 module

	Troubleshooting
	Static Page Problems

	Autodoc Problems

	Acknowledgements

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This guide is for anyone who has a Python project and wants to improve
their documentation by integrating it with Read the Docs.

There are a number of advantages to having your project documentation hosted on
Read the Docs:

	Your documentation is specific to your code version. Add a new feature in
your develop branch, update the documentation page, commit, update develop
on GitHub and within a short amount of time the documentation for the
develop branch has been updated on ReadtheDocs, but critically, master
branch on ReadtheDocs still shows the documentation specific to the master
branch.

	You don’t have to worry about hosting a website for the documentation,
including all the hassles of making it searchable etc.

	You can configure automatic conversion of Docstrings from your Python code
into nice looking searchable documentation pages in Read the Docs.

This guide is built entirely from a Python project on GitHub, using the
techniques outlined here. The project on GitHub
(https://github.com/mattjhayes/docs-python2readthedocs) can be used
as an example of the configuration. It uses a webhook for
auto-rebuild of Read the Docs pages on project commits.

A couple of simple Python programs
to demonstrate the autodoc functionality are also included in the project.

Install Sphinx

Sphinx is a tool for generation of HTML (and other formats) documentation from
reStructuredText

This guide is for installing Sphinx on Ubuntu.

Pre-Work

Ensure packages are up-to-date

sudo apt-get update
sudo apt-get upgrade

Install Python pip

sudo apt-get install python-pip

Sphinx Installation

Install Sphinx:

sudo pip install Sphinx

Configure Sphinx

This guide is for configuring Sphinx on Ubuntu.

In the root directory of your project (replace <PROJECT_NAME> where needed),
create a folder for the documentation (if it doesn’t already exist)
called docs:

cd
cd <PROJECT_NAME>
mkdir docs
cd docs

sphinx-quickstart

The sphinx-quickstart script does a one-time set-up for the project. If you
haven’t already configured Sphinx for the project then run it with:

sphinx-quickstart

Accept the default for root path:

Enter the root path for documentation.
> Root path for the documentation [.]:

Override the default to have separate source and build directories:

You have two options for placing the build directory for Sphinx output.
Either, you use a directory "_build" within the root path, or you separate
"source" and "build" directories within the root path.
> Separate source and build directories (y/n) [n]: y

Accept the default for name prefix:

> Name prefix for templates and static dir [_]:

Enter the name of your project, and your name:

The project name will occur in several places in the built documentation.
> Project name: <PROJECT_NAME>
> Author name(s): <AUTHOR_NAME>

Enter version and release numbers for the project:

Sphinx has the notion of a "version" and a "release" for the
software. Each version can have multiple releases. For example, for
Python the version is something like 2.5 or 3.0, while the release is
something like 2.5.1 or 3.0a1. If you don't need this dual structure,
just set both to the same value.
> Project version: <X.Y>
> Project release [0.2]: <X.Y.Z>

Choose language (English is default):

> Project language [en]:

You need to make a decision about the file suffix for your restructuredText.
ReadtheDocs recommend using .txt extension
(see: http://documentation-style-guide-sphinx.readthedocs.io/), however
I personally prefer to use the .rst extension so that it is clear what
format the files are in. Your choice:

The file name suffix for source files. Commonly, this is either ".txt"
or ".rst". Only files with this suffix are considered documents.
> Source file suffix [.rst]:

Accept the default for epub:

Sphinx can also add configuration for epub output:
> Do you want to use the epub builder (y/n) [n]:

Choose to enable autodoc if you have Python code to auto-document:

Please indicate if you want to use one of the following Sphinx extensions:
> autodoc: automatically insert docstrings from modules (y/n) [n]: y

Accept defaults, apart from Windows (unless you need it):

> doctest: automatically test code snippets in doctest blocks (y/n) [n]:
> intersphinx: link between Sphinx documentation of different projects (y/n) [n]:
> todo: write "todo" entries that can be shown or hidden on build (y/n) [n]:
> coverage: checks for documentation coverage (y/n) [n]:
> imgmath: include math, rendered as PNG or SVG images (y/n) [n]:
> mathjax: include math, rendered in the browser by MathJax (y/n) [n]:
> ifconfig: conditional inclusion of content based on config values (y/n) [n]:
> viewcode: include links to the source code of documented Python objects (y/n) [n]:
> githubpages: create .nojekyll file to publish the document on GitHub pages (y/n) [n]:

A Makefile and a Windows command file can be generated for you so that you
only have to run e.g. `make html' instead of invoking sphinx-build
directly.
> Create Makefile? (y/n) [y]:
> Create Windows command file? (y/n) [y]: n

Output:

Creating file ./source/conf.py.
Creating file ./source/index.rst.
Creating file ./Makefile.

Finished: An initial directory structure has been created.

You should now populate your master file ./source/index.rst and create
other documentation source files. Use the Makefile to build the docs,
like so:
make builder
where "builder" is one of the supported builders, e.g. html, latex or
linkcheck.

A directory structure like this will have been created:

+-- docs
¦ +-- build
¦ +-- Makefile
¦ +-- source
¦ +-- conf.py
¦ +-- index.rst
¦ +-- _static
¦ +-- _templates

The initial configuration of Sphinx is now complete, keep reading as there are
more tasks that still need to be done.

Autodoc Your Code

The Sphinx autodoc extension
(see http://www.sphinx-doc.org/en/stable/ext/autodoc.html)
converts docstrings
from your Python code into the final documentation format at Sphinx build-time.

This is very useful, but may not work out of the box. Here are some steps
to set it up properly:

Tell autodoc how to Find your Code

Autodoc probably can’t find your code without a little help. Edit the
docs/source/conf.py file. Uncomment:

import os
import sys

Uncomment and edit this line (adjust path as appropriate):

sys.path.insert(0, os.path.abspath('../../<PROJECT_NAME>'))

Submodules

If you have submodules, then you may need to use this path instead:

sys.path.insert(0, os.path.abspath('../..'))

One-Off Creation of RST Files

There is a script that you can run to create a directive file per Python
module. You should only run this command once to set up the *.rst files.

In the docs directory, run this command to create rst files that document
your python modules (Note that the -f option tells it to overwrite existing
files):

sphinx-apidoc -f -o source/ ../<PROJECT_NAME>/

You should see rst files created in the docs/source/ folder

autodoc directives

The reStructuredText files for your Python modules in docs/source do not
contain the docstrings. Instead they just contain directives on how to build
the corresponding page.

They contain reStructuredText with directives to build
the documentation from a particular Python module in your project. Example:

example_module module
=====================

.. automodule:: example_module
 :members:
 :undoc-members:
 :show-inheritance:

Example from this project, showing source RST and Python with resulting HTML:

	reStructuredText:

	example_module.rst [https://raw.githubusercontent.com/mattjhayes/docs-python2readthedocs/master/docs/source/example_module.rst]

	Python:

	example_module.py [https://github.com/mattjhayes/docs-python2readthedocs/blob/master/docs-python2readthedocs/example_module.py]

	Auto-generated HTML:

	example_module.html

Here are some additional directives that you may wish to add include:

	Include private members, i.e. ones that start with an underscore

:private-members:

	Include special members, i.e. ones that start and end with two underscores,
such as __init__

:special-members:

Example using these extra directives:

	reStructuredText:

	example_module2.rst [https://raw.githubusercontent.com/mattjhayes/docs-python2readthedocs/master/docs/source/example_module2.rst]

	Python:

	example_module2.py [https://github.com/mattjhayes/docs-python2readthedocs/blob/master/docs-python2readthedocs/example_module2.py]

	Auto-generated HTML:

	example_module2.html

Documenting Your Code

While it is possible to use reStructuredText in the docstrings of your
Python code, the author prefers to stay with plain text. Plain text
docstrings still produce great HTML pages with autodoc.
Ultimately, it is your choice.

Create Content

You should consider creating project documentation in
addition to the auto-generated module documentation. While, it’s good surfacing
your docstrings as nicely formatted pages, you should still have some
general pages that introduce your project and add extra context such
as diagrams.

Updating the Index

The file docs/source/index.rst is the landing page for your projects
documentation.

Initially it will look something like this:

Welcome to <PROJECT_NAME>'s documentation!
===

Contents:

.. toctree::
 :maxdepth: 2

Indices and tables
==================

* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

Add the names of your additional RST files, without file extension, one line
below the ‘:maxdepth: 2’. Be sure to preserve the 3-space indent. See:
Example [https://raw.githubusercontent.com/mattjhayes/docs-python2readthedocs/master/docs/source/index.rst]

reStructuredText

There are a lot of guides on how reStructuredText works, and this is not a
substitute for them. It is just a brief sample of common formatting options
that work with Read the Docs for those in a hurry.

reStructuredText Conventions

Here are some basic pointers on how to create documentation pages in
reStructuredText.

Line length

The length of a line in reStructuredText shouldn’t be more than 79 characters

Headings

Headings are:

H1

A row of #’s above and below the line of text.
There should only one H1 in the document.
Example:

###############
Heading Level 1
###############

H2

A row of *’s above and below the line of text.
Example:

Heading Level 2

H3

A row of =’s below the line of text.
Example:

Heading Level 3
===============

H4

A row of -‘s below the line of text.
Example:

Heading Level 4

H5

A row of ^’s below the line of text.
Example:

Heading Level 5
^^^^^^^^^^^^^^^

H6

A row of “‘s below the line of text.
Example:

Heading Level 6
"""""""""""""""

Text Formatting

Italics

Surround word(s) with single asterisks:

italics

bold

Surround word(s) with double asterisks:

bold

literal

Surroud word(s) with double backticks:

``double back-quotes``

Lists

Lists must always be preceded by a blank line.

Numbered Lists

Numbered lists are numbers or letters followed by ”.”, right bracket ”)”
or surrounded by brackets “()”

This is a numbered list:

1) Item 1
2) Item 2

Displays as:

This is a numbered list:

	Item 1

	Item 2

Bullet Points

Bullet point lines start with “-”, “+” or “*”

This is a bullet point list:

* Item 1
* Item 2

Displays as:

This is a bullet point list:

	Item 1

	Item 2

Code Blocks

Use the code-block directive to display code as it appears, including
syntax highlighting if desired.

Command Line

Use this directive for text such as command line input and output
(note 2 space indent for the code):

.. code-block:: text

 code here...

Python

Use this directive for Python (note 2 space indent for the code):

.. code-block:: python

 code here...

Hyperlinks

Simple link

(note the backticks, angle brackets and trailing underscore)

`<http://www.python.org/>`_

Link with name

`Python <http://www.python.org/>`_

Link to local page

`Local Page <local_page.html>`_

Images

.. image:: images/build1.png

Local Build

You can build your documentation locally if you desire by running this
command in the docs folder:

make html

UI Tweaks

Here are some minor changes that you may want to consider to change
the User Interface (UI) look and feel:

Themes

Themes are used by Sphinx to control how the documentation looks when
exported to the final formats.

I prefer the Read the Docs theme over the Alabaster theme, which Sphinx
installation has configured, so I update it in docs/source/conf.py.

Original line:

html_theme = 'alabaster'

Change it to:

html_theme = 'default'

Other Sphinx built-in themes include:

	classic

	sphinxdoc

	scrolls

	agogo

	traditional

	nature

	haiku

Sidebar

The local site sidebar is a bit limited, however works
fine in Read the Docs. If you want a better sidebar for the local build then
try this update. Edit the docs/source/conf.py file. Find this stanza:

Custom sidebar templates, maps document names to template names.
#
html_sidebars = {}

Replace the last line of this stanza so it reads:

Custom sidebar templates, maps document names to template names.
#
html_sidebars = { '**': ['globaltoc.html', 'relations.html', 'sourcelink.html', 'searchbox.html'], }

Read the Docs Integration

Integrate with ReadtheDocs

Sign up with Read the Docs

Sign up for a Read the Docs account at:

https://readthedocs.org/

Create Integration in Read the Docs

Go into Admin -> Integrations and click ‘Add integration’

[image: _images/rtd_integrations_1.png]

Select Integration type as ‘GitHub incoming webhook’ then click ‘Add integration’

[image: _images/rtd_integrations_2.png]

Copy the Webhook URL to clipboard

[image: _images/rtd_integrations_3.png]

Set up Service on GitHub

Go into the admin page for the project on GitHub.

Go to the “Settings” page for your project

	Click “Integrations & services” on the left

	In the “Services” section, click “Add service”

[image: _images/github_integration_settings_1.png]

	In the list of available services, click “ReadTheDocs”

	Check “Active”

	Click “Add service”

[image: _images/github_integration_settings_2.png]

Import Project in Read the Docs

Log into Read the Docs and click ‘Import a Project’.

[image: _images/rtd_import_1.png]

If the project is not in the list, choose to import it manually:

[image: _images/rtd_import_2.png]

In GitHub, copy the HTTPS clone URL to clipboard:

[image: _images/github_https.png]

Back in Read the Docs, paste the URL into the ‘Repository URL field’ and fill in the project name:

[image: _images/rtd_import_3.png]

Check Read the Docs Versions

Check Read the Docs versions are enabled appropriately for the repository.

[image: _images/rtd_versions_1.png]

Enable where required:

[image: _images/rtd_versions_2.png]

Autodoc Fix for External Module Dependencies

Read the Docs runs Sphinx autodoc against your code in its environment.
So, while autodoc may run fine in your own environment, it may fail in
ReadtheDocs, due to imported modules not being present.

Example of Import Problem

In Read the Docs, we can see example_module, but not example_module2

We check the build and it passed. What is the problem?

Clicking in Read the Docs admin interface on the 4th line of the build,
we see:

[image: _images/build1.png]

and further down this output:

[image: _images/build2.png]

Right. It’s failing because colouredlogs module isn’t installed in Read the
Docs.

There are a couple of ways to fix this if it is a problem. The first one is
preferable:

Fixing Missing Imports with virtualenv

In this fix, we tell ReadtheDocs to install module dependencies via pip in a
virtual environment, and then run Sphinx autodoc.

Enable virtualenv in Read the Docs

Log into Read the Docs and go into Settings -> Profile -> <PROJECT_NAME>

Go into Admin -> Advanced Settings and tick the
‘Install your project inside a virtualenv using setup.py install’ box

Fill in the ‘Requirements file:’ box with requirements.txt

Click ‘Submit’

Create a requirements.txt file

Create requirements.txt file (
example [https://github.com/mattjhayes/docs-python2readthedocs/blob/master/requirements.txt])
in root of project. Here is an example
requirements.txt file to install the coloredlogs library:

Install coloredlogs:
coloredlogs

Replace coloredlogs with the name(s) of the programs to install with pip.

Fixing Missing Imports with Mock

If the virtualenv solution isn’t fully working from you then consider using
mock. Code can be added to docs/source/conf.py to mock troublesome imports
so that Read the Docs Sphinx doesn’t error trying to load them.

Sub-modules must be listed after their parent module and there must be full
listing from the top level module. Example that mocks ryu.base.app_manager:

import mock

MOCK_MODULES = [
 'ryu',
 'ryu.base',
 'ryu.base.app_manager']

for mod_name in MOCK_MODULES:
 sys.modules[mod_name] = mock.Mock()

Module Documentation

Python module documentation autogenerated by Sphinx autodoc

	example_module module

	example_module2 module

example_module module

This is an example Python module for the Python to Read the Docs
documentation repository.

It is used to show how Sphinx autodoc can be used to auto-generate
Python documentation from doc strings like this...

Written by Matthew John Hayes

	
class example_module.ExampleModule

	Bases: object

This is the main class of example_module. It doesn’t do anything useful
other than show how classes are documented by autodoc

	
increment(value)

	Increment the value of self.class_variable by value passed
to this method

	
run()

	Run the ExampleModule instance

example_module2 module

This is a second example Python module for the Python to Read the Docs
documentation repository.

It is used to show how Read the Docs can be configured to install
dependant modules so that Sphinx autodoc can run

Written by Matthew John Hayes

	
class example_module2.ExampleModule2

	Bases: object

This is the main class of example_module2

	
__dict__ = dict_proxy({'__module__': 'example_module2', '_private_method': <function _private_method>, 'run': <function run>, 'increment': <function increment>, '__dict__': <attribute '__dict__' of 'ExampleModule2' objects>, '__weakref__': <attribute '__weakref__' of 'ExampleModule2' objects>, '__doc__': '\n This is the main class of example_module2\n ', '__init__': <function __init__>})

	

	
__init__()

	Initialise the ExampleModule2 class

	
__module__ = 'example_module2'

	

	
__weakref__

	list of weak references to the object (if defined)

	
_private_method()

	Example private method that won’t be documented by autodoc
unless you add :private-members: to the automodule directive

	
increment(value)

	Increment the value of self.class_variable by value passed
to this method

	
run()

	Run the ExampleModule2 instance

Troubleshooting

Static Page Problems

Why isn’t my page showing up in the contents menu?

Check that you page is correctly
listed in the index.rst file (check indent!)
example [https://raw.githubusercontent.com/mattjhayes/docs-python2readthedocs/master/docs/source/index.rst]
.

Check that you’re looking at the right branch in Read the Docs

Why isn’t my page loading / display correctly?

Check the source reStructuredText file for issues with rstcheck.

Install rstcheck (if you don’t already have it) to check syntax of rst code:

sudo pip install rstcheck

Run it against a particular file:

rstcheck <file>

Or run it against all reStructuredText files in a directory:

rstcheck *.rst

The reStructuredText is good if no results are returned.

Autodoc Problems

Module files missing or incomplete

Check Read the Docs to see if there has been an import problem as per
example-of-import-problem

If your code has submodules (i.e. code is in more than one level of directory)
then you may need to
alter your path statement.

Acknowledgements

This guide was drawn from many sources, including:

http://www.sphinx-doc.org/en/stable/tutorial.html

http://blog.rtwilson.com/how-to-make-your-sphinx-documentation-compile-with-readthedocs-when-youre-using-numpy-and-scipy/

https://codeandchaos.wordpress.com/2012/07/30/sphinx-autodoc-tutorial-for-dummies/

http://gisellezeno.com/tutorials/sphinx-for-python-documentation.html

Any mistakes are mine, not theirs.

If you have any corrections or updates, please comment on my blog post
Automating Python Documentation with Read the Docs [http://bitsn1000bits.blogspot.co.nz/2016/09/automating-python-documentation-with.html]

 Python Module Index

 e

 		 	

 		
 e	

 	
 	
 example_module	

 	
 	
 example_module2	

Index

 _
 | E
 | I
 | R

_

 	
 	__dict__ (example_module2.ExampleModule2 attribute)

 	__init__() (example_module2.ExampleModule2 method)

 	
 	__module__ (example_module2.ExampleModule2 attribute)

 	__weakref__ (example_module2.ExampleModule2 attribute)

 	_private_method() (example_module2.ExampleModule2 method)

E

 	
 	example_module (module)

 	example_module2 (module)

 	
 	ExampleModule (class in example_module)

 	ExampleModule2 (class in example_module2)

I

 	
 	increment() (example_module.ExampleModule method)

 	(example_module2.ExampleModule2 method)

R

 	
 	run() (example_module.ExampleModule method)

 	(example_module2.ExampleModule2 method)

 _static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_images/github_https.png
enewfie | Upload les | find fle

Clone with HTTPS @ usessH
Use Git or checkout with SVN using the web URL.

_static/comment-close.png

_static/down.png

_images/rtd_versions_2.png
Editing develop

Privacy Level:
Public

Level of privacy for this Version.

Tgs:

Acomma-separated list of tags.

=)

_images/build1.png
python -mvirtualenv --no-site-packages --no-download /home/docs/checkouts/readthedocs.org/user_b

python /home/docs/checkouts/readthedocs. org/user_builds/docs-python2readthedocs/envs/develop/bin/

cat conf.py

python /home/docs/checkouts/readthedocs. org/user_builds/docs-python2readthedocs/envs/develop/bin/

Running Sphinx v1.3.5

making output directory.
loading translations [en]

_static/comment.png

_images/github_integration_settings_2.png
Options
Collaborators

Branches

Webhooks
Integrations & services

Deploy keys

Services / Add ReadTheDocs

Automatially buil documentation hosted on readthedocs.org.

© Active
Ve wil run this service when an event i riggerec.

_static/plus.png

nav.xhtml

 Table of Contents

 		Python to ReadtheDocs Guide

 		Introduction

 		Install Sphinx

 		Pre-Work

 		Ensure packages are up-to-date

 		Install Python pip

 		Sphinx Installation

 		Configure Sphinx

 		sphinx-quickstart

 		Autodoc Your Code

 		Tell autodoc how to Find your Code

 		Submodules

 		One-Off Creation of RST Files

 		autodoc directives

 		Documenting Your Code

 		Create Content

 		Updating the Index

 		reStructuredText

 		reStructuredText Conventions

 		Line length

 		Headings

 		H1

 		H2

 		H3

 		H4

 		H5

 		H6

 		Text Formatting

 		Italics

 		bold

 		literal

 		Lists

 		Numbered Lists

 		Bullet Points

 		Code Blocks

 		Command Line

 		Python

 		Hyperlinks

 		Simple link

 		Link with name

 		Link to local page

 		Images

 		Local Build

 		UI Tweaks

 		Themes

 		Sidebar

 		Read the Docs Integration

 		Integrate with ReadtheDocs

 		Sign up with Read the Docs

 		Create Integration in Read the Docs

 		Set up Service on GitHub

 		Import Project in Read the Docs

 		Check Read the Docs Versions

 		Autodoc Fix for External Module Dependencies

 		Example of Import Problem

 		Fixing Missing Imports with virtualenv

 		Fixing Missing Imports with Mock

 		Module Documentation

 		example_module module

 		example_module2 module

 		Troubleshooting

 		Static Page Problems

 		Why isn't my page showing up in the contents menu?

 		Why isn't my page loading / display correctly?

 		Autodoc Problems

 		Module files missing or incomplete

 		Acknowledgements

_static/down-pressed.png

_images/rtd_versions_1.png
S| FREUEE T .- NS

Active Versions

™

[er

Inactive Versions

develop Public

_images/rtd_integrations_3.png
Setings Integration - GitHub incoming webhook

Advanced Settings This integation was created automatically from an exsting webhook configured on

e Vourrepository. To make any changes to ths webhook, you'l need to update the
configuration there. You can use the following address to manually configure this

Domains o

Maintainers

Redirects

jliansiations For more information on manually configuring a webhook, refer to our webhook

Subprojects documentation

Integations * Recent Activity

Notifications

There is no recent activity
Advertising

_images/rtd_integrations_2.png
Settings.
Advanced Settings
Versions

Domains
Maintainers
Redirects
Translations
Subprojects
Integrations
Notfcations

Advertising

Integrations

Integation type:
Gitrub incoming webhook

_images/build2.png
reading sources.
reading sources.

[92%] readthedocs
[100%] ui-tueaks

/home/docs/ checkouts/readthedocs . org/user_builds/docs-python2readthedocs/checkouts/develop/docs,
/home/docs/ checkouts/readthedocs . org/user_builds/docs-python2readthedocs/checkouts/develop/docs,
/home/docs/ checkouts/readthedocs . org/user_builds/docs-python2readthedocs/checkouts/develop/docs,
Traceback (most recent call last):
File "/home/docs/checkouts/readthedocs.org/user_builds/docs-python2readthedocs/envs/develop/1
__import__(self.modname)
File "/home/docs/checkouts/readthedocs.org/user_builds/docs-python2readthedocs/checkouts/deve:
import coloredlogs

_images/rtd_import_3.png
Project Detail

Toimporta project, start by entering a few detals about your repository. More advanced project options can be.
confgured ifyou select Editadvanced project ptions.

Names:
Py thonzReadthedbes
Repository URL:
yes/docs-py thonzresdthedocs. g1t
Hosted documentation repository URL
Repository type:

B
P —

o

Next

_images/rtd_import_2.png
‘You can import your project manually
isn't listed here or connected to

one of your accounts.

_images/rtd_import_1.png
Import a Proje

_images/rtd_integrations_1.png
Settings Integrations
Advanced Settngs

Versions

Domains No integrations are currently configured

Maintainers
Redirects
Translations

Subprojects

Notifications

Advertising

_images/github_integration_settings_1.png
Options Installed GitHub Apps

Collaborators
Github Apps augment and extend your workflows on Github ith commercial, open source, and homegrow tools.
Branches .
Services
Webhooks
ntegratons & services Services ae pre-buit integrations that perform certain actions when events occur on GitHub.

Deploy keys

