

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 [image: Build Status] [https://travis-ci.org/rlmv/doc-trips]
[image: Coverage Status] [https://coveralls.io/github/rlmv/doc-trips?branch=master]
[image: Updates] [https://pyup.io/repos/github/rlmv/doc-trips/]

DOC First-Year Trips Database

Installation

To get a local development version running, install Python 3.6 [https://www.python.org/downloads/]
and Git [https://git-scm.com/book/id/v2/Getting-Started-Installing-Git]. Run
the following to install the project:

git clone https://github.com/rlmv/doc-trips.git
cd doc-trips
make install

This will set up a virtual environment and install all Python
dependencies. Many Makefile commands use the Python executable installed in
the virtual environment; however, to use the virtual environment for other
management commands you will need to run

source venv/bin/activate

each time you begin development.

Database

The site uses PostgreSQL as a database backend in production. You can use
SQLite for development, but it’s not recommended: some unit tests will fail,
and other features won’t work quite the same. Instead, install Postgres [https://www.postgresql.org].

Run the following from the command line:

make reset_db
make migrate
make bootstrap

This will create a database user, run all the database migrations, and load the
minimal set of data required to use the database.

Environment Variables

The settings module reads required configuration values from the environment.
During local development, it also reads values from a local config.yml file
which was created when you ran make install. This file is never checked into
the repository so you can use it to store API keys for development. It contains
some required Django configuration values:

DEBUG: "True"
SECRET_KEY: "some secret key"
DATABASE_URL: "postgres://fytuser:password@localhost/fyt"

To use the Google Maps integration for the transport app,
get API keys for the Google Maps Directions API [https://developers.google.com/maps/documentation/directions/]
and the Google Maps Embed API [https://developers.google.com/maps/documentation/embed/]
and add them to config.yml:

GOOGLE_MAPS_KEY: "your google maps key"
GOOGLE_MAPS_BROWSER_KEY: "your google maps browser key"

Note that GOOGLE_MAPS_BROWSER_KEY is used browser-side. Be sure to set
referrer restrictions on it!

In 2015 and 2016, Leader and Croo applications were submitted with an attached
word document. Those files were uploaded to Amazon S3. The application was
refactored in 2017 to use form-based questions, but those files are still in the
database. To use this code you need to set up an Amazon S3 bucket and am IAM
user with AmazonS3FullAccess permission, and add these keys to config.yml:

AWS_ACCESS_KEY_ID: "your key id"
AWS_SECRET_ACCESS_KEY: "your secret key"
AWS_STORAGE_BUCKET_NAME: "a bucket name"

Development Server

To start the Django development server, run

make

and visit localhost:8000. Once you have logged in via
Dartmouth WebAuth, run

./manage.py setsuperuser <netid>

with your NetId to give yourself superuser priveleges.

Testing

Run the test suite with

make test

Calls to external APIs (Dartmouth, Amazon S3, Google Maps) are mocked out using
VCRpy [https://vcrpy.readthedocs.io] so the tests can be run without
configuring credentials for those services.

Deployment & CI

The application runs on Heroku, and there is a deployment pipeline in
place. All commits pushed to the master branch on Github are tested with
TravisCI and, if the tests succeed, are deployed directly to Heroku. Database
migrations are run automatically in the release stage; if a migration fails the
release is not deployed.

You will need to install the
Heroku Toolbelt [https://devcenter.heroku.com/articles/heroku-command].

I highly recommend setting up a
Heroku staging instance [https://devcenter.heroku.com/articles/multiple-environments]
for testing and experimentation.

The production site uses Sentry [https://sentry.io] for error tracking and alerts.

Dartmouth Services

All logins to the database are done via Dartmouth
WebAuth [http://tech.dartmouth.edu/its/services-support/help-yourself/knowledge-base/web-auth-frequently-asked-questions]
which uses the CAS protocol. None of the existing CAS clients for Django worked
for me (either no Python 3 support or missing features) so a stripped down and
modified version of one (I believe
kstateome/django-cas [https://github.com/kstateome/django-cas]) can be found
in fyt.webauth. The DartmouthUser model stores information parsed from the
CAS responses.

Since CAS responses do not contain the user’s email, this is retreived from
http://dndprofiles.dartmouth.edu. There does not seem to be a canonical way to
lookup Dartmouth emails. Dartmouth IT suggests scraping results from
http://lookupdnd.dartmouth.edu/lite if the current system ever fails.

Unfortunately the DND does not contain alumni information and we cannot
programatically find their emails. Therefore when alums log in (e.g. to acces
the Raid Blog) they must update their email manually.

The ever-present trips_year variable

There is one TripsYear object for each year of the the trips program.
Every other model in the database (except for User and a few configuration
singletons) references this master model via a ForeignKey inherited from
DatabaseModel. We end up passing around trips_year values a lot.

All views which have a trips_year url keyword argument should inherit from
the TripsYearMixin class-based view. This view pulls the trips_year from
url kwargs, filters querysets, automatically restricts related objects choices
in forms to those of the same trips_year, and adds the trips_year of the
view to the template context.

Objects for any trips_year may only relate (via ForeignKey, etc.) to objects
of the same trips_year. However, this is not enforced at the database level
so custom forms needs to filter field.queryset. TripsYearMixin takes care
of this by default (see but you need to be careful when using explicit
form_class values in class-based views.

Migrating to the next trips_year

The db.forward module is responsible for migrating the database to the next
trips_year. It copies all data stored in persisted objects
(e.g. TripTemplates, Campsites, Routes) to a new instance for the next
year, and deletes all sensitive personal information. This is not reversible
and should only be done when Trips has completely finished for the year!

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

