
KurentoJsonRpc Documentation
Release 6.6.1-dev

kurento.org

Mar 27, 2020

Contents

1 Description 3

2 Code structure 5

3 Json-Rpc Server 7
3.1 Session control . 8
3.2 Handlers . 9
3.3 Notifications . 10
3.4 JavaDoc . 11

4 Json-Rpc Client 13
4.1 Creating a client . 13
4.2 Sending requests . 13
4.3 Adding connection listeners . 15
4.4 Managing heartbeat . 15
4.5 Changing default timeouts . 15
4.6 JavaDoc . 16

5 Json-Rpc Client JS 17
5.1 JsonRpcClient . 17
5.2 Sending requests . 18
5.3 WebSocket With Reconnection . 19

6 Securing JSON-RPC connections 21
6.1 Securing JSON-RPC Servers . 21
6.2 Connecting JSON-RPC Clients to secure servers . 22

7 Glossary 23

Index 25

i

ii

KurentoJsonRpc Documentation, Release 6.6.1-dev

Contents 1

KurentoJsonRpc Documentation, Release 6.6.1-dev

2 Contents

CHAPTER 1

Description

This document describes the implementation of the JSON-RPC client and server in the Kurento project. A detailed
introduction to the WebSocket protocol is beyond the scope of this document. At a minimum, however, it is important
to understand that HTTP is used only for the initial handshake, which relies on a mechanism built into HTTP, to
request a protocol upgrade (or in this case a protocol switch) to which the server can respond with HTTP status 101
(switching protocols) if it agrees. Assuming the handshake succeeds the TCP socket underlying the HTTP upgrade
request remains open, and both client and server can use it to send messages to each other. For information about the
protocol itself, please refer to this page in the project’s documentation.

As the JSON-RPC v2.0 specification describes, the protocol implies the existence of a client issuing requests, and
the presence of a server to process those requests. This comes in opposition with v1.0, which used a peer-to-peer
architecture, where both peers were client and server.

3

https://doc-kurento.readthedocs.org/en/latest/mastering/kurento_protocol.html

KurentoJsonRpc Documentation, Release 6.6.1-dev

4 Chapter 1. Description

CHAPTER 2

Code structure

Kurento has implemented a JSON-RPC server in Java and a JSON-RPC client in Java and another in Javascript. All
implementations are hosted on github:

• Java - https://github.com/Kurento/kurento-java/tree/master/kurento-jsonrpc

• Javascript - https://github.com/Kurento/kurento-jsonrpc-js

The Java implementation contains a Maven project with the following modules:

• kurento-java - reactor project

• kurento-java/kurento-jsonrpc/kurento-jsonrpc-server - Kurento’s own implementation of a JSON-RPC server.

• kurento-java/kurento-jsonrpc/kurento-jsonrpc-client - Java client of the kurento-jsonrpc-server, or any other
websocket server that implements the JSON-RPC protocol.

• kurento-java/kurento-jsonrpc/kurento-jsonrpc-demo-server - It is a demo application of the Kurento JsonRpc
Server library. It consists of a WebSocket server that includes several test handlers of JsonRpc messages.

The Javascript implementation contains:

• kurento-jsonrpc-js - Javascript client of the kurento-jsonrpc-server, or any other websocket server that imple-
ments the JSON-RPC protocol. This library minified is available here.

5

https://github.com/Kurento/kurento-java/tree/master/kurento-jsonrpc
https://github.com/Kurento/kurento-jsonrpc-js
https://github.com/Kurento/kurento-java
https://github.com/Kurento/kurento-java/tree/master/kurento-jsonrpc/kurento-jsonrpc-server
https://github.com/Kurento/kurento-java/tree/master/kurento-jsonrpc/kurento-jsonrpc-client
https://github.com/Kurento/kurento-java/tree/master/kurento-jsonrpc/kurento-jsonrpc-demo-server
https://github.com/Kurento/kurento-jsonrpc-js
http://builds.kurento.org/release/5.0.5/js/kurento-jsonrpc.min.js

KurentoJsonRpc Documentation, Release 6.6.1-dev

6 Chapter 2. Code structure

CHAPTER 3

Json-Rpc Server

This is a JAVA implementation of a JSON-RPC server. It supports v2.0 only, which implies that Notifications can be
used. However, the only possible transport is Websockets. It is published as a Maven artifact, allowing developers to
easily manage it as a dependency, by including the following dependency in their project’s pom:

<dependency>
<groupId>org.kurento</groupId>
<artifactId>kurento-jsonrpc-server</artifactId>
<version>6.6.1-SNAPSHOT</version>

</dependency>

The server is based on Spring Boot 1.3.0.RELEASE. The usage is very simple, and analogous to the creation and
configuration of a WebSocketHandler from Spring. It is basically composed of the server’s configuration, and a class
that implements the handler for the requests received. The following code implements a handler for JSON-RPC
requests, that contains a JsonObject as params data type. This handler will send back the params received to the client.
Since the request handling always sends back a response, the library will send an automatic empty response if the
programmer does not purposefully do so. In the following example, if the request does not invoke the echo method, it
will send back an empty response:

import org.kurento.jsonrpc.DefaultJsonRpcHandler;
import org.kurento.jsonrpc.Transaction;
import org.kurento.jsonrpc.message.Request;

import com.google.gson.JsonObject;

public class EchoJsonRpcHandler extends DefaultJsonRpcHandler<JsonObject> {

@Override
public void handleRequest(Transaction transaction,

Request<JsonObject> request) throws Exception {
if ("echo".equalsIgnoreCase(request.getMethod())) {

transaction.sendResponse(request.getParams());
}

}
}

7

https://search.maven.org/#search%7Cga%7C1%7Ca%3A%22kurento-jsonrpc-server%22

KurentoJsonRpc Documentation, Release 6.6.1-dev

The first argument of the method is the Transaction, which represents a message exchange between a client and the
server. The methods available in this object (overloads not included), and it’s different uses are:

• sendResponse: sends a response back to the client.

• sendError: sends an Error back to the client.

• getSession: returns the JSON-RPC session assigned to the client.

• startAsync: in case the programmer wants to answer the Request outside of the call to the handleRequest
method, he can make use of this method to signal the server to not answer just yet. This can be used when the
request requires a long time to process, and the server not be locked.

• isNotification: evaluates whether the message received is a notification, in which case it mustn’t be answered.

Inside the method handleRequest, the developer can access any of the fields from a JSON-RPC Request (method,
params, id or jsonrpc). This is where the methods invoked should be managed. Besides the methods processed in this
class, the server handles also the following special method values:

• close: The client send this method when gracefully closing the connection. This allows the server to close
connections and release resources.

• reconnect: A client that has been disconnected, can issue this message to be attached to an existing session.
The sessionId is a mandatory param.

• ping: simple ping-pong message exchange to provide heartbeat mechanism.

The class DefaultJsonRpcHandler is generified with the payload that comes with the request. In the previous code,
the payload expected is a JsonObject, but it could also be a plain String, or any other object.

To configure a WebSocket-based JSON-RPC server to use this handler, developers can use the dedicated JsonRpc-
Configuration, for mapping the above websocket handler to a specific URL (http://localhost:8080/echo in this case):

import org.kurento.jsonrpc.internal.server.config.JsonRpcConfiguration;
import org.kurento.jsonrpc.server.JsonRpcConfigurer;
import org.kurento.jsonrpc.server.JsonRpcHandlerRegistry;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Import;

@Import(JsonRpcConfiguration.class)
public class EchoServerApplication implements JsonRpcConfigurer {

@Override
public void registerJsonRpcHandlers(JsonRpcHandlerRegistry registry) {

registry.addHandler(new EchoJsonRpcHandler(), "/echo"); // “/echo” is the
→˓path relative to the server’s URL

}

}

3.1 Session control

Each client connecting to this server, will be assigned a unique sessionId. This provides a session concept, that can
expand through several websocket sessions. Having this notion of JSON-RPC session, allows to bind a set of properties
to one particular session. This gives the developers implementing a server the capability of having a stateful server
session, which the user can recover once reconnected. The methods available in this object are

• getSessionId: The ID assigned to this session. It can be used to track down the session, and register it in servers
and map it to other resources.

8 Chapter 3. Json-Rpc Server

http://localhost:8080/echo

KurentoJsonRpc Documentation, Release 6.6.1-dev

• getRegisterInfo: This is set by the client upon connection, and it is accessible by the server through this method.

• isNew: will be true if the message is the first message of the session.

• close: gracefully closes the connection.

• setReconnectionTimeout: sets the time that the server will wait for a reconnection, before closing the session.

• getAttributes: returns that attribute map from the session

3.2 Handlers

3.2.1 Advanced properties

When registering a particular handler, there are a number of properties that can be configured. These are accessed
from a fluent API in the DefaultJsonRpcHandler

• withSockJS() - Enables SockJS as WS library, which provides a fallback to HTTP if the upgrade fails. The
client should be a SockJS capable client. There’s more info here.

• withLabel(String) - Adds a label that is used when requests are handled. This allows having a friendly name in
the log files, to track executions more easily.

• withPingWatchdog(true|false) - The ping watchdog is a functionality that monitors the health of the heartbeat
mechanism, allowing to detect when a regular ping message is not received in the expected time. This informs
the server that, though the websocket connection might still be open, the client on the other side is not working
as expected.

• withAllowedOrigins(String[]) - By default, only clients connecting from the same origin (host and port) as the
application is served are allowed, limiting the clustering and load-balancing capabilities. This method takes an
array of strings with the allowed origins. The official Spring-Boot documentation offers details about how this
works.

3.2.2 Reacting to connection events

The handler offers the possibility to override some methods related to connection events. The methods available are:

import org.kurento.jsonrpc.DefaultJsonRpcHandler;
import com.google.gson.JsonObject;

public class EchoJsonRpcHandler extends DefaultJsonRpcHandler<JsonObject> {

// ...

@Override
public void afterConnectionEstablished(Session session) throws Exception {

// Do something useful here
}

@Override
public void afterConnectionClosed(Session session, String status)

throws Exception {
// Do something useful here

}

@Override
(continues on next page)

3.2. Handlers 9

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-fallback
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-server-allowed-origins

KurentoJsonRpc Documentation, Release 6.6.1-dev

(continued from previous page)

public void handleTransportError(Session session, Throwable exception)
throws Exception {

// Do something useful here
}

@Override
public void handleUncaughtException(Session session, Exception exception) {

// Do something useful here
}

}

3.3 Notifications

A Notification is a Request object without an “id” member. A Request object that is a Notification signifies the sender’s
lack of interest in the corresponding Response object, and as such no Response object needs to be returned.

Notifications are not confirmable by definition, since they do not have a Response object to be returned. As such, the
sender would not be aware of any errors (like e.g. “Invalid params”,”Internal error”)

The server is able to send notifications to connected clients using their ongoing session objects. For this purpose, it is
needed to store the Session object of each client upon connection. This can be achieved by overriding the afterCon-
nectionEstablished method of the handler

public class EchoJsonRpcHandler extends DefaultJsonRpcHandler<JsonObject> {

public final Map<String, Session> sessions = new HashMap<>();

@Override
public void afterConnectionEstablished(Session session) {

String clientId = (String) session.getAttributes().get("clientId");
sessions.put(clientId, session);

}

@Override
public void afterConnectionClosed(Session session, String status)

throws Exception {
String clientId = (String) session.getAttributes().get("clientId");
sessions.remove(clientId);

}

// Other methods
}

How a session is paired with each client is something that depends on the business logic of the appllication. In this
case, we are assuming that the session holds a clientId property, that can be used to uniquely identify each client.
It is also possible to use the sessionId, a :term:UUID provided by the library as session identifier, but they are not
meaningful for the application using the library. It is advisable to not leave sessions registered once clients disconnect,
so we are overriding the afterConnectionClosed method and removing the stored session object there.

Notifications are sent to connected clients through their stablished session. Again, how to map sessions to clients in
particular is out of the scope of this document, as it depends on the business logic of the application. Assuming that
the handler object is in the same scope, the following snippet shows how a notification to a particular client would be
sent

10 Chapter 3. Json-Rpc Server

KurentoJsonRpc Documentation, Release 6.6.1-dev

public void sendNotification(String clientId, String method, Object params)
throws IOException {

handler.sessions.get(clientId).sendNotification(method, params);
}

3.4 JavaDoc

• kurento-jsonrpc-server

3.4. JavaDoc 11

./_static/langdoc/javadoc/server/index.html

KurentoJsonRpc Documentation, Release 6.6.1-dev

12 Chapter 3. Json-Rpc Server

CHAPTER 4

Json-Rpc Client

This is the Java client of the kurento-jsonrpc-server, or any other websocket server that implements the JSON-RPC
protocol. It allows a Java program to make JSON-RPC calls to the kurento-jsonrpc-server. Is also published as a
Maven dependency, to be added to the project’s pom:

<dependency>
<groupId>org.kurento</groupId>
<artifactId>kurento-jsonrpc-server</artifactId>
<version>6.6.1-SNAPSHOT</version>

</dependency>

4.1 Creating a client

Contrary to the server, the client is framework-agnostic, so it can be used in regular Java applications, Java EE,
Spring. . . Creating a client that will send requests to a certain server is very straightforward. The URI of the server is
passed to the JsonRpcClientWebSocket in the constructor, here assuming that it is deployed in the same machine:

JsonRpcClient client = new JsonRpcClientWebSocket("ws://localhost:8080/echo");

4.2 Sending requests

A JSON-RPC call is represented by sending a Request object to a Server. Such object has the following members

• jsonrpc: a string specifying the version of the JSON-RPC protocol, “2.0” in this case

• method: A String containing the name of the method to be invoked

• params: A Structured value that holds the parameter values to be used during the invocation of the method.
This member may be omitted, and the type comes defined by the server

13

https://search.maven.org/#search%7Cga%7C1%7Ca%3A%22kurento-jsonrpc-client%22

KurentoJsonRpc Documentation, Release 6.6.1-dev

• id: An identifier established by the Client. If it is not included it is assumed to be a notification. The Server
replies with the same value in the Response object if included. This member is used to correlate the context
between the two objects.

From all these members, users only have to set the “method” and the “params”, as the other two are managed by the
library.

The server defined in the previous section expects a JsonObject, and answers to the echo method only, bouncing back
the “params” in the request. It is expected that the response to client.sendRequest(request) will be the wrapped params
in the Response<JsonElement> object that the Server sends back to the client:

Request<JsonObject> request = new Request<>();
request.setMethod("echo");
JsonObject params = new JsonObject();
params.addProperty("some property", "Some Value");
request.setParams(params);
Response<JsonElement> response = client.sendRequest(request);

4.2.1 Other messages: notifications

A Notification is a Request object without an “id” member. A Request object that is a Notification signifies the Client’s
lack of interest in the corresponding Response object, and as such no Response object needs to be returned to the client.
Notifications are not confirmable by definition, since they do not have a Response object to be returned. As such, the
Client would not be aware of any errors (like e.g. “Invalid params”,”Internal error”):

client.sendNotification("echo");

4.2.2 Server responses

When the Server receives a rpc call, it will answer with a Response, except in the case of Notifications. The Response
is expressed as a single JSON Object, with the following members:

• jsonrpc: a string specifying the version of the JSON-RPC protocol, “2.0” in this case

• result: this member exists only in case of success. The value is determined by the method invoked on the Server.

• error this member exists only in there was an error triggered during invocation. The type is an Error Object

• id: This is a required member, that must match the value of the id member in the Request.

Responses will have either “result” or “error” member, but not both.

Error objects

When a rpc call encounters an error, the Response Object contains the error member with a value that is a Object with
the following members:

• code: A number that indicates the error type

• message: a short description of the error

• data: A Primitive or Structured value that contains additional information about the error. This may be omitted,
and is defined by the Server (e.g. detailed error information, nested errors etc.).

14 Chapter 4. Json-Rpc Client

KurentoJsonRpc Documentation, Release 6.6.1-dev

4.3 Adding connection listeners

The client offers the possibility to set-up a listener for certain connection events. A user can define a JsonRpcWS-
ConnectionListener that offers overrides of certain methods. Once the connection listener is defined, it can be passed
in the constructor of the client, and the client will invoke the methods once the corresponding events are produced:

JsonRpcWSConnectionListener listener = new JsonRpcWSConnectionListener() {

@Override
public void reconnected(boolean sameServer) {

// ...
}

@Override
public void disconnected() {

// ...
}

@Override
public void connectionFailed() {

// ...
}

@Override
public void connected() {

// ...
}

} ;
JsonRpcClient client = new JsonRpcClientWebSocket("ws://localhost:8080/echo",
→˓listener);

4.4 Managing heartbeat

As pointed out in the server, there is a heartbeat mechanism that consists in sending ping messages in regular intervals.
This can controlled in the client thought the following methods:

• enableHeartbeat: this enables the heartbeat mechanism. The default interval is 5s, but this can be changed
through the overload of this method, that receives a number as parameter.

• disableHeartbeat: stops the regular send of ping messages.

4.5 Changing default timeouts

Not only the ping message interval is configurable. Other configurable timeouts are:

• Connection timeout: This is the time waiting for the connection to be established when the client connect to
the server.

• Idle timeout: If no message is sent during a certain period, the connection is considered idle and closed.

• Request timeout: the server should answer the request under a certain response time. If the message is not
answered in that time, the request is assumed not to be received by the server, and the client yields a Trans-
portException

4.3. Adding connection listeners 15

KurentoJsonRpc Documentation, Release 6.6.1-dev

4.6 JavaDoc

• kurento-jsonrpc-client

16 Chapter 4. Json-Rpc Client

./_static/langdoc/javadoc/client/index.html

CHAPTER 5

Json-Rpc Client JS

This is the Javascript client of the kurento-jsonrpc-server, or any other websocket server that implements the JSON-
RPC protocol. It allows a Javascript program to make JSON-RPC calls to any jsonrpc-server. Is also published as a
bower dependency.

5.1 JsonRpcClient

5.1.1 Create client

For creating a client that will send requests, you need to create a configuration object like in the next example:

var configuration = {
hearbeat: 5000,
sendCloseMessage : false,
ws : {

uri : ws_uri,
useSockJS: false,
onconnected : connectCallback,
ondisconnect : disconnectCallback,
onreconnecting : disconnectCallback,
onreconnected : connectCallback

},
rpc : {

requestTimeout : 15000,
treeStopped : treeStopped,
iceCandidate : remoteOnIceCandidate,

}
};

var jsonRpcClientWs = new JsonRpcClient(configuration);

This configuration object has several options: in one hand, the configuration about transport on the other hand the
configuration about methods that the client has to call when get a response. Also, it can configure the interval for each

17

https://github.com/Kurento/kurento-jsonrpc-bower

KurentoJsonRpc Documentation, Release 6.6.1-dev

heartbeat and if you want send a message before closing the connection.

• Configuration

{
heartbeat: interval in ms for each heartbeat message,
sendCloseMessage: true / false, before closing the connection, it sends a close_

→˓session message,
ws: {

uri: URItoconntectto,
useSockJS: true(useSockJS)/false(useWebSocket)bydefault,
onconnected: callback method to invoke when connection is successful,
ondisconnect: callback method to invoke when the connection is lost,
onreconnecting: callback method to invoke when the client is reconnecting,
onreconnected: callback method to invoke when the client succesfully

→˓reconnects
},
rpc: {

requestTimeout: timeoutforarequest,
sessionStatusChanged: callback method for changes in session status,
mediaRenegotiation: mediaRenegotiation
...

[Other methods you can add on rpc field are:
treeStopped : treeStopped

iceCandidate : remoteOnIceCandidate]
}

}

If heartbeat is defined, each x milliseconds the client sends a ping to the server for keeping the connection.

5.2 Sending requests

A JSON-RPC call is represented by sending a Request object to a Server using send method. Such object has the
following members:

• method: A String containing the name of the method to be invoked

• params: A Structured value that holds the parameter values to be used during the invocation of the method.
This member may be omitted, and the type comes defined by the server. It is a json object.

• callback: A method with error and response. This method is called when the request is ended.

var params = {
interval: 5000
};

jsonrpcClient.send(“ping”, params , function(error, response){
if(error) {

...
} else {

...
}

});

18 Chapter 5. Json-Rpc Client JS

KurentoJsonRpc Documentation, Release 6.6.1-dev

5.2.1 Server responses

When the Server receives a rpc call, it will answer with a Response, except in the case of Notifications. The Response
is expressed as a single JSON Object, with the following members:

• jsonrpc: a string specifying the version of the JSON-RPC protocol, “2.0” in this case

• result: this member exists only in case of success. The value is determined by the method invoked on the Server.

• error: this member exists only in there was an error triggered during invocation. The type is an Error Object

• id: This is a required member, that must match the value of the id member in the Request.

Responses will have either “result” or “error” member, but not both.

5.2.2 Error objects

When a rpc call encounters an error, the Response Object contains the error member with a value that is a Object with
the following members:

• code: A number that indicates the error type

• message: a short description of the error

• data: A Primitive or Structured value that contains additional information about the error. This may be omitted,
and is defined by the Server (e.g. detailed error information, nested errors etc.).

5.2.3 Other methods

• close: Closing jsonRpcClient explicitly by client.

• reconnect: Trying to reconnect the connection.

• forceClose: It used for testing, forcing close the connection.

5.3 WebSocket With Reconnection

This jsonrpc client uses an implementation of websocket with reconnection. This implementation allows the connec-
tion always alive.

It is based on states and calls methods when any of next situation happens:

• onConnected

• onDisconnected

• onReconnecting

• onReconnected

It has a configuration object like next example and this object is part of jsonrpc client’s configuration object.

{
uri: URItoconntectto,
useSockJS: true(useSockJS)/false(useWebSocket)bydefault,
onconnected: callback method to invoke when connection is successful,
ondisconnect: callback method to invoke when the connection is lost,
onreconnecting: callback method to invoke when the client is reconnecting,

(continues on next page)

5.3. WebSocket With Reconnection 19

KurentoJsonRpc Documentation, Release 6.6.1-dev

(continued from previous page)

onreconnected: callback method to invoke when the client succesfully reconnects
}

20 Chapter 5. Json-Rpc Client JS

CHAPTER 6

Securing JSON-RPC connections

From Chrome M47, requests to getUserMedia are only allowed from secure origins (HTTPS or HTTP from localhost).
Since Kurento relies heavily on the JSON-RPC library for the signaling part of applications, it is required that the
JSON-RPC server offers a secure websocket connection (WSS), or the client will receive a mixed content error, as
insecure WS connections may not be initialised from a secure HTTPS connection.

6.1 Securing JSON-RPC Servers

Enabling secure Websocket connections is fairly easy in Spring. The only requirement is to have a certificate, either
self-signed or issued by a certification authority. The certificate must be stored in a , so it can be later used by the
:term:JVM. Depending on whether you have acquired a certificate or want to generate your own, you will need to
perform different operations

• Certificates issued by certification authorities can be imported with the command:

keytool -importcert -file certificate.cer -keystore keystore.jks -alias
→˓"Alias"

• A keystore holding a self-signed certificate can be generated with the following command:

keytool -genkey -keyalg RSA -alias selfsigned -keystore keystore.jks -
→˓storepass password -validity 360 -keysize 2048

The file keystore.jks must be located the project’s root path, and a file named application.properties must exist in
src/main/resources/, with the following content:

server.port: 8443
server.ssl.key-store: keystore.jks
server.ssl.key-store-password: yourPassword
server.ssl.keyStoreType: JKS
server.ssl.keyAlias: yourKeyAlias

21

KurentoJsonRpc Documentation, Release 6.6.1-dev

You can also specify the location of the properties file. Just issue the flag -Dspring.config.
location=<path-to-properties> when launching the Spring-Boot based app. In order to change the lo-
cation of the keystore.jks file, it is enough to change the key server.ssl.key-store. The complete official
documentation form the Spring project can be found here

6.2 Connecting JSON-RPC Clients to secure servers

JSON-RPC clients can connect to servers exposing a seure connection. By default, the Websocket library used will try
to validate the certificate used by the server. In case of self-signed certificates, the client must be instructed to prevent
skip this validation step. This can be acchieved by creating a SslContextFactory, and using the factory in the
client.

SslContextFactory contextFactory = new SslContextFactory();
contextFactory.setValidateCerts(false);

JsonRpcClientWebSocket client = new JsonRpcClientWebSocket(uri, contextFactory);

22 Chapter 6. Securing JSON-RPC connections

https://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto-configure-ssl

CHAPTER 7

Glossary

This is a glossary of terms that often appear in discussion about multimedia transmissions. Most of the terms are
described and linked to its wikipedia, RFC or W3C relevant documents. Some of the terms are specific to kurento.

HTTP The is an application protocol for distributed, collaborative, hypermedia information systems. HTTP is the
foundation of data communication for the World Wide Web.

See also:

RFC 2616

JAVA Java is a general-purpose computer programming language that is concurrent, class-based, object-oriented, and
specifically designed to have as few implementation dependencies as possible

JSON JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is designed to be easy to
understand and write for humans and easy to parse for machines.

JSON-RPC JSON-RPC is a simple remote procedure call protocol encoded in JSON. JSON-RPC allows for notifi-
cations and for multiple calls to be sent to the server which may be answered out of order.

Kurento Kurento is a platform for the development of multimedia enabled applications. Kurento is the Esperanto
term for the English word ‘stream’. We chose this name because we believe the Esperanto principles are inspir-
ing for what the multimedia community needs: simplicity, openness and universality. Kurento is open source,
released under Apache 2.0, and has several components, providing solutions to most multimedia common ser-
vices requirements. Those components include: Kurento Media Server, Kurento API, Kurento Protocol, and
Kurento Client.

Kurento API Kurento API is an object oriented API to create media pipelines to control media. It can be seen as
and interface to Kurento Media Server. It can be used from the Kurento Protocol or from Kurento Clients.

Kurento Client A Kurento Client is a programming library (Java or JavaScript) used to control Kurento Media
Server from an application. For example, with this library, any developer can create a web application that uses
Kurento Media Server to receive audio and video from the user web browser, process it and send it back again
over Internet. Kurento Client exposes the Kurento API to app developers.

Kurento Protocol Communication between KMS and clients by means of JSON-RPC messages. It is based on
WebSocket that uses JSON-RPC V2.0 messages for making requests and sending responses.

KMS

23

https://tools.ietf.org/html/rfc2616.html
https://www.java.com/en/download/faq/whatis_java.xml
http://json.org
http://json-rpc.org/
http://kurento.org

KurentoJsonRpc Documentation, Release 6.6.1-dev

Kurento Media Server Kurento Media Server is the core element of Kurento since it responsible for media trans-
mission, processing, loading and recording.

Maven Maven is a build automation tool used primarily for Java projects.

Sphinx Documentation generation system used for Brandtalk documentation.

See also:

Easy and beautiful documentation with Sphinx

Spring Boot Spring Boot is Spring’s convention-over-configuration solution for creating stand-alone, production-
grade Spring based Applications that you can “just run”.[17] It takes an opinionated view of the Spring platform
and third-party libraries so you can get started with minimum fuss

TCP A reliable IP transport protocol. communication ensures that no packets are lost in transit. As such, it is most
useful in low-bandwidth or unreliable environments. Examples are slow WANs or packet radio networks.

UUID Universally Unique IDentifier, also known as Globally Unique Identifier (GUID). In the context of the dis-
tributed computing environment, unique means Practically unique. It is not guaranteed to be unique because the
identifiers have a finite size (16-octet number).

WebSocket

WebSockets WebSocket specification (developed as part of the HTML5 initiative) defines a full-duplex single socket
connection over which messages can be sent between client and server.

WSS

WebSockets Secure WebSocket specification (developed as part of the HTML5 initiative) defines a full-duplex single
socket connection over which messages can be sent between client and server.

24 Chapter 7. Glossary

http://maven.apache.org/
http://www.ibm.com/developerworks/linux/library/os-sphinx-documentation/index.html?ca=dat
http://projects.spring.io/spring-boot/
https://www.websocket.org/
https://www.websocket.org/

Index

H
HTTP, 23

J
JAVA, 23
JSON, 23
JSON-RPC, 23

K
KMS, 23
Kurento, 23
Kurento API, 23
Kurento Client, 23
Kurento Media Server, 24
Kurento Protocol, 23

M
Maven, 24

R
RFC

RFC 2616, 23

S
Sphinx, 24
Spring Boot, 24

T
TCP, 24

U
UUID, 24

W
WebSocket, 24
WebSockets, 24
WebSockets Secure, 24
WSS, 24

25

	Description
	Code structure
	Json-Rpc Server
	Session control
	Handlers
	Notifications
	JavaDoc

	Json-Rpc Client
	Creating a client
	Sending requests
	Adding connection listeners
	Managing heartbeat
	Changing default timeouts
	JavaDoc

	Json-Rpc Client JS
	JsonRpcClient
	Sending requests
	WebSocket With Reconnection

	Securing JSON-RPC connections
	Securing JSON-RPC Servers
	Connecting JSON-RPC Clients to secure servers

	Glossary
	Index

