Deep Neural Nets Documentation
Release 0.9.1

Liangfu Chen

Apr 20, 2018

Contents

1 dnn: A light-weight yet efficient framework for deep learning
LT OVeIVIEW . . o o oo et e e e e e e e e e e e e
1.2 Available Modules
1.3 Installation
1.4 License

A~ B W WW

Deep Neural Nets Documentation, Release 0.9.1

Contents:

Contents 1

Deep Neural Nets Documentation, Release 0.9.1

2 Contents

CHAPTER 1

dnn: A light-weight yet efficient framework for deep learning

1.1 Overview

The Deep Neural Nets (DNN) library is a deep learning framework designed to be small in size, computationally
efficient and portable.

We started the project as a fork of the popular OpenCYV library, while removing some components that is not tightly
related to the deep learning framework. Comparing to Caffe and many other implements, DNN is relatively indepen-
dent to third-party libraries, (Yes, we don’t require Boost and Database systems to be install before crafting your own
network models) and it can be more easily portable to mobile systems, like iOS, Android and RaspberryPi etc.

1.2 Available Modules

The following features have been implemented:
* Mini-batch based learning, with OpenMP support
* YAML based network definition
 Gradient checking for all implemented layers

The following modules are implemented in current version:

Module Name Description

InputLayer Data Container Layer, for storing original input images

ConvolutionLayer | Convolutional Neural Network Layer, performs 2d convolution upon images
MaxPoolingLayer | Sub-Sampling Layer, performs max-pooling operation

DenseLayer Fully Connected Layer, with activation options, e.g. tanh, sigmoid, softmax, relu etc.
SimpleRNNLayer | vallina Recurrent Neural Network (RNN) Layer, for processing sequence data
MergeLayer Merge Layer, for combining output results from multiple different layers

https://travis-ci.org/liangfu/dnn
http://opencv.org/

Deep Neural Nets Documentation, Release 0.9.1

More modules will be available online !

1.2.1 Network Definition

Layer Type | Attributes

Input name, n_input_planes, input_height, input_width, seq_length
Convolution | name, visualize, n_output_planes, ksize

MaxPooling | name, visualize, ksize

Dense name, input_layer(optional), visualize, n_output_planes, activation_type
SimpleRNN | name, n_output_planes, seq_length, time_index, activation_type
Merge name, input_layers, visualize, n_output_planes

With the above parameters given in YAML format, one can simply define a network. For instance, a modifed lenet can
be:

$YAML:1.0

layers:

- {type: Input, name: inputl, n_input_planes: 1, input_height: 28, input_width: 28,
—seq_length: 1}

- {type: Convolution, name: convl, visualize: 0, n_output_planes: 6, ksize: 5,
—»stride: 1}

- {type: MaxPooling, name: pooll, visualize: 0, ksize: 2, stride: 2}

- {type: Convolution, name: conv2, visualize: 0, n_output_planes: 16, ksize: 5,
—»stride: 1}

- {type: MaxPooling, name: pool2, visualize: 0, ksize: 2, stride: 2}

- {type: Dense, name: fcl, visualize: 0, n_output_planes: 10, activation_type: tanh}

Then, by ruuning network training program:

$ network train —--solver data/mnist/lenet_solver.xml

one can start to train a simple network right away. And this is the way the source code and data models are tested in
Travis-Ci. (See .travis.yml in the root directory)

1.3 Installation

CMake is required for successfully compiling the project.

Under root directory of the project:

cd SDNN_ROOT
mkdir build
cmake

make -7j4

wr A

1.4 License

MIT

4 Chapter 1. dnn: A light-weight yet efficient framework for deep learning

https://github.com/liangfu/dnn/blob/master/.travis.yml
https://cmake.org

	dnn: A light-weight yet efficient framework for deep learning
	Overview
	Available Modules
	Installation
	License

