

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	djqgrid 0.2 documentation

djqgrid - a Django wrapper for jqGrid

djqgrid is a Django wrapper for jqGrid.

djqgrid lets you define grids in a Django-familiar way, while taking care of most of the mundane Python-JavaScript bridge for you.

	Installation

	Example

	Reference

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Itay Zandbank.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djqgrid 0.2 documentation

Installation

To install djqgrid, please follow these steps:

	Install with pip install djqgrid

	Add djqgrid to your INSTALLED_APPS.

	Reference the jqGrid and jQueryUI JavaScript and CSS files

	Reference the script at {% static "js/djqgrid_utils.js" %}

	Add the djqgrid URLs to urls.py:

urlpatterns += patterns('', url(r^'grid_json/', include (djqgrid.urls))

 Copyright 2014, Itay Zandbank.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djqgrid 0.2 documentation

Example

Using djqgrid is relatively straightforward, but it does take a little work.

Define your model

class MyModel(models.Model):
 name = models.CharField(max_length=40)
 desc = models.CharField(max_length=100)
 url = models.URLField()
 height = models.IntField()

Define your grid

class MyGrid(Grid):
 model = MyModel

 name = TextColumn(title='Name', model_path='name')
 height = TextColumn(title='Height', model_path='height', align='right')
 desc = LinkColumn(title='Description', model_path='desc', url_builder=lambda m: m.url)

What we have here is a grid associated with MyModel objects - each grid row represents one object. The grid has three columns:

	Name - a basic column containing model.name

	Height - containing model.height, but right aligned

	Description - containing a link - its text will be model.desc and the URL will be model.url

One thing to note is align='right' - this property is passed directly to jqGrid in the column’s colModel. Any property can be passed to jqGrid this way. For example TextColumn(title=..., model_path=..., editable=true) creates an editable column.

Add the grid to your view and template

The view:

define myview(request):
 grid = MyGrid()
 return render(request, 'my_template.html', { grid: grid })

The template:

{% load djqgrid %}

<div id="grid-div">
 {% jqgrid grid %}
</div>

Now run the view. You should see a very nice grid that supports paging and sorting.

 Copyright 2014, Itay Zandbank.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djqgrid 0.2 documentation

Reference

djqgrid consists of several components:

	The Grid Class

	Columns

	The djqgrid Template Tag

	Utility Functions

 Copyright 2014, Itay Zandbank.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djqgrid 0.2 documentation

 	Reference

The Grid Class

	
class djqgrid.grid.Grid(**kwargs)

	The Grid class everybody will use.

We use BaseGrid, and add the fields metaclass magic, as is done in the Django forms

Creates a Grid

	Args:

	**kwargs: All the arguments will go to the grid’s option array.

The grid’s option array will be used to instantiate the jqGrid on the browser side:
$("#grid").jqGrid(options)

If you want to pass handlers for events, such as loadComplete, wrap then with function so that
the options are rendered correctly in JavaScript. For example:

grid = MyGrid(loadComplete=function('loadCompleteHandler'))

For more information, see the json_helpers module.

	
_apply_query(queryset, querydict)

	This function lets a Grid instance change the default query, if it’s ever necessary

	Args:

	queryset: The default query (self.model.objects)
querydict: The request’s query string

	Returns:

	The actual queryset to use

Override this function if the default query is not enough

	
_apply_sort(queryset, querydict)

	Applys sorting on the queryset.

jqGrid supports sorting, by passing sidx and sord in the request’s query string. _apply_sort
applies this sorting on a queryset.

	Args:

	queryset: A queryset for the objects of tje grid
querydict: The request’s querydict with sidx and sord

	Returns:

	An ordered queryset.

	
_get_additional_data(model)

	Retrieves additional data to be sent back to the client.

	Args:

	model: The model of the currently rendered row

	Returns:

	A dictionary with more data that will be sent to the client, or None if there’s no such data

	
_get_query_results(querydict)

	Returns a queryset to populate the grid

	Args:

	querydict: The request’s query dictionary

	Returns:

	The queryset that will be used to populate the grid. Paging will be applied by the caller.

	
_model_to_dict(model)

	Takes a model and converts it to a Python dictionary that will be sent to the jqGrid.

This is done by going over all the columns, and rendering each of them to both text and HTML. The text
is put in the result dictionary. The result dictionary also has an html dictionary, which contains the
HTML rendering of each column.

This is done to solve a bug with jqGrid’s inline editing, that couldn’t handle HTML values of cells properly.
So instead we use a formatter, called customHtmlFormatter (in djqgrid_utils.js) that can take the value
from the html dictionary.

Sometimes more information is required by the JavaScript code (for example, to choose row CSS styles). It
is possible to add additional information. The method _get_additional_data returns this additional information,
which is put in result JSON as well.

So, for example, a Grid with two columns will have a JSON looking likes this:

	{col1: ‘col1-text’,

	col2: ‘col2-text’,
html: {

‘col1’: ‘col1-html’,
‘col2’: ‘col2-html’

},
additional: { ... }

}

	
classmethod get_grid_id()

	Returns the grid’s class ID.

This is done by computing a CRC32 of the class’s name. Using CRC32 is not a security risk - IDs are passed
in the HTTP anyway, so they are no secret and being able to generate them is not going to help an attacker.

	
get_json_data(querydict)

	Returns a JSON string with the grid’s contents

	Args:

	querydict: The request’s query dictionary

	Returns:

	JSON string with the grid’s contents

DO NOT override this method unless absolutely necessary. _apply_query and _get_additional_data should
be overridden instead.

	
get_options(override=None)

	Returns the grid’s options - this options will be passed to the JavaScript jqGrid function

	Args:

	override: A dictionary that overrides the options provided when the grid was initialized.

	Returns:

	A dictionary with the grid’s options.

Some fields cannot be overridden:
- colNames are created from the grid’s Column fields
- colModels are also created from the grid’s Column fields.
- url always points to the djqgrid.views.query view with the grid’s ID.

 Copyright 2014, Itay Zandbank.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djqgrid 0.2 documentation

 	Reference

Columns

	
class djqgrid.columns.Column(title, model_path, **kwargs)

	A Column object represents one Grid column

The Column object defines how a column’s value is retrieved and how it is formatted.

Column is effectively an abstract class - Grids should be using its derived classes.

Initializes a column.

	Args:

	title: The column’s title in the grid. title.lower() is the default column name.
model_path: The column’s data field’s path in the model.

For example, if this is the Name column in a grid of Person models, and the person’s name is
in the fullname attribute of the Person model, model_path should be fullname.
model_path can also access attributes in nested objects: innerobj.attr will be resolved to
model_instance.innerobj.attr

**kwargs: All other arguments are copied as is to the column’s colModel.

	
get_sort_name()

	Returns the column’s “sort-name”, which is used to apply ordering on a queryset.

The default implementation is to take the model_path and replace each . with __ .

	
model

	Returns the colModel

	
render_html(model)

	Returns an HTML representation of the column’s value.

The default implementation is to return the text value.

	
render_text(model)

	Returns a text representation of the column’s value.

The default implementation is to convert get_model_value to a unicode string.

	
title

	Returns the name that goes in the colName JSON

	
class djqgrid.columns.TextColumn(title, model_path, **kwargs)

	A column that contains simple text strings.

This is basically just a Column. We create a new class because it seems more tidy.

Initializes a column.

	Args:

	title: The column’s title in the grid. title.lower() is the default column name.
model_path: The column’s data field’s path in the model.

For example, if this is the Name column in a grid of Person models, and the person’s name is
in the fullname attribute of the Person model, model_path should be fullname.
model_path can also access attributes in nested objects: innerobj.attr will be resolved to
model_instance.innerobj.attr

**kwargs: All other arguments are copied as is to the column’s colModel.

	
class djqgrid.columns.TemplateColumn(title, model_path, template=None, template_name=None, **kwargs)

	A column that is rendered by a Django template

Use a TemplateColumn when you want the column to contain complex HTML content.

Due to a bug in jqGrid, cell values cannot contain HTML - it conflicts with inline editing. So instead,
the cell values returned by the default Grid.get_json_data method will be the text rendering of the column.
The HTML data will be placed in the html property of the row’s data.

To actually display the HTML data we use a formatter, called customHtmlFormatter, which resides in
djqgrid_utils.js

Initializes a TemplateColumn

	Args:

	title: The column’s title
model_path: The column’s model path
template: A Django template that will be rendered
template_name: A name of a Django template that will be rendered.
**kwargs: Additional arguments that will be passed directly to the column’s colModel

You can specify a template or a template_name, but not both.

	
class djqgrid.columns.LinkColumn(title, model_path, url_builder, **kwargs)

	A column that is rendered as a single link

Initializes a LinkColumn.

	Args:

	title: The column’s title
model_path: The column’s model_path
url_builder: a function that takes a model and returns the link’s URL
**kwargs: Additional arguments passed directly to the column’s colModel

 Copyright 2014, Itay Zandbank.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djqgrid 0.2 documentation

 	Reference

The djqgrid Template Tag

To use djqgrid in a template, you need to load the djqgrid template tag first, using

{% load jqgrid %}

	
djqgrid.templatetags.jqgrid.jqgrid(context, grid, prefix='', pager=True, urlquery=None, **kwargs)

	Adds a complete jqGrid - HTML and JavaScript - to the template.

Two HTML elements are added, a <table id='grid'> and a <div id='pager'>. JavaScript code to initialize the
jqGrid is also added.

After the grid is set up in the browser, it will access the server again and ask for the grid data. The URL is
defined in the Grid object, and is appended by the urlquery argument and the current request’s query dict.
For example, if the template is rendering the URL /view?p=1, the grid’s URL is /grid/17?g=2 and
urlquery is q=3, the grid’s data will be retrieved from /grid/17?g=2&q=3&p=1

	Args:

	context - The template context
grid - the Grid
prefix - A prefix for the grid and pager element IDs. The default is no prefix, meaning the elements are

named grid and pager. Adding prefix='prefix' creates elements with the IDs prefix-grid
and prefix-pager.

pager - True if a pager is added to the grid. If no pager is added, the row count is set to 99,999.
urlquery - An additional query string that will be added to the data request that will be sent to the server.
**kwargs - All additional arguments are added as is to the jqGrid initialization option object.

	Returns:

	The generated HTML

 Copyright 2014, Itay Zandbank.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	djqgrid 0.2 documentation

 	Reference

Utility Functions

json_helpers

	
djqgrid.json_helpers.function(funcname)

	Wraps a JavaScript function name with our token, so it can be unquoted when rendering to JSON.

The jqGrid option object is actually a Python dictionary that is rendered to JSON in the jqgrid template tag.

Unfortunately, Python’s json module can’t output such JSON, it will always put quotes around strings (without the
quotes, it’s not legal JSON), so we need to work around it to support unquoted strings.

The solution is simple and a bit ugly - we use a token that we wrap around function names. We serialize
the dictionary to a JSON string, look for the token and remove the quotes around it.

Our token is @@. So in the example about, our Python dict will be: {'loadComplete': '@@loadCompleteHandler@@').
When we create the JSON, we remove the quotes and the @@, and end up with the expected string.

The function helper function puts the token around the string, so that we can build our dictionary like so:
d = {'loadComplete': function('loadCompleteHandler')) .

	Args:

	funcname - the function’s name

	Returns:

	The wrapped function name

	
djqgrid.json_helpers.dumps(o, *args, **kwargs)

	Serializes an object to JSON, unquoting function names.

	Args:

	o: Object to serialize
*args: Additional arguments passed to json.dumps
**kwargs: Additional arguments passed to json.dumps

grid_registrar

This module handles all the grid registration.

A Grid object is created multiple times - when the HTML containing the grid is rendered, and every time a the grid’s
data needs to be retrieved. Since each of these times is an independent HTTP request, we need to somehow pass the
information of the grid’s class. This is done with a Grid ID.

Each HTTP request gets its own Grid instance, we just pass the information of the Grid’s class around. Since we can’t
create a class just because we’ve received its name in an HTTP request (it’s a huge security hole), we only create
classes that have been registered before. We also don’t want to pass class names in HTTP requests, so we pass class IDs.

	
djqgrid.grid_registrar.get_grid_class(id)

	Returns a class for a given ID.

	Args:

	Grid ID

	Returns:

	The grid’s class

	Raises:

	KeyError if the ID hasn’t been registered

	
djqgrid.grid_registrar.register_grid(gridcls)

	Registers a Grid class in the registry.

Calls gridcls.get_grid_id to get the class’s ID.

	Args:

	gridcls: Class of Grid to registry

views

	
class djqgrid.views.JsonResponse(content, status=None, content_type='application/json')

	Returns a JSON Response

Takes the content object, json.dumps it and returns it an a response.

	Args:

	content: The object to be serialized into JSON
mimetype: Response mime type. Default is application/json
status: HTTP status code. Default is NONE.
content_type: The response content type. Default is application/json

	Returns:

	A Django response object

	
djqgrid.views.query(request, grid_id)

	Returns the grid content in a JSON response

query creates a new Grid instance based on the grid_id (which represents the Grid class), and calls
grid.get_json_data to perform the actual query.

	Args:

	request: Django request
grid_id: ID of the grid. The ID is generated by Grid.get_grid_id

	Returns:

	The JSON serialized grid contents.

 Copyright 2014, Itay Zandbank.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	djqgrid 0.2 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 djqgrid	

 	
 	
 djqgrid.grid_registrar	

 	
 	
 djqgrid.json_helpers	

 	
 	
 djqgrid.templatetags.jqgrid	

 	
 	
 djqgrid.views	

 Copyright 2014, Itay Zandbank.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	djqgrid 0.2 documentation

Index

 _
 | C
 | D
 | F
 | G
 | J
 | L
 | M
 | Q
 | R
 | T

_

 	

 	_apply_query() (djqgrid.grid.Grid method)

 	_apply_sort() (djqgrid.grid.Grid method)

 	_get_additional_data() (djqgrid.grid.Grid method)

 	

 	_get_query_results() (djqgrid.grid.Grid method)

 	_model_to_dict() (djqgrid.grid.Grid method)

C

 	

 	Column (class in djqgrid.columns)

D

 	

 	djqgrid.grid_registrar (module)

 	djqgrid.json_helpers (module)

 	djqgrid.templatetags.jqgrid (module)

 	

 	djqgrid.views (module)

 	dumps() (in module djqgrid.json_helpers)

F

 	

 	function() (in module djqgrid.json_helpers)

G

 	

 	get_grid_class() (in module djqgrid.grid_registrar)

 	get_grid_id() (djqgrid.grid.Grid class method)

 	get_json_data() (djqgrid.grid.Grid method)

 	

 	get_options() (djqgrid.grid.Grid method)

 	get_sort_name() (djqgrid.columns.Column method)

 	Grid (class in djqgrid.grid)

J

 	

 	jqgrid() (in module djqgrid.templatetags.jqgrid)

 	

 	JsonResponse (class in djqgrid.views)

L

 	

 	LinkColumn (class in djqgrid.columns)

M

 	

 	model (djqgrid.columns.Column attribute)

Q

 	

 	query() (in module djqgrid.views)

R

 	

 	register_grid() (in module djqgrid.grid_registrar)

 	render_html() (djqgrid.columns.Column method)

 	

 	render_text() (djqgrid.columns.Column method)

T

 	

 	TemplateColumn (class in djqgrid.columns)

 	TextColumn (class in djqgrid.columns)

 	

 	title (djqgrid.columns.Column attribute)

 Copyright 2014, Itay Zandbank.
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		djqgrid 0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Itay Zandbank.
 Created using Sphinx 1.2.2.

