

Django Projects Cookbook

Django Projects Cookbook is a book for intermediate python programmers. It will take you from where Django tutorials left to a more advanced programmer.

[image: _images/bookcover.png]
Contents:

	Chapter 1: Introduction
	Virtual Environment (The Saviour)

	Downloading and Installing

	What is Django?

	Django Features:

	Inside Django

	Chapter 2. Building a personal CD library.
	Starting a django project

	Getting started with the App

	An Introduction to the Django ORM

	Chapter 3. Building a Pastebin.
	URL configuration - entry points

	Templates - skeletons of our website:

	Generic views - commonly used views:

	Designing a pastebin app:

	Sketch the models:

	Configuring urls:

	Writing custom management scripts:

	Chapter 4. Building a Blog
	Topics in this chapter:

	Our blog app:

	Date based generic views:

	Chapter 5. Building a Wiki
	A wiki application:

	Article Management:

	Chapter 6. Building a Quora like site
	Topics in this chapter:

	Quora like Application:

	Application Includes:

	Django features to learn in this chapter:

	Make custom user:

	Class Based Views

	Register Custom User

	Basics of Django Testing:

	Chapter 7. Building a Project management application

	Chapter 8. Building a Social news Site

Chapter 1: Introduction

Virtual Environment (The Saviour)

The best time to learn about virtual environment is when you are a beginner in learning python/django as it will be very much helpful.

	What is virtual environment ?

A virtual environment is a way for you to have multiple versions of python on your machine without them clashing with each other, each version can be considered as a development environment and you can have different versions of python libraries and modules all isolated from one another. For more information visit virtualenv [https://virtualenv.pypa.io/en/stable/]

	Importance of virtual environment.

Say, if you’re working on an open source project that uses django 1.7 but locally, you installed django 2.0 for other project. It’s almost impossible for you to contribute to open source because you’ll get a lot of errors due to the difference in django versions. If you decide to downgrade to django 1.7 then you can’t work on your project anymore because that depend on django 2.0. Virtual environment lets you handle this situation by creating a separate virtual(development) environments that are not tied together and can be activated/deactivated easily whenever you want.

	How does virtual environment work ?

$ virtualenv venv
$ cd venv
$ source bin/activate
(venv)$ // The current shell starts using the virtual environment.
(venv)$ deactivate // virtual environment deactivated.

Downloading and Installing

Option 1

$ pip install Django==2.0.3

Option 2

$ git clone https://github.com/django/django.git // latest version of django

Note

Django 2.0+ versions are supported by Python 3+ versions. Django 1.11 LTS is the last version to be supported by Python 2.7.

What is Django?

	Django is a free open-source web framework, written in Python, which follows the model-view-template(MVT) architectural pattern. It is maintained by Django Software Foundation(DSF). Django’s primary goal is to ease the creation of complex, database-driven websites.

	Django is a high-level Python Web framework that encourages rapid development and clean, pragmatic design. Built by experienced developers, it takes care of much of the hassle of Web development, so you can focus on writing your app without needing to reinvent the wheel.

Django Features:

	Fast

	Code Reusability

	Security

	Scalable

	Versatile

	Documentation

	Community

Inside Django

	Django Philosophy

The web framework for perfectionists with deadlines.

	Django Architecture

Django follows the MVC pattern closely, however it does use its own logic in the implementation. Because the “C” is handled by the framework itself and most of the excitement in Django happens in models, templates and views, Django is often referred to as an MTV framework.

	Django ORM

ORMs provide a high-level abstraction upon a relational database that allows a developer to write Python code instead of SQL to create, read, update and delete data and schemas in their database. Developers can use the programming language they are comfortable with to work with a database instead of writing SQL statements or stored procedures.

	DRY principle

To help developers adhere to the DRY principle, Django forces users to use the MVC code structure. Django forces users to use this format by initially creating a views.py, models.py, and template files. By keeping the controller code separate from the views, it allows multiple controllers to use the same view.

	Loose coupling

A fundamental goal of Django’s stack is loose coupling and tight cohesion. The various layers of the framework shouldn’t “know” about each other unless absolutely necessary.

For example, the template system knows nothing about Web requests, the database layer knows nothing about data display and the view system doesn’t care which template system a programmer uses.

	Request-Response cycle

Django uses request and response objects to pass state through the system.

When a page is requested, Django creates an HttpRequest object that contains metadata about the request. Then Django loads the appropriate view, passing the HttpRequest as the first argument to the view function. Each view is responsible for returning an HttpResponse object.

	Middleware

Middleware is a framework of hooks into Django’s request/response processing. It’s a light, low-level “plugin” system for globally altering Django’s input or output.

	Template tags

Django’s template language comes with a wide variety of built-in tags and filters designed to address the presentation logic needs of your application.

Chapter 2. Building a personal CD library.

Starting a django project

Now that we have installed django, we are ready to start our project.

A project in django is analogous to a website. Once we have a project ready,
we can host it using any wsgi supported server. More on deploying a django project
later.

django-admin.py is a project utility that ships with django. In addition to the startproject
subcommand, it also includes a lot of helper subcommands that can be useful while maintaining a django
project.

Note

To get a full listing of available subcommands in django-admin.py, use

django-admin.py --help

To get help on each subcommand, use

django-admin.py help <subcommand>

For example, here’s the result of django-admin.py help startproject

Creates a Django project directory structure for the given project name in the current directory.

Lets create a project called djen_project:

django-admin.py startproject djen_project

We can see that the subcommand creates a folder and subfolder called djen_project in the working directory with the following files:

-- djen_project
- djen_project
 __init__.py
 settings.py
 urls.py
 wsgi.py
- manage.py

__init__.py is an empty file required to recognize this project as a python module.

manage.py is a script that is similar to django-admin.py which allows you to manage this project. It has
subcommands to start a development server, interact with database, backup/restore data etc.

Note

manage.py also has –help switch and help with each subcommand similar to django-admin.py

You can quickly checkout the development server at this point by running:

python manage.py runserver

Now open http://127.0.0.1:8000 in your browser. you will see django powered page.

[image: _images/django_first_page.png]
settings.py is a list of project wide settings with some default values. You will need to edit this often when
installing new django applications, deployment etc.

You can change the DATABASES settings at this point to make sure your app can be sync’ed later. The easiest
settings would look like:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'oracle'.
 'NAME': 'os.path.join(BASE_DIR, 'db.sqlite3')', # Or path to database file if using sqlite3.
 'USER': '', # Not used with sqlite3.
 'PASSWORD': '', # Not used with sqlite3.
 'HOST': '', # Set to empty string for localhost. Not used with sqlite3.
 'PORT': '', # Set to empty string for default. Not used with sqlite3.
 }
}

or for a mysql:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql', # Add 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'oracle'.
 'NAME': 'djen_database', # Or path to database file if using sqlite3.
 'USER': 'root', # Not used with sqlite3.
 'PASSWORD': '****', # Not used with sqlite3.
 'HOST': '', # Set to empty string for localhost. Not used with sqlite3.
 'PORT': '', # Set to empty string for default. Not used with sqlite3.
 }
}

We will be using mysql database for examples in this book. Of course, you are free to change
the settings to any other database you like. Just make sure the database exists.

Note

To verify your database settings run:

python manage.py check

Django will validate your settings and show you errors, if any. If you get this error:

_mysql_exceptions.OperationalError: (1049, "Unknown database...

make sure the database given in the settings exists.

Note

It is advised to have a local_settings.py file with exclusively server specific and sensitive settings like database username/password,
API keys or Secret Key etc and have settings.py import all these values.

To do this, you would create local_settings.py and include from local_settings import * at the bottom of settings.py

urls.py is a ‘table of contents’ of our project (or website). It includes a list of the paths that are to be processed
and responded to.

You are encouraged to go through settings.py and urls.py once to get an understanding of how settings and urls are defined.

Getting started with the App

Now that we have setup and understood the structure of our project, we can start our application.

To start an application, cd into the project directory and use

manage.py startapp cd_library

This will create a folder called cd_library with the following files:

__init__.py
admin.py
app.py
models.py
tests.py
views.py

__init__.py is again the file that allows this app to be considered a python module.

models.py will hold the Models of our application. A model is an object of our interest which we want to
save to the database. If you are familiar with Model-View-Controller(MVC) architecture, you know what models are.
If no, don’t worry, we will see and use them in our application.

views.py has all the ‘action’ of our website. This is similar to the Controller of MVC architecture. Each ‘view’ function
takes a request object and returns a HttpResponse object.

Note

It is recommended to have another urls.py (like the one in project) in the app and include them in the project urls.
This reduces the clutter in the project urls and provides a namespace kind of resolution between urls. Also, it makes
it easier to redistribute the app to other projects. As you would expect, reusable apps will depend on the project as
little as possible.

Let us create our models first:

Open models.py and define our CD model which will hold all information related to a CD. You can see that models.py has:

from django.db import models

So we define the CD model as:

GENRE_CHOICES = (
 ('R', 'Rock'),
 ('B', 'Blues'),
 ('J', 'Jazz'),
 ('P', 'Pop'),
)

class CD(models.Model):
 title = models.CharField(max_length=100)
 description = models.TextField(null=True, blank=True)
 artist = models.CharField(max_length=40)
 date = models.DateField()
 genre = models.CharField(max_length=1, choices=GENRE_CHOICES)

 def __unicode__(self):
 return "%s by %s, %s" %(self.title, self.artist, self.date.year)

A little explanation:

	All models should be a subclass of django.db.models.Model

	Each model has a list of fields which will define that model

	We have used CharField, TextField and DateField in this model.

	Each CharField requires a max_length argument which specifies the maximum length of the characters that
the field can hold.

	A TextField can contain any number of characters and is suitable for fields such as description, summary, content etc.

	To make the description field optional, we pass the null and blank arguments as True

	DateField holds a date. If you need to store the time too, use DateTimeField instead.

	The genre field should be restricted to a group of values and that can be accomplished by passing an iterable of 2-tuples
for the value and representation as the choices argument of the CharField.

	The __unicode__ property of the model defines it’s string representation which will be used in the Admin interface, shell etc.

So far, we have defined the CD model, now we need to get it rolling in django:

First, let django know that cd_library is to be used in the project. To do this, edit the project settings.py and add:

'cd_library'

to the INSTALLED_APPS list so that your settings.py looks like this:

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'cd_library',
]

Note

After modifying INSTALLED_APPS, it’s always a good idea to run makmigrations and migrate:

$ python manage.py makemigrations

$ python manage.py migrate

This lets django keep the database and your project in sync. Since we have added an app,
django will create that app’s tables in the database. If an app is removed from the above
list, django will ask you whether to remove the ‘stale’ tables.

Also, make sure you have DATABASES settings correctly pointed to the database before syncing.

Well, now that django knows about our app, let us add it to the Admin interface.

A little bit about the admin interface first:

	The admin interface is itself a django app.

	It is a contrib app, which means it is a community contributed app

	It is flexible enough to accommodate any other app’s models and have admin actions for them.

Note that the admin app uses a urls.py to keep its urls separate from the project
(as discussed in the note above).

You should create a superuser, to login to django`s inbuild admin panel.

$ python manage.py createsuperuser
Username (leave blank to use 'agiliq'):
Email address: user@agiliq.com
Password: # password won't be visible for security reasons.
Password (again):
Superuser created successfully.

Remember username and password for logging into the admin panel.

Just to confirm it, you can open http://127.0.0.1:8000/admin/ in your browser. You should see ‘Site Administration’ and actions for ‘Authentication and Authorization’
which are enabled by default.

[image: _images/django_admin.png]
Now to enable our app’s models:

Go to the app’s directory i.e. cd_library and create a file called admin.py and add the following lines:

from django.contrib import admin
from .models import CD

admin.site.register(CD)

So, we have ‘registered’ our CD model with the admin interface.

If you refresh the admin page, you can see the ‘Cd_library’ header and ‘Cds’ under it. Yes this is our app’s model
and we can add/edit/delete any instances of our CD model through the admin interface. Try adding a few entries using the
Add action. You can edit entries using the Change action which will take you to the change list page. Try editing and
deleting entries.

[image: _images/cd_admin.png]
Did you notice?:

	Django uses the models __unicode__ property to display the CD in the change list

	Django used our model field types (CharField, TextField, DateField) to create HTML widgets in the admin page

	Genre Field has a drop down field with the CHOICES attributes used to populate its key, value pairs

	DateField includes a handy calendar popup

	Description is optional, so it is not highlighted like the rest of the fields

	Django provides automatic form validation. Try entering blank values, or wrong dates and submitting the form

	In accordance with the DRY principle, models.py is the only place where you specified the fields

With this, we have built our own personal CD library.

An Introduction to the Django ORM

Now, lets take a look at the raw data that django stores for us.

We have configured the database django uses in ‘DATABASES’ attribute of settings.py. Notice that
you can enter multiple database settings and use them by providing the --database switch
to manage.py subcommands.

To go to the database shell and view the database, use:

python manage.py dbshell

‘dbshell’ is a handy manage.py subcommand that will give you access to the database using your DATABASES settings
You can check the tables in the database by doing:

.tables for sqlite
show tables for mysql
\dt for pgsql

Since we are using mysql for this example, the result is:

mysql> show tables;
+----------------------------+
| Tables_in_djen_database |
+----------------------------+
| auth_group |
| auth_group_permissions |
| auth_permission |
| auth_user |
| auth_user_groups |
| auth_user_user_permissions |
| cd_library_cd |
| django_admin_log |
| django_content_type |
| django_migrations |
| django_session |
+----------------------------+
11 rows in set (0.00 sec)

Each table generally represents a model from an app. You can see that the CD model is saved as
cd_library_cd table.

Well, lets look at the structure of this table:

mysql> desc cd_library_cd;
+-------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+---------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
title	varchar(100)	NO		NULL	
description	longtext	YES		NULL	
artist	varchar(40)	NO		NULL	
date	date	NO		NULL	
genre	varchar(1)	NO		NULL	
+-------------+--------------+------+-----+---------+----------------+
6 rows in set (0.00 sec)

I have added a few entries to the CD model, so lets see if they are here:

mysql> SELECT * FROM cd_library_cd;
+----+-------+-------------+-----------+------------+-------+
| id | title | description | artist | date | genre |
+----+-------+-------------+-----------+------------+-------+
| 1 | Kid A | | Radiohead | 2010-01-01 | R |
+----+-------+-------------+-----------+------------+-------+
1 row in set (0.01 sec)

Note

Primary key field for an object (id in this case) is autogenerated by django.
If you need a custom primary key, pass primary_key=True in the field.

Django’s Object Relational Mapper (ORM) worked behind the scenes to create the tables, sync them with the models, and add/edit/delete
entries to the tables.

Now lets try out the ORM first hand. Use the shell subcommand of manage.py:

python manage.py shell

Note

use ipython shell for tab-completion, reverse history search and more. django will automatically use
ipython shell if available

This will take you to the python shell, but within the django environment. So now you can interact with your project

A few examples:

from cd_library.models import CD

retrieve all cds:

cds = CD.objects.all()

loop through the cds and print their names:

for cd in cds:
 print cd

add a new CD:

new_cd = CD()
new_cd.title = "OK Computer"
new_cd.artist = "Radiohead"
new_cd.date = "2000-01-01"
new_cd.genre = "R"
new_cd.save()

Note

a model is never saved to the database until the save method is explicitly called

Whats all this:

	Our CD model is mapped to a database table

	A default primary key is used since we have not primary_key on any of the fields

	The default primary key is of the type int and is autoincremented

	The table fields are selected automatically based on model fields

That is really the core of the work of the ORM: mapping classes (or models) to tables. While doing so,
django takes care of the conversion of model fields to database columns, type conversions, primary keys,
constraints and all of that. Thanks to the ORM, you don’t have to deal with the databases directly.
In fact, if you were to switch the underlying database by modifying DATABASES in settings, your application
would be least affected by it.

Now that you know a little bit about the ORM, lets see some more utilities it provides:

the object manager:

CD.objects

objects refers to the default object manager. A manager provides the way of dealing with the database.
Custom managers can be used to provide different ‘views’ of the model. More on that later.

the get method - to get a single object:

CD.objects.get(pk=1)

returns:

<CD: OK Computer by Radiohead, 2000>

that is, a single instance of our CD model. The arguments must return a unique object or else
this method will raise MultipleObjectsReturned error.

Note

arguments to the manager methods include pk for primary key, all model fields and some operators
called lookups

Use the get method on when you want to retrieve one record based on the given criteria.

the filter method - to filter the list using given criteria:

CD.objects.filter(artist='Radiohead')

to get all CDs by Radiohead, returns:

[<CD: OK Computer by Radiohead, 2000>, <CD: Kid A by Radiohead, 2010>]

which is a list of model instances

the exclude method - equal to all-filter:

CD.objects.exclude(title='OK Computer')

returns:

[<CD: Kid A by Radiohead, 2010>]

Now on to the lookups:

How do we get all CDs of the year 2000?

The object manager methods have some special arguments to operate on the fields

to pass date.year as the argument:

CD.objects.filter(date__year='2000')

Or, get the CDs in genres ‘Rock’ and ‘Pop’:

CD.objects.filter(genre__in=['R', 'P'])

A few other useful lookups:

title__startswith
title__endswith
date__lte
date__gte
title__contains

Use shell to experiment with object manager methods and lookups.

Chapter 3. Building a Pastebin.

URL configuration - entry points

We have already noticed urls.py in our project. This controls our website’s
points of entry. All incoming urls will be matched with the regexes in the
urlpatterns and the view corresponding to the first match will get to handle
the request. A request url that does not match any urlconf entry will be 404’ed.

Note

brush up regexes in python from python docs [http://docs.python.org/library/re.html] or
diveintopython [http://diveintopython.org/regular_expressions/index.html]

As an example from our previous app:

from django.contrib import admin
from django.urls import path

urlpatterns = [
 path('admin/', admin.site.urls),
]

Now when we call http://127.0.0.1:8000/admin/ django matches that to the url entries. This urlconf
has included admin.urls which means that all further paths matches will be done with the admin.urls
module. Once again, the first match will get to handle the request. You can think of this as ‘mounting’ the
admin app at /admin/. You are of course free to change the ‘mount point’ to anything else you like.

A typical urlconf entry looks like this:

(r'<regex>', <view_function>, <arg_dict>),

regex is any valid python regex that has to be processed. This would be absolute in the project
urls.py and relative to the mount point in an app’s urls.py

view_function is a function that corresponds to this url. The function must return a HttpResponse
object. Usually, shortcuts such as render, are used though. More about views later.

arg_dict is an optional dict of arguments that will be passed to the view_function. In addition, options
can be declared from the url regex too. For example:

path('object/<int:id>/', views.get_object)

will match all urls having an integer after object/. Also, the value will be passed as object_id to the
get_object function.

Named urls:

Usually, we would want an easier way to remember the urls so that we could refer them in views or templates.
We could name our urls by using the path constructor. For example:

path(r'^welcome/$', 'app.views.welcome', name='welcome'),

This line is similar to the previous urls, but we have an option of passing a name argument.

To get back the url from its name, django provides:

	django.url.reverse function for use in views

	url templatetag for use in templates

We will see how to use the templatetag in our templates.

Note

Also see http://agiliq.com/books/djangodesignpatterns/urls.html#naming-urls

Templates - skeletons of our website:

You must be wondering where all those pages came from, since we have not touched
any html yet. Well, since we used the admin app, we were able to rely on the admin
templates supplied with django.

A template is a structure of webpage that will be rendered using a context and returned as response if
you want it to. A django.template.Template object can be rendered using the render method.

Normally templates are html files with some extra django content, such as templatetags and variables. Note that our
templates need not be publicly accessible(in fact they shouldn’t be) from a webserver. They are not meant to be displayed
directly; django will process them based on the request, context etc and respond with the rendered templates.

In case you want a template to be directly accessible (e.g. static html files), you could use the django.views.generic.TemplateView
generic view.

Template Loaders:

By default, Django uses a filesystem-based template loader, but Django comes with a few other template loaders, which know how to load templates from other sources.

Some of these other loaders are disabled by default, but you can activate them by adding a ‘loaders’ option to your DjangoTemplates backend in the TEMPLATES setting or passing a loaders argument to Engine. loaders should be a list of strings or tuples, where each represents a template loader class. Here are the template loaders that come with Django:

django.template.loaders.filesystem.Loader

TEMPLATES = [{
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'OPTIONS': {
 'loaders': [
 (
 'django.template.loaders.filesystem.Loader',
 [os.path.join(BASE_DIR, 'templates')],
),
],
 },
}]

django.template.loaders.app_directories.Loader

Loads templates from Django apps on the filesystem. For each app in INSTALLED_APPS, the loader looks for a templates subdirectory. If the directory exists, Django looks for templates in there.

This means you can store templates with your individual apps. This also makes it easy to distribute Django apps with default templates.

For example, for this setting:

INSTALLED_APPS = ['cd_library', 'pastebin']

You can enable this loader simply by setting APP_DIRS to True:

TEMPLATES = [{
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'APP_DIRS': True,
}]

Context:

A context is a dict that will be used to render a page from a template. All context keys are valid template
variables.

To display a user name in your template, suppose you provide the username in your context, you could do:

Hello {{ username }}

When this template is rendered using (e.g. using render), username will be replaced with its value

You can pass any variable to the context, so you can call a dict’s key, or an objects property. However you cannot pass
any arguments to the property.

For example:

Hello {{ user.username }}

can be used to get user['username'] or user.username

Similarly:

{{ user.username }}

can be used to get user.get_absolute_url()

Templatetags:

Templatetags are helpers to the template. Suppose you have an iterable with a list of objects in your context:

{% for object in objects %}
 {{ object }}
{% endfor %}

would render them. If this is a html template, we would prefer:

{% if objects %}

 {% for object in objects %}

 {{ object }}

 {% endfor %}

{% endif %}

which would render the objects in html unordered list.

Note that {% if %} {% for %} {% endif %} {% endfor %} are all built-in templatetags.
If and for behave very much like their python counterparts.

Common templatetags and template inheritance:

Some templatetags we will use in our application:

	url

This templatetag takes a named url or view function and renders the url as found by reverse

For example:

View All

would output

View All

It also takes arguments:

{{ paste }}

would output

Sample Paste

Note

You must make sure the correct urlconf entry for the give url exists. If the url entry
does not exist, or the number of arguments does not match, this templatetag will raise a
NoReverseMatch exception.

	csrf_token

This is a security related tag used in forms to prevent cross site request forgery.

	include <template>

This will simply include any file that can be found by the TEMPLATE_LOADERS where it is called

	extends <template>

This will extend another template and provides template inheritance. You can have a base template and
have other specific template extend the base template.

	block and endblock

	blocks are used to customize the base page from a child page. If the base page defines a block called

	head, the child page can override that block with its own contents.

	load

This is used to load custom templatetags. More about writing and using custom templatetags later.

We will see later how to add custom templatetags.

Filters:

Filters are simple functions which operate on a template variable and manipulate them.

For example in our previous template:

Hello {{ username|capfirst }}

Here capfirst is a filter that will capitalize the first char our username

Note

Reference of built-in templatetags and filters:
https://docs.djangoproject.com/en/2.0/ref/templates/builtins/

Templates are not meant for programming:

One of the core django philosophy is that templates are meant for rendering the context and
optionally making a few aesthetic changes only. Templates should not be used for handling
complex queries or operations. This is also useful to keep the programming and designing aspects
of the website separate. Template language should be easy enough to be written by designers.

Generic views - commonly used views:

Views:

Views are just functions which take the HttpRequest object, and some optional arguments,
then do some work and return a HttpResponse page. Use HttpResponseRedirect to redirect
to some other url or HttpResponseForbidden to return a 403 Forbidden response.

By convention, all of an app’s views would be written in <app>/views.py

A simple example to return “Hello World!” string response:

from django.http import HttpResponse

def hello_world(request):
 return HttpResponse("Hello World!")

To render a template to response one would do:

from django.http import HttpResponse
from django.template import loader

def hello_world(request):
 template = loader.get_template("hello_world.html")
 context = {"username": "Monty Python"}
 return HttpResponse(template.render(context))

But there’s a simpler way:

from django.shortcuts import renders

def hello_world(request):
 return render(request,"hello_world.html", {"username": "Monty Python"})

Generic Views:

Django’s generic views were developed to ease that pain.They take certain common
idioms and patterns found in view development and abstract them so that you can
quickly write common views of data without having to write too much code.

Extending Generic Views

There’s no question that using generic views can speed up development substantially.
In most projects, however, there comes a moment when the generic views no longer suffice.
Indeed, the most common question asked by new Django developers is how to make generic
views handle a wider array of situations.

This is one of the reasons generic views were redesigned for the 1.3 release - previously,
they were just view functions with a bewildering array of options; now, rather than passing
in a large amount of configuration in the URLconf, the recommended way to extend generic views
:Qis to subclass them, and override their attributes or methods.

Note

reference: https://docs.djangoproject.com/en/2.0/topics/class-based-views/generic-display/

Designing a pastebin app:

In this chapter we will be designing a simple pastebin. Our pastebin will be able to

	Allow users to paste some text

	Allow users to edit or delete the text

	Allow users to view all texts

	Clean up texts older than a day

Some ‘views’ that the user will see are

	A list view of all recent texts

	A detail view of any selected text

	An entry/edit form for a text

	A view to delete a text

Our work flow for this app would be

	sketch the models

	route urls to generic views

	use generic views with our models

	write the templates to use generic views

So let’s dive in:

Sketch the models:

We have only one object to store to the database which is
the text pasted by the user. Let’s call this Paste.

Some things our Paste model would need to handle are

	Text pasted by the user

	Optional file name

	Created time

	Updated time

The time fields would be useful for getting ‘latest’ or ‘recently updated’
pastes.

So let’s get started:

python manage.py startapp pastebin

In pastebin/models.py

from django.db import models

Create your models here.
class Paste(models.Model):
 text = models.TextField()
 name = models.CharField(max_length=40, null=True, blank=True)
 created_on = models.DateTimeField(auto_now_add=True)
 updated_on = models.DateTimeField(auto_now=True)

 def __unicode__(self):
 return self.name or str(self.id)

Note

	auto_now_add automatically adds current time to the created_on
field when an object is added.

	auto_now is similar to the above, but it adds the current time to
the updated_on field each time an object is saved.

	the id field is primary key which is autocreated by django. Since
name is optional, we fall back to the id which is guaranteed.

Adding our app to the project

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'cd_library',
 'pastebin',
]

Makemigrations and Migrate:

$ python manage.py makemigrations
Migrations for 'pastebin':
 pastebin/migrations/0001_initial.py
 - Create model Paste
$ python manage.py migrate
Operations to perform:
 Apply all migrations: admin, auth, cd_library, contenttypes, pastebin, sessions
Running migrations:
 Applying pastebin.0001_initial... OK

There, we have our pastebin models ready.

Configuring urls:

We have already seen how to include the admin urls in urls.py. But now, we want to have
our app take control of the urls and direct them to generic views. Here’s how

Let’s create urls.py in our app. Now our pastebin/urls.py should look like

from django.urls import path
from .views import PasteCreate

urlpatterns = [
 path(r'', PasteCreate.as_view(), name='create'),
]

Notes:

	Each urlpatterns line is a mapping of urls to views

path(r'', PasteCreate.as_view(), name='create'),

	Here the url is '' will be matched with the incoming request.
If a match is found, the request is forwarded to the corresponding view.

	The scope goes to class based generic view, which is written in our views.py.

from django.views.generic.edit import CreateView

class PasteCreate(CreateView):
 model = Paste
 fields = ['text','name']

Let’s tell the project to include our app’s urls

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
 path('admin/', admin.site.urls),
 path('pastebin/', include('pastebin.urls')),
]

Now django knows to forward urls starting with /pastebin to the pastebin app. All urls relative to this url
will be handled by the pastebin app. That’s great for reusability.

If you try to open http://127.0.0.1/pastebin at this point, you will be greeted with a TemplateDoesNotExist error.
If you observe, the error message says that django cannot find pastebin/paste_form.html. Usually getting this error means that
django was not able to find that file.

[image: _images/templatenotexist.png]
The default template used by CreateView is ‘<app>/<model>_form.html’. In our case this would be pastebin/paste_form.html.

Let’s create this template. In templates/pastebin/paste_form.html:

<h1>Create new Paste</h1>
<form action="" method="POST">
 {% csrf_token %}
 <table>
 {{ form.as_table }}
 </table>
 <input type="submit" name="create" value="Create">
</form>

View All

Just after adding the template we an refresh the page. We will se our webpage as.

[image: _images/pastebincreate.png]
Observe that:

	the form has been autogenerated by django’s forms library by using the Paste model

	to display the form, all you have to do is render the form variable

	form has a method as_table that will render it as table, other options are as_p, as_ul
for enclosing the form in <p> and tags respectively

	form does not output the form tags or the submit button, so we will have to write them down
in the template

	you need to include csrf_token tag in every form posted to a local view. Django uses this to prevent
cross site request forgery

	the generated form includes validation based on the model fields

Now, we need a page to redirect successful submissions to. We can use the detail view page of a paste here.

For this, we will use the django.views.generic.detail.DetailView

from django.views.generic.detail import DetailView
from .models import Paste
from django.views.generic.edit import CreateView

class PasteCreate(CreateView):
 model = Paste
 fields = ['text','name']

class PasteDetail(DetailView):
 model = Paste
 template_name = "pastebin/paste_detail.html"

Related urls:

from django.urls import path
from .views import PasteList, PasteDetail, PasteCreate

urlpatterns = [
 path('', PasteCreate.as_view(), name='create'),
 path('paste/<int:pk>', PasteDetail.as_view(), name='pastebin_paste_detail'),
]

Using this generic view we will be able to display the details about the paste object with a given id. Note that:

	model and template_name are the arguments passed to DetailView. (ProjectDetailView)

	we are naming this view using the url constructor and passing the name argument. This name can be referred to
from views or templates and helps in keeping this DRY.

	the DetailView view will render the pastebin/paste_detail.html template. We need to write down this
template for this view to work.

In templates/pastebin/paste_detail.html:

<label>Paste Details: </label>
<p>
 <div>
 <label>ID</label>
 {{ object.id }}
 </div>
 <div>
 <label>Name</label>
 {{ object.name }}
 </div>
 <div>
 <label>Text</label>
 {{ object.text }}
 </div>
 <div>
 <label>Created</label>
 {{ object.created_on }}
 </div>
 <div>
 <label>Modified</label>
 {{ object.updated_on }}
 </div>
</p>

Now, that we have a create view and a detail view, we just need to glue them together. We can do this in two ways:

	pass the post_save_redirect argument in create_object view

	set the get_absolute_url property of our Paste model to its detail view. create_object view will call the object’s
get_absolute_url by default

I would choose the latter because it is more general. To do this, change your Paste model and add the get_absolute_url property:

from django.db import models

class Paste(models.Model):
 text = models.TextField()
 name = models.CharField(max_length=40, null=True, blank=True)
 created_on = models.DateTimeField(auto_now_add=True)
 updated_on = models.DateTimeField(auto_now=True)

 def __unicode__(self):
 return self.name or str(self.id)

 @models.permalink
 def get_absolute_url(self):
 return ('pastebin_paste_detail', [self.id])

Note that:

	We could have returned '/pastebin/paste/%s' %(self.id)' but it would mean defining the same url twice and it violates the DRY principle.
Using the models.permalink decorator, we can tell django to call the url named pastebin_paste_detail with the parameter id

And so, we are ready with the create object and object detail views. Try submitting any pastes and you should be redirected to the details of
your paste.

[image: _images/detailview.png]
Now, on to our next generic view, which is ListView:

from django.urls import path
from .views import PasteList, PasteDetail, PasteCreate

urlpatterns = [
 path('', PasteCreate.as_view(), name='create'),
 path('pastes/', PasteList.as_view(), name='pastebin_paste_list'),
 path('paste/<int:pk>', PasteDetail.as_view(), name='pastebin_paste_detail'),
]

This is simpler than the detail view, since it does not take any arguments in the url. The default template for this view is pastebin/paste_list.html
so let’s fill that up with:

{% if object_list %}
 <h1>Recent Pastes:</h1>

 {% for paste in object_list %}

 {{ paste }}

 {% endfor %}

{% else %}
 <h1>No recent pastes</h1>
{% endif %}

Note that

	We have used the url template tag and passed our named view i.e. pastebin_paste_detail to get the url to a specific paste

Similarly, our update and delete generic views would look like

from django.urls import path
from .views import PasteList, PasteDetail, PasteDelete, PasteUpdate, PasteCreate

urlpatterns = [
 path('', PasteCreate.as_view(), name='create'),
 path('pastes/', PasteList.as_view(), name='pastebin_paste_list'),
 path('paste/<int:pk>', PasteDetail.as_view(), name='pastebin_paste_detail'),
 path('paste/delete/<int:pk>', PasteDelete.as_view(), name='pastebin_paste_delete'),
 path('paste/edit/<int:pk>', PasteUpdate.as_view(), name='pastebin_paste_edit'),
]

Note that the delete_object generic view requires an argument called post_delete_redirect which will be used to redirect the user
after deleting the object.

We have used update_object, delete_object for the update/delete views respectively. Let’s link these urls from the detail page:

{% if messages %}
 <div class="messages">

 {% for message in messages %}
 <li class="{{ message.tag }}">
 {{ message }}

 {% endfor %}

 </div>
{% endif %}

<h1>Paste Details: </h1>
<p>
 <div>
 <label>ID</label>
 {{ object.id }}
 </div>
 <div>
 <label>Name</label>
 {{ object.name }}
 </div>
 <div>
 <label>Text</label>
 <textarea rows="10" cols="50" OnClick="this.select();" readonly="true">{{ object.text }}</textarea>
 </div>
 <div>
 <label>Created</label>
 {{ object.created_on }}
 </div>
 <div>
 <label>Modified</label>
 {{ object.updated_on }}
 </div>
</p>

<h2>Actions</h2>

 Edit this paste

 Delete this paste

View All

Our views.py for complete pastebin looks like

from django.urls import reverse_lazy
from django.views.generic import DeleteView
from django.views.generic.edit import CreateView, UpdateView
from django.views.generic.detail import DetailView
from django.views.generic.list import ListView
from .models import Paste

class PasteCreate(CreateView):
 model = Paste
 fields = ['text','name']

class PasteList(ListView):
 model = Paste
 template_name = "pastebin/paste_list.html"
 queryset = Paste.objects.all()
 context_object_name = 'queryset'

class PasteDetail(DetailView):
 model = Paste
 template_name = "pastebin/paste_detail.html"

class PasteDelete(DeleteView):
 model = Paste
 success_url = reverse_lazy('pastebin_paste_list')

class PasteUpdate(UpdateView):
 model = Paste
 fields = ['text', 'name']

Note that the delete view redirects to a confirmation page whose template name is paste_confirm_delete.html if called using GET method.
Once in the confirmation page, we need need to call the same view with a POST method. The view will delete the object and pass a message using
the messages framework.

<h1>Really delete paste {{ object }}?</h1>
<h2>This action cannot be undone</h2>
<form action="{% url 'pastebin_paste_delete' object.id %}" method="POST">
 {% csrf_token %}
 <input type="submit" value="Delete">
</form>

Let’s handle the message and display it in the redirected page.

{% if messages %}
 <div class="messages">

 {% for message in messages %}
 <li class="{{ message.tag }}">
 {{ message }}

 {% endfor %}

 </div>
{% endif %}

{% if object_list %}
 <h1>Recent Pastes:</h1>

 {% for paste in object_list %}

 {{ paste }}

 {% endfor %}

{% else %}
 <h1>No recent pastes</h1>
{% endif %}

Create new

While we are at it, Let’s also include the messages in paste detail page, where create/update view sends the messages:

{% if messages %}
 <div class="messages">

 {% for message in messages %}
 <li class="{{ message.tag }}">
 {{ message }}

 {% endfor %}

 </div>
{% endif %}

<h1>Paste Details: </h1>
<p>
 <div>
 <label>ID</label>
 {{ object.id }}
 </div>
 <div>
 <label>Name</label>
 {{ object.name }}
 </div>
 <div>
 <label>Text</label>
 <textarea rows="10" cols="50" OnClick="this.select();" readonly="true">{{ object.text }}</textarea>
 </div>
 <div>
 <label>Created</label>
 {{ object.created_on }}
 </div>
 <div>
 <label>Modified</label>
 {{ object.updated_on }}
 </div>
</p>

<h2>Actions</h2>

 Edit this paste

 Delete this paste

View All

So we now have pages to create, update, delete and view all pastes.

Now, for better maintenance, we would like to delete all pastes that have not been updated in a day using an script.
We will use django’s custom management scripts for this.

Writing custom management scripts:

Just like other manage.py subcommands such as migrations, shell, startapp and runserver, we can have custom subcommands to
help us maintain the app.

For our subcommand to be registered with manage.py, we need the following structure in our app:

.
|-- __init__.py
|-- management
| |-- commands
| | `-- __init__.py
| `-- __init__.py
|-- models.py
|-- tests.py
|-- urls.py
`-- views.py

All scripts inside management/commands/ will be used as custom subcommands. Let’s create delete_old.py subcommand:

import datetime

from django.core.management.base import BaseCommand

from pastebin.models import Paste

class Command(BaseCommand):
 help = """
 deletes pastes not updated in last 24 hrs

 Use this subcommand in a cron job
 to clear older pastes
 """

 def handle(self, **options):
 now = datetime.datetime.now()
 yesterday = now - datetime.timedelta(1)
 old_pastes = Paste.objects.filter(updated_on__lte=yesterday)
 old_pastes.delete()

Here:

	We subclass either of the BaseCommand, LabelCommand or AppCommand from django.core.management.base. BaseCommand
suits our need because we dont need to pass any arguments to this subcommand.

	handle will be called when the script runs. This would be handle for other Command types.

	We have used the lte lookup on updated_on field to get all posts older than a day. Then we delete them using delete method
on the queryset.

You can test if the subcommand works by doing:

python manage.py delete_old

Now we can configure this script to run daily using cronjob or something similar.

Chapter 4. Building a Blog

Topics in this chapter:

So far, we have seen how to use django’s admin interface, and generic views. In this chapter we
will write custom views and blog entry admin page, store some user details in the session
and use date based generic views for our blog archives.

Models with ForeignKeys:

To link two Models, we use foreign keys. Since we may have many comments for a blog post, we would like
to have a relation from the comment model to the post model. This can be done by using a model field of
the type ‘ForeignKey’. It requires a string or class representing the Model to which the ForeignKey is to
be created. We would also need ForeignKey to link each blog post to it’s owner, since we want only the admin
to be able to create a post.

As we shall see, django simplifies access to foreign keys by automatically creating a related object set
on the linked Model.

class Post(models.Model):
 text = models.TextField()
 ...
 ...

class Comment(models.Model):
 text = models.CharField(max_length=100)
 post = models.ForeignKey(Post)
 ...
 ...

would relate each Post to multiple Comment

Now, to fetch all comments related to a Post, we can use

post = Post.objects.get(pk=1)
comments = post.comment_set.all()

So, post gets a <ForeignKeyModel>_set property which is actually the Manager for Comments
related to that post.

ModelForms:

We have already seen how the admin app creates the form for our model by inspecting its fields. If we want to
customize the autogenerated forms, we can use ModelForms. In this chapter we see how to use ModelForms to create
and customize the forms for post and comment models. By convention, all custom forms should be in <app>/forms.py

The simplest way to use ModelForms would be:

class PostForm(ModelForm):
 class Meta:
 model = Post

The autogenerated fields can be overridden by explicitly specifying the field.
To change the html widget and label used by text field of Post model, one would do:

class PostForm(ModelForm):
 text = forms.CharField(widget=forms.TextArea, label='Entry')
 class Meta:
 model = Post

Custom views with forms and decorators:

We will write our custom views in this chapter. We have already introduced views in the previous chapter, so we will
see how to use forms in our views and how to limit access to certain views using decorators.

form = PostForm(request.POST or None)

Here we are handling GET and POST in the same view. If this is a GET request, the form would be empty else it would be filled
with the POST contents.

form.is_valid

validates the form and returns True or False

We will use these two together to save a valid form or display empty form.

To restrict views to a condition, we can use the user_passes_test decorator from contrib.auth.
The decorator takes a callable which should perform the test on the user argument and return True or False.
The view is called only when the user passes the test. If the user is not logged in or does not pass the test,
it redirects to LOGIN_URL of settings. By default this is /accounts/login and we will handle this url from urls.py

Some other useful decorators are:

	django.contrib.admin.views.decorators import staff_member_required

Restricts view to staff members only.

	django.contrib.auth.decorators.login_required

Restricts view to logged in users only

Our blog app:

Let’s list out the features we would want to see in our blog:

	Create/Edit blog post (restricted to admin)

	View blog post (public)

	Comment on a blog post (anonymous)

	Store anonymous user details in session

	Show month based blog archives

	Generate RSS feeds

We have two models here: Post and Comment. The data we would like store are:

For Post:

	Title

	Text Content

	Slug

	Created Date

	Author

For Comment:

	Name

	Website

	Email

	Text Content

	Post related to this comment

	Created Date

Note

Since we want anonymous to be able to comment on a post, we are not relating the comment poster
to a registered user.

We want the author field of the post to be mapped to a registered user and the post field
to be mapped to a valid Post. As we shall see, we will ForeignKeys to the appropriate models
to manage these.

Models:

We have already seen how to create and integrate an app into our project, so I will start with the models

from django.db import models
from django.template.defaultfilters import slugify

from django.contrib.auth.models import User

class Post(models.Model):
 title = models.CharField(max_length=100)
 slug = models.SlugField(unique=True)
 text = models.TextField()
 created_on = models.DateTimeField(auto_now_add=True)
 author = models.ForeignKey(User, on_delete=models.CASCADE)

 def __unicode__(self):
 return self.title

 @models.permalink
 def get_absolute_url(self):
 return ('blog_post_detail', (),
 {
 'slug' :self.slug,
 })

 def save(self, *args, **kwargs):
 if not self.slug:
 self.slug = slugify(self.title)
 super(Post, self).save(*args, **kwargs)

class Comment(models.Model):
 name = models.CharField(max_length=42)
 email = models.EmailField(max_length=75)
 website = models.URLField(max_length=200, null=True, blank=True)
 text = models.TextField()
 post = models.ForeignKey(Post, on_delete=models.CASCADE)
 created_on = models.DateTimeField(auto_now_add=True)

 def __unicode__(self):
 return self.text

Quite a few new things here, let’s analyze them:

	slug field - it is used for storing slugs (e.g. this-is-a-slug). SEO or something.

	We will be using slugs in the url to fetch a blog post, so this must be unique.

	slugify is a helper function to get slug from a string. We won’t need to get the slug from the form,
we will generate it ourself using slugify

	To autogenerate the slug, we override the model save method, whose signature is save(self, *args, **kwargs)
We set self.slug to the slug generated by slugify and call the parent save method.

	This ensures that every time a model is saved, it will have a slug field.

	The get_absolute_url of the Post model points to the blog_post_detail which takes a slug parameter.
This is the Post detail view, and it fetches the post based on the slug. We will soon see how this is implemented.

	model.ForeignKey is a ForeignKey field which can be used to link this model to any other model. Here we want to link the author
field to a User, which is django’s model for a user. It comes from django.contrib.auth app, which is another useful package
shipped with django.

	Similarly to link a Comment to a Post we have a ForeignKey from in the post field of the comment.

	We won’t need the author field from the Post form either, but we will fill it up in the view, where we have access to the
logged in user details

Views:

The views we would need are:

	Admin should be able to login

	Add/Edit a post - restricted to admin

	View a blog post

	Comment on a blog post

We need to customize our forms to only display fields which need user input, because we will take care of the rest. For example, we have already
seen how to autofill slug field. Next, we would like to autofill post for Comment and author for Post in the view. Heres our
blog/forms.py

from django import forms

from .models import Post, Comment

class PostForm(forms.ModelForm):
 class Meta:
 model = Post
 exclude = ['author', 'slug']

class CommentForm(forms.ModelForm):
 class Meta:
 model = Comment
 exclude = ['post']

For login, we will use django.contrib.auth.views.login view which is included in the contrib.auth app. It expects a registration/login.html
which we will steal from django/contrib/admin/templates/admin/login.html. We will include the login url in the project urls.

from django.contrib import admin
from django.urls import path, include
from django.contrib.auth.views import login

urlpatterns = [
 path('accounts/login/', login),
 path('admin/', admin.site.urls),
 path('pastebin/', include('pastebin.urls')),
 path('blog/', include('blog.urls')),
]

In templates/registration/login.html, copy contents from django/contrib/admin/templates/admin/login.html

For the others, we will write custom views in blog/views.py.

from django.contrib.auth.decorators import user_passes_test
from django.shortcuts import redirect, render_to_response, get_object_or_404, render

from .models import Post
from .forms import PostForm, CommentForm

@user_passes_test(lambda u: u.is_superuser)
def add_post(request):
 form = PostForm(request.POST or None)
 if form.is_valid():
 post = form.save(commit=False)
 post.author = request.user
 post.save()
 return redirect(post)
 return render(request, 'blog/add_post.html',{ 'form': form })

def view_post(request, slug):
 post = get_object_or_404(Post, slug=slug)
 form = CommentForm(request.POST or None)
 if form.is_valid():
 comment = form.save(commit=False)
 comment.post = post
 comment.save()
 return redirect(request.path)
 return render(request, 'blog/blog_post.html',{'post': post,'form': form,})

Note:

	The user_passes_test decorator whether the user is admin or not. If not, it will redirect the user to login page.

	We are using the ModelForms defined in forms.py to autogenerate forms from our Models.

	ModelForm includes a save method (just like a Models save method) which saves the model data to the database.

	commit=False on a form save gives us the temporary Model object so that we can modify it and save permanently.
Here, we have used it to autofill the author of Post and post of Comment

	redirect is a shortcut that redirects using HttpResponseRedirect to another url or a model’s get_absolute_url property.

Templates:

The corresponding templates for these views would look like:

blog/templates/blog/add_post.html:

<h2>Hello {{ user.username }}</h2>

<h2>Add new post</h2>
<form action="" method="POST">
 {% csrf_token %}
 <table>
 {{ form.as_table }}
 </table>
 <input type="submit" name="add" value="Add" />
</form>

blog/templates/blog/blog_post.html:

<h2>{{ post.title }}</h2>
<div class="content">
 <p>
 {{ post.text }}
 </p>

 Written by {{ post.author }} on {{ post.created_on }}

</div>

{% if post.comment_set.all %}
<h2>Comments</h2>
<div class="comments">
 {% for comment in post.comment_set.all %}

 {{ comment.name }} said on {{ comment.created_on }}

 <p>
 {{ comment.text }}
 </p>
 {% endfor %}
</div>
{% endif %}

<h2>Add Comment</h2>

<form action="" method="POST">
 {% csrf_token %}
 <table>
 {{ form.as_table }}
 </table>
 <input type="submit" name="submit" value="Submit" />
</form>

Note

Since Comment has a ForeignKey to Post, each Post object automatically gets a
comment_set property which provides an interface to that particular Post’s comments.

Sessions:

So far we have most of the blog actions covered. Next, let’s look into sessions:

Suppose we want to store the commenter’s details in the session so that he/she does not have to fill them again.

from django.contrib.auth.decorators import user_passes_test
from django.shortcuts import redirect, render_to_response, get_object_or_404, render

from .models import Post
from .forms import PostForm, CommentForm

@user_passes_test(lambda u: u.is_superuser)
def add_post(request):
 form = PostForm(request.POST or None)
 if form.is_valid():
 post = form.save(commit=False)
 post.author = request.user
 post.save()
 return redirect(post)
 return render(request, 'blog/add_post.html',{ 'form': form })

def view_post(request, slug):
 post = get_object_or_404(Post, slug=slug)
 form = CommentForm(request.POST or None)
 if form.is_valid():
 comment = form.save(commit=False)
 comment.post = post
 comment.save()
 request.session["name"] = comment.name
 request.session["email"] = comment.email
 request.session["website"] = comment.website
 return redirect(request.path)
 form.initial['name'] = request.session.get('name')
 form.initial['email'] = request.session.get('email')
 form.initial['website'] = request.session.get('website')
 return render(request, 'blog/blog_post.html',{'post': post,'form': form,})

Note that the form.initial attribute is a dict that holds initial data of the form. A session lasts until the user logs out or
clears the cookies (e.g. by closing the browser). django identifies the session using sessionid cookie.

The default session backend is django.contrib.sessions.backends.db i.e. database backend, but it can be configured to file or cache backend as well.

Date based generic views:

Note

reference: https://docs.djangoproject.com/en/2.0/ref/class-based-views/generic-date-based/

Add code of date based views to the blog/views.py so as to make it work.

from django.contrib.auth.decorators import user_passes_test
from django.shortcuts import redirect, render_to_response, get_object_or_404, render
from django.views.generic.dates import MonthArchiveView, WeekArchiveView

from .models import Post
from .forms import PostForm, CommentForm

@user_passes_test(lambda u: u.is_superuser)
def add_post(request):
 form = PostForm(request.POST or None)
 if form.is_valid():
 post = form.save(commit=False)
 post.author = request.user
 post.save()
 return redirect(post)
 return render(request, 'blog/add_post.html',{ 'form': form })

def view_post(request, slug):
 post = get_object_or_404(Post, slug=slug)
 form = CommentForm(request.POST or None)
 if form.is_valid():
 comment = form.save(commit=False)
 comment.post = post
 comment.save()
 request.session["name"] = comment.name
 request.session["email"] = comment.email
 request.session["website"] = comment.website
 return redirect(request.path)
 form.initial['name'] = request.session.get('name')
 form.initial['email'] = request.session.get('email')
 form.initial['website'] = request.session.get('website')
 return render(request, 'blog/blog_post.html',{'post': post,'form': form,})

class PostMonthArchiveView(MonthArchiveView):
 queryset = Post.objects.all()
 date_field = "created_on"
 allow_future = True

class PostWeekArchiveView(WeekArchiveView):
 queryset = Post.objects.all()
 date_field = "created_on"
 week_format = "%W"
 allow_future = True

We will use date based generic views to get weekly/monthly archives for our blog posts:

from django.urls import path, include
from .views import view_post, add_post, PostMonthArchiveView, PostWeekArchiveView

urlpatterns = [
 path('post/<str:slug>', view_post, name='blog_post_detail'),
 path('add/post', add_post, name='blog_add_post'),
 path('archive/<int:year>/month/<int:month>', PostMonthArchiveView.as_view(month_format='%m'), name='blog_archive_month',),
 path('archive/<int:year>/week/<int:week>', PostWeekArchiveView.as_view(), name='blog_archive_week'),
]

PostMonthArchiveView generic class based views outputs to post_archive_month.html and PostWeekArchiveView to post_archive_week.html

<h2>Post archives for {{ month|date:"F" }}, {{ month|date:"Y" }}</h2>

 {% for post in object_list %}

 {{ post.title }}

 {% endfor %}

[image: _images/post_archive_month.png]
<h2>Post archives for week {{ week|date:"W" }}, {{ week|date:"Y" }}</h2>

 {% for post in object_list %}

 {{ post.title }}

 {% endfor %}

[image: _images/post_archive_week.png]
Now, blog archives should be accessible from /blog/archive/2018/month/03 or /blog/archive/2018/week/16

Chapter 5. Building a Wiki

A wiki application:

In this chapter, we will build a wiki from scratch. Basic functionality includes:

	Article Management (CRUD) with ReST support

	Audit trail for articles

	Revision history

Article Management:

This is similar to our last app (blog) in many ways. Significant changes would be:

	Allow administrator to add/edit an article.

	Allow ReST input instead of just plain text.

	Keep track of all edit sessions related to an article.

To demonstrate custom model managers, we would like to show only ‘published’ articles on the index page.

Let’s write down the models:

from django.db import models
from django.contrib.auth.models import User
from django.template.defaultfilters import slugify

class PublishedArticlesManager(models.Manager):
 def get_query_set(self):
 return super(PublishedArticlesManager, self).get_query_set().filter(is_published=True)

class Article(models.Model):
 """Represents a wiki article"""

 title = models.CharField(max_length=100)
 slug = models.SlugField(max_length=50, unique=True)
 text = models.TextField(help_text="Formatted using ReST")
 author = models.ForeignKey(User, on_delete=models.CASCADE)
 is_published = models.BooleanField(default=False, verbose_name="Publish?")
 created_on = models.DateTimeField(auto_now_add=True)
 objects = models.Manager()
 published = PublishedArticlesManager()

 def __unicode__(self):
 return self.title

 def save(self, *args, **kwargs):
 if not self.slug:
 self.slug = slugify(self.title)
 super(Article, self).save(*args, **kwargs)

 @models.permalink
 def get_absolute_url(self):
 return ('wiki_article_detail', (), {'slug': self.slug})

class Edit(models.Model):
 """Stores an edit session"""

 article = models.ForeignKey(Article, on_delete=models.CASCADE)
 editor = models.ForeignKey(User, on_delete=models.CASCADE)
 edited_on = models.DateTimeField(auto_now_add=True)
 summary = models.CharField(max_length=100)

 class Meta:
 ordering = ['-edited_on']

 def __unicode__(self):
 return "%s - %s - %s" % (self.summary, self.editor, self.edited_on)

 @models.permalink
 def get_absolute_url(self):
 return ('wiki_edit_detail', self.id)

Most of the code should be familiar, some things that are new:

	The Article model will hold all articles, but only those with is_published set to True will be displayed on the front page.

	We have a defined a custom model manager called PublishedArticlesManager which is a queryset that only returns the published articles.

	Non-published articles would be used only for editing. So, we retain the default model manager by setting objects to models.Manager

	Now, to fetch all articles, one would use Articles.objects.all, while Artilces.published.all would return only published articles.

	A custom manager should subclass models.Manager and define the custom get_query_set property.

	The Edit class would hold an edit session by a registered user on an article.

	We see the use of verbose_name and help_text keyword arguments. By default, django will replace _ with spaces and Capitalize
the field name for the label. This can be overridden using verbose_name argument. help_text will be displayed below a field in
the rendered ModelForm

	The ordering attribute of meta class for Edit defines the default ordering in which edits will be returned. This can also be done
using order_by in the queryset.

Now, we will need urls similar to our previous app, plus we would need a url to see the article history.

from django.urls import path, include
from .views import add_article, edit_article, article_history, ArticleList, ArticleDetail

urlpatterns = [
 path('', ArticleList.as_view(), name='wiki_article_index'),
 path('article/<str:slug>',ArticleDetail.as_view(),name='wiki_article_detail'),
 path('history/<str:slug>', article_history, name='wiki_article_history'),
 path('add/article', add_article, name='wiki_article_add'),
 path('edit/article/<str:slug>', edit_article, name='wiki_article_edit'),
]

Note that:

	We will use the DetailView generic views for the article index page and detail page.

	Similarly, it would be better to write down custom views for edit article and article history pages.

Here are the forms we will need:

from django import forms

from .models import Article, Edit

class ArticleForm(forms.ModelForm):
 class Meta:
 model = Article
 exclude = ['author', 'slug']

class EditForm(forms.ModelForm):
 class Meta:
 model = Edit
 fields = ['summary']

Here:

	We are excluding author and slug which will be autofilled.

	We are inluding the summary field in Edit model only. The other fields (article, editor, edited_on) will be autofilled.

In our custom views:

from django.contrib.auth.decorators import login_required
from django.contrib import messages
from django.shortcuts import redirect, render, get_object_or_404
from django.views.generic.list import ListView
from django.views.generic.detail import DetailView
from django.http import HttpResponse

from .models import Article, Edit
from .forms import ArticleForm, EditForm

@login_required
def add_article(request):
 form = ArticleForm(request.POST or None)
 if form.is_valid():
 article = form.save(commit=False)
 article.author = request.user
 article.save()
 msg = "Article saved successfully"
 messages.success(request, msg, fail_silently=True)
 return redirect(article)
 return render(request, 'wiki/article_form.html', { 'form': form })

@login_required
def edit_article(request, slug):
 article = get_object_or_404(Article, slug=slug)
 form = ArticleForm(request.POST or None, instance=article)
 edit_form = EditForm(request.POST or None)
 if form.is_valid():
 article = form.save()
 if edit_form.is_valid():
 edit = edit_form.save(commit=False)
 edit.article = article
 edit.editor = request.user
 edit.save()
 msg = "Article updated successfully"
 messages.success(request, msg, fail_silently=True)
 return redirect(article)
 return render(request, 'wiki/article_form.html',{'form': form, 'edit_form': edit_form, 'article': article})

def article_history(request, slug):
 article = get_object_or_404(Article, slug=slug)
 queryset = Edit.objects.filter(article__slug=slug)
 return render(request, 'wiki/edit_list.html',{'article': article, 'queryset': queryset})

class ArticleList(ListView):
 template_name = "wiki/article_list.html"
 def get_queryset(self):
 return Article.objects.all()

class ArticleDetail(DetailView):
 model = Article
 template_name = "wiki/article_detail.html"

	We are using the login_required decorator to only allow logged-in users to add/edit articles in our case logged in administrator.

	get_object_or_404 is a shortcut method which gets an object based on some criteria. While the get method throws an
DoesNotExist when no match is found, this method automatically issues a 404 Not Found response. This is useful when getting an
object based on url parameters (slug, id etc.)

	redirect, as we have seen, would issue a HttpResponseRedirect on the article's get_absolute_url property.

	edit_article includes two forms, one for the Article model and the other for the Edit model. We save both the forms one by one.

	Passing instance to the form will populate existing data in the fields.

	As planned, the author field of article and editor, article fields of Article and Edit respectively, are filled up
before commiting save.

	article_history view first checks if an article with the given slug exists. If yes, it forwards the request to the object_list generic
view. We also pass the article .

	Note the filter on the Edit model’s queryset and the lookup on the related Article's slug.

To display all the articles on the index page:

wiki/templates/wiki/article_list.html:

{% if object_list %}

<h2>Recent Articles</h2>

 {% for article in object_list %}

 {{ article.title }}

 {% endfor %}

{% else %}
<h2>No articles have been published yet.</h2>
{% endif %}

Create new article

[image: _images/wikilists.png]
We will include links to edit and view history in the article detail page:

wiki/templates/wiki/article_detail.html:

{% if messages %}
 <div class="messages">

 {% for message in messages %}
 <li class="{{ message.tag }}">
 {{ message }}

 {% endfor %}

 </div>
{% endif %}

{% if not object.is_published %}
 <label>Note: This article has not been published yet</label>
{% endif %}

<h2>{{ object.title }}</h2>

<p>
{{ object.text|restructuredtext }}
</p>

<h3>Actions<h3>

 Edit this article

 View article history

See All

[image: _images/wikidetail.png]
Here’s the form that would be used to create/edit an article:

wiki/templates/wiki/article_form.html

{% if article %}
 <h1>Edit article {{ article }}</h1>
{% else %}
 <h1>Create new article</h1>
{% endif %}

<form action="" method="POST">
 {% csrf_token %}
 <table>
 {{ form.as_table }}
 {{ edit_form.as_table }}
 </table>
 <input type="submit" name="submit" value="Submit">
</form>

[image: _images/wikiform.png]
Note that the same form is used for add article and edit article pages. We pass the article context variable from edit page, so
we can use it to identify if this is an add or edit page. We also render the edit_form passed from edit page. Rendering an undefined
variable does not throw any error in the template, so this works fine in the add page.

The article history template:

wiki/templates/wiki/edit_list.html

<h2>History</h2>

<h3>{{ article }}</h3>

<table border="1" cellspacing="0">
 <thead>
 <th>Edited</th>
 <th>User</th>
 <th>Summary</th>
 </thead>
 <tbody>
 {% for edit in object_list %}
 <tr>
 <td>{{ edit.edited_on }}</td>
 <td>{{ edit.editor }}</td>
 <td>{{ edit.summary }}</td>
 </tr>
 {% endfor %}
 <tr>
 <td>{{ article.created_on }}</td>
 <td>{{ article.author }}</td>
 <td>New article created</td>
 </tr>
 </tbody>
</table>

<< Back

Displays a table with the history.

[image: _images/wikihistory.png]

Chapter 6. Building a Quora like site

Topics in this chapter:

We have covered basics in last few chapters, like Generic Views, template languages, ORM, interaction with django admin etc. Now in this chapter we will be creating Custom User, who will be able to access the Qusetion and answers in the Quora like app.

Quora like Application:

We have checked Quora for checking many qusetions in our past. Qusetions may be both technical or non technical. In this tutorial we will be creating a Qura like application but not exactly the Quora.

Application Includes:

	Registering custom users (Substitute of django’s admin user)

	Custom Users Login/Logout Functionality

	Questions asked by users.

	Answered Questions by Users

	Dashboard user specific.

Django features to learn in this chapter:

	Class Based Views

	Basics of Django Testing

	Customising Users

Lets Begin

We will be creating a project from scratch, lets brush-up !!!

$ django-admin startproject quora
$ cd quora
$ python manage.py startapp core // Custom User Trick

Note

Never use the built-in Django User model directly, even if the built-in Django User implementation fulfill all the requirements of your application. Once you are done with customising your Custom user then only do makemigrations & migrate

Make custom user:

	Step 1): Goto core/models.py and add this

from django.db import models
from django.contrib.auth.models import AbstractUser

class User(AbstractUser):
 pass

	Step 2): In your settings.py file add a line just after ALLOWED_HOSTS = [].

AUTH_USER_MODEL = 'core.User' // It can be kept anywhere in the file but good to keep just after Allowed hosts.

Note

Don’t forget to add your newly created app to installed apps in settings.py file.

INSTALLED_APPS = [
 'django.contrib.admin',
 . . .
 . . .
 'core',
]

Congratulations you have customised your Django user Model. now lets migrate changes.

$ python manage.py makemigrations
$ python manage.py migrate
$ python manage.py createsuperuser // follow the instructions

We will now create the Custom user’s entry in Django Admin, as by the above process we won’t be able to see its entry in Django admin’s dashboard. So , in core/admin.py we should add :

from django.contrib import admin
from django.contrib.auth.admin import UserAdmin
from .models import User

admin.site.register(User, UserAdmin)

Class Based Views

Class-based views provide an alternative way to implement views as Python objects instead of functions. They do not replace function-based views, but have certain differences and advantages when compared to function-based views:

	Organization of code related to specific HTTP methods (GET, POST, etc.) can be addressed by separate methods instead of conditional branching.

	Object oriented techniques such as mixins (multiple inheritance) can be used to factor code into reusable components.

Example

from django.http import HttpResponse
// Function Based View.
def my_view(request):
 if request.method == 'GET':
 # <view logic>
 return HttpResponse('result')

from django.http import HttpResponse
from django.views import View
// Class Based View
class MyView(View):
 def get(self, request):
 # <view logic>
 return HttpResponse('result')

Register Custom User

Now that we are aware of Class Based View let’s implement user registration using the same.

Add the below code to core/forms.py

from django import forms
from .models import User

class RegisterForm(forms.ModelForm):
 password = forms.CharField(widget=forms.PasswordInput())

 class Meta:
 model = User
 fields = ['email', 'first_name', 'last_name', 'password', 'username']

We will now use the above forms in our views, add the below code to core/views.py.

from django.shortcuts import render
from .forms import RegisterForm
from django.contrib.auth import login
from django.contrib.auth.hashers import make_password

class RegisterView(FormView):

 def get(self, request):
 content = {}
 content['form'] = RegisterForm
 return render(request, 'register.html', content)

 def post(self, request):
 content = {}
 form = RegisterForm(request.POST, request.FILES or None)
 if form.is_valid():
 user = form.save(commit=False)
 user.password = make_password(form.cleaned_data['password'])
 user.save()
 login(request, user)
 return redirect(reverse('dashboard-view'))
 content['form'] = form
 template = 'register.html'
 return render(request, template, content)

There are few thing which we have imported like login(), make_password() etc, it will be good to know about them.

	To log a user in, from a view, use login(). It takes an HttpRequest object and a User object. login() saves the user’s ID in the session, using Django’s session framework.

	make_password creates a hashed password in the format used by this application. It takes one mandatory argument: the password in plain-text.

	we will talk about dashboard-view further in this tutorial. For now just relate it like, once you register yourself you will be redirected to the dashbord-view.

Its still not over we still have to make some modifications in settings.py , urls.py and adding of templates. If you have followed previous chapters you may try on your own. Still you can refer to content below.

Add below code to core/urls.py and quora/urls.py respectively.

from django.urls import path
from .views import RegisterView

urlpatterns = [
 path('register/', RegisterView.as_view(), name='register-view'),
]

// quora/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
 path('admin/', admin.site.urls),
 path('core/', include('core.urls')),
]

Now we will add a new directory to our project as project/templates in our case quora/templates. And inside templates directory add a new file templates/register.html and add the below code.

<form action="" method="POST">
{% csrf_token %}
<table>
 {{ form.as_table }}
</table>
<input type="submit" name="register" value="Register" />
</form>

Runserver and go to localhost:8000/core/register/

[image: _images/quora_register.png]
What next? Take some time and think what will be the next thing to do. And come back to te chapter.

Yes, you are right , after registering the user we will redirect him to his dashboard and also create a way by which he/she could login and logout from the application. And the code for this can be found below.

core/views.py

from django.shortcuts import render
from django.shortcuts import HttpResponseRedirect, redirect
from django.urls import reverse
from django.views.generic.edit import FormView
from django.utils.decorators import method_decorator
from django.views.decorators.csrf import csrf_exempt
from django.contrib.auth import authenticate
from django.contrib.auth import login, logout
from django.contrib.auth.hashers import make_password
from .models import User
from questans.models import Questions, Answers, QuestionGroups
from .forms import LoginForm, RegisterForm

class DashboardView(FormView):

 def get(self, request):
 content = {}
 if request.user.is_authenticated:
 user = request.user
 user.backend = 'django.contrib.core.backends.ModelBackend'
 ques_obj = Questions.objects.filter(user=user)
 content['userdetail'] = user
 content['questions'] = ques_obj
 ans_obj = Answers.objects.filter(question=ques_obj[0])
 content['answers'] = ans_obj
 return render(request, 'dashboard.html', content)
 else:
 return redirect(reverse('login-view'))

class RegisterView(FormView):

 @method_decorator(csrf_exempt)
 def dispatch(self, request, *args, **kwargs):
 return super(RegisterView, self).dispatch(request, *args, **kwargs)

 def get(self, request):
 content = {}
 content['form'] = RegisterForm
 return render(request, 'register.html', content)

 def post(self, request):
 content = {}
 form = RegisterForm(request.POST, request.FILES or None)
 if form.is_valid():
 save_it = form.save(commit=False)
 save_it.password = make_password(form.cleaned_data['password'])
 save_it.save()
 login(request, save_it)
 return redirect(reverse('dashboard-view'))
 content['form'] = form
 template = 'register.html'
 return render(request, template, content)

class LoginView(FormView):

 content = {}
 content['form'] = LoginForm

 @method_decorator(csrf_exempt)
 def dispatch(self, request, *args, **kwargs):
 return super(LoginView, self).dispatch(request, *args, **kwargs)

 def get(self, request):
 content = {}
 if request.user.is_authenticated:
 return redirect(reverse('dashboard-view'))
 content['form'] = LoginForm
 return render(request, 'login.html', content)

 def post(self, request):
 content = {}
 email = request.POST['email']
 password = request.POST['password']
 try:
 users = User.objects.filter(email=email)
 user = authenticate(request, username=users.first().username, password=password)
 login(request, user)
 return redirect(reverse('dashboard-view'))
 except Exception as e:
 content = {}
 content['form'] = LoginForm
 content['error'] = 'Unable to login with provided credentials' + e
 return render_to_response('login.html', content)

class LogoutView(FormView):

 def get(self, request):
 logout(request)
 return HttpResponseRedirect('/')

core/urls.py

from django.contrib import admin
from django.urls import path
from .views import LoginView, RegisterView, DashboardView, LogoutView

urlpatterns = [
 path('login/', LoginView.as_view(), name='login-view'),
 path('register/', RegisterView.as_view(), name='register-view'),
 path('dashboard/', DashboardView.as_view(), name='dashboard-view'),
 path('logout/', LogoutView.as_view(), name='logout-view'),
]

We have also configured two more templates i.e., templates/login.html and templates/dashboard.html with minimal functionality.

// login.html
<form action="" method="POST">
 {% csrf_token %}
 <table>
 {{ form.as_table }}
 </table>
 <input type="submit" name="login" value="Login" />
</form>

// dashboard.html
Logout
Welcome,
{{userdetail.username}}

Asked Questions.

{% for question in questions %}
{{question.title}}
{% endfor %}

Answers.
{% for answer in answers %}
{{answer.answer_text}} by {{answer.user.username}}
{% endfor %}

So, the login page looks like

[image: _images/quora_login.png]
and dashboard is like

[image: _images/quora_dashboard.png]
Wait, are we missing something ? Yes, till now we haven’t discussed about the adding Questions and Answers in the Quora app, which is the foundation for the application.

Create an app in django let’s name it as questans and add the below code to its models.

$ python manage.py startapp questans

Now in questans/models.py lets add the below code.

from django.db import models
from django.conf import settings
from django.utils.text import slugify

class Questions(models.Model):
 user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, null=True, blank=True)
 title = models.TextField()
 group = models.ForeignKey('QuestionGroups', on_delete=models.CASCADE, null=True, blank=True)
 created_on = models.DateTimeField(auto_now=True)
 updated_on = models.DateTimeField(auto_now_add=True)
 slug = models.SlugField()

 def save(self, *args, **kwargs):
 self.slug = slugify(self.title)
 super(Questions, self).save(*args, **kwargs)

 def __unicode__(self):
 return self.title

class Answers(models.Model):
 user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE)
 question = models.ForeignKey(Questions, on_delete=models.CASCADE)
 answer_text = models.TextField()
 is_anonymous = models.BooleanField(default=False)

 def __unicode__(self):
 return self.id

class QuestionGroups(models.Model):
 name = models.CharField(max_length=100)

 def __unicode__(self):
 return self.name

Things to note in above code

	In Question models we have created a slug field to make it more readable.

	We have also given flexibility for the user to save its answer anonymously.

	QuestionGroup is kept to differentiate question of different topics.

For now we can add questions and answers in the Quora app using its admin and make it more interactive in next part Quora with bootstrap. Add the below code to questans/admin.py.:align:

from django.contrib import admin
from .models import Questions, Answers, QuestionGroups

class AnswerInline(admin.TabularInline):
 model = Answers

class QuestionsAdmin(admin.ModelAdmin):

 inlines = [AnswerInline]
 class Meta:
 model = Questions

class QuestionGroupsAdmin(admin.ModelAdmin):

 class Meta:
 QuestionGroups

admin.site.register(Questions, QuestionsAdmin)
admin.site.register(QuestionGroups, QuestionGroupsAdmin)

Now our MVP of quora application is ready. We will discuss about Django’s Testing Framework.

Basics of Django Testing:

Django’s unit tests use a Python standard library module: unittest. This module defines tests using a class-based approach

We have described very basic example for testing our appication. Add the below code to core/tests.py

from django.test import TestCase
from .models import User

class LogInTest(TestCase):
 def setUp(self):
 self.credentials = {
 'username': "demo",
 'email': 'demo@gmail.com',
 'password': 'secret',
 'first_name': 'demo',
 'last_name': 'user',
 }
 User.objects.create_user(**self.credentials)

 def test_register(self):
 response = self.client.post('/core/register/', self.credentials, follow=True)
 self.assertEqual(response.status_code, 200)

 def test_user(self):
 user = User.objects.get(username="demo")
 self.assertEqual(user.username, "demo")

Run tests using the below command.

$ python manage.py test

Chapter 7. Building a Project management application

(Topics introduced: File uploads, Integrating with Amazon S3, Complex RSS feeds-builds on chapter 4, Generating graphics using PIL. Sending Email with Django. Generating PDFs for pages. Exporting Data.)

(This and the next chapter would have larger amount of code than the previous chapters. These chapters would be a rehash of previous chapters, and would show how all these concepts work together.)

Diving in. [Code listing]

	File uploads. (We allows users to upload files in this app.)

	Using the Django file widget to upload files.
The problem with large files.
Using S3, as a file store.
Restricting access to S3 files, using Django authentication.

	Advanced RSS feeds.

	Generating RSS feeds per project.
Password protecting RSS feeds.

	Using PIL. (We generate charts for the project, so we use PIL)

	Using PIL to generate charts for the project.

	Sending email.

	The logs for the project are sent to the user via mail.

	Genrating PDFs.

	The reports for the project are available as PDF. This is done using HTML2PDF library.

	Exporting PDF.

	The data for a project is accessible in CSV format. Here we show exporting of a data on a per project, or a more granular level.

Chapter 8. Building a Social news Site

(Topics introduced: This chapter uses techniques learnt in previous chapters, and introduce Caching and Testing.)

Diving in. [Code listing]

	Introduce caching.

	The various caching backends.
Page level caching.
More granular caching.

	Introduce testing for Django.

	Testing Django models using doctests, and unittests.
Testing Django views.

Walking though the code.
In this chapter, we walk through the code, to see how all these fit together.

	Performance tuning the code.

	Logging the queries used, through a middleware.
When select related makes sense.
Profiling Django applications.

Index

 _images/post_archive_month.png
& & C | ® 127.00.1:8000/blog/archive/2018/month/03
Apps [H a5 B Django Helper € Dashboards

Post archives for March, 2018

_images/post_archive_week.png
& © C | ® 127.00.1:8000/blog/archive/2018/week/13
Apps [H a5 B Django Helper € Dashboards

Post archives for week 13, 2018

 Post2
o Postl

_static/comment-bright.png

_images/quora_register.png
Required. 150 characters o

r fewer. Letters, digits and @/./+/-/_ only.

_static/comment-close.png

_images/templatenotexist.png
< C | ® 127.00.:8000/pastebin/

Apps [H a5 B Django Helper € Dashboards

TemplateDoesNotExist at /pastebin/
pastebin/paste_form.html

Request Method: GET
Request URL: hitp://127.0.0.1:8000/pastebin/
Django Version: 2.0.3

Exception Type: TemplateDoesNotExist
Exception Value: pastebin/paste_forn.htal
Exception Location: Momelyashi.pyenviversions/djenibipython3.6/site-packages/djangoftemplatefioader.py in select_template, line 47
Python Executable: Momelyash.pyenviversions/djen/bin/python
Python Version: 3.6.4

Python Path: ['/home/yash/Desktop/Agilia/djenofdjango/apps/djen project’,
Thome/yash/ .pyenv/versions/3.6.4/1ib/python36..zip' ,

*/hoe/yash/ _pyenv/versions/3.6.4/Lib/python3.6" ,

*7home/yash/ _pyenv/versions/3.6.4/Lib/python3 6/1ib-dynload",

*/home/yash/ _pyenv/versions/djen/Lib/python3.6/site-packages' |

Tue, 3 Apr 2018 06:47:52 +0000

_static/ajax-loader.gif

_images/quora_dashboard.png
& & C | ® 127.00.1:8000/core/dashboard/
Apps [H a5 B Django Helper € Dashboards

Logout Welcome, yashr
‘Asked Questior
« Whatis capital of India ?

Answers.
« Delhi by krish
« Chennai by yash

_images/quora_login.png
C | ® 127.00.1:8000/core/login/
Apps [H a5 B Django Helper € Dasht

&

‘Email address:
Password:

_static/down.png

_images/wikihistory.png
<« C | ® 127.0.0.1:8000/wiki/history/welk
Apps [H a5 B Django Helper € Dashboards

History

Article object (3)

Edited [User] _Summary
[March 31, 2018, 1:45 p.m.|yash [New article created

<< Back

_images/wikilists.png
& - C | ® 12700.1:8000/wiki/

Apps [H a5 B Django Helper € Dashboards

Recent Articles

« Eirst Article Entry
« Second Article
« Third Article

Create new article

_static/comment.png

_images/wikidetail.png
€ - C | ® 1270018000 wiki/article/dslms

Apps [H a5 B Django Helper € Dashboards
Second Article

‘This is the second Article For Demo Purpose.

Actions

« Edit this artic]
« View article history

See All

_static/down-pressed.png

_images/wikiform.png
<« C | @ 127.0.0.1:8000/wiki/edit/article/welk
Apps [H a5 B Django Helper € Dashboards

Edit article Article object (3)

Title: Third Article
I have become a writer

Formatted using ReST
Publish?
Summary:

‘Submit

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Django Projects Cookbook

 		
 Chapter 1: Introduction

 		
 Virtual Environment (The Saviour)

 		
 Downloading and Installing

 		
 What is Django?

 		
 Django Features:

 		
 Inside Django

 		
 Chapter 2. Building a personal CD library.

 		
 Starting a django project

 		
 Getting started with the App

 		
 An Introduction to the Django ORM

 		
 Chapter 3. Building a Pastebin.

 		
 URL configuration - entry points

 		
 Named urls:

 		
 Templates - skeletons of our website:

 		
 Template Loaders:

 		
 Context:

 		
 Templatetags:

 		
 Common templatetags and template inheritance:

 		
 Filters:

 		
 Templates are not meant for programming:

 		
 Generic views - commonly used views:

 		
 Views:

 		
 Generic Views:

 		
 Extending Generic Views

 		
 Designing a pastebin app:

 		
 Sketch the models:

 		
 Configuring urls:

 		
 Writing custom management scripts:

 		
 Chapter 4. Building a Blog

 		
 Topics in this chapter:

 		
 Models with ForeignKeys:

 		
 ModelForms:

 		
 Custom views with forms and decorators:

 		
 Our blog app:

 		
 Models:

 		
 Views:

 		
 Templates:

 		
 Sessions:

 		
 Date based generic views:

 		
 Chapter 5. Building a Wiki

 		
 A wiki application:

 		
 Article Management:

 		
 Chapter 6. Building a Quora like site

 		
 Topics in this chapter:

 		
 Quora like Application:

 		
 Application Includes:

 		
 Django features to learn in this chapter:

 		
 Make custom user:

 		
 Class Based Views

 		
 Register Custom User

 		
 Basics of Django Testing:

 		
 Chapter 7. Building a Project management application

 		
 Chapter 8. Building a Social news Site

_static/up.png

_images/bookcover.png
UPDATED FOR
DJANGO 2.0

DJANGO “ =
PROJECTS
COOKBOOK

Learn advanced Django by
building real projects

django W, @ python @ MVSQRL

_static/up-pressed.png

_images/django_admin.png
| ® 127.0.0.1:8000/admin/login/Znext=/admin/

5 a5 M Django Helper € Dashboards

Username:

Password:

_images/django_first_page.png
¢ ¢ |@r001500 #0 0 &30 O o
i Apps [H a5 B DjangoHelper € Dashboards | m Other bookmarks

django View release notes for Django 2.0

The install worked successfully! Congratulations!

You are seeing this page because DEBUG=True is in
your settings file and you have not configured any
URLs.

©Q | Django Documentation , Tutorial: A Polling App 20 Django Community
Topics, references, & how-to's Get started with Django Connect, get help, or contribute

_images/cd_admin.png
€& C | ® 127.00.1:8000/admin/
Apps [H a5 B Django Helper € Dashboards

Site administration

UTHENTICATION AND AUTHORIZATION

Groups +Add & Change

users +Add & Change

cds +Add & Change

_images/detailview.png
< C | ® 1270
Apps [H a5 B Django Helper € Dashboards

Paste Details:

D12
'Name Creating New Paste.

This Post is for demo purpose, which will help you
to check the functionality of the detail view.

8000/pastebin/paste/12

Text
Created April 3, 2018, 7:10 am.
Modified April 3, 2018, 7:10 a.m.

_images/pastebincreate.png
<« C | ® 127.0.0.1:8000/pastebin/
Apps [H a5 B Django Helper € Dashboards

Create new Paste

Name:
Create

View All

