

Welcome to Django Packages’s documentation!

Django Packages solves the problem in the programming community of being able to easily identify good apps, frameworks, and packages. Ever want to know which is the most popular or well supported Python httplib replacement, web framework, or api tool? Django Packages solves that problem for you!

It does this by storing information on packages fetched from public APIs provided by PyPI, Github, and BitBucket, then provides extremely useful comparison tools for them.

Contributing to Django Packages

	Follow the installation instructions!

	Follow the contributing instructions!

Contents:

	Introduction

	License

	Installation

	Deployments

	Troubleshooting

	FAQ

	Settings

	Testing Instructions

	Management Commands

	PyPI Issues

	Team

	Contributing

	Repo Handlers

	Webservice APIv3

	Lessons Learned

Credits

For Django Dash 2010, @pydanny and @audreyr were scared of rabbits.

Since then the project has had many contributors.

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Ever want to know which is the most popular or well supported Python httplib replacement, web framework, or api tool? Django Packages solves that problem for you! Django Packages allows you to easily identify good apps, frameworks, and packages.

Django Packages stores information on fetched packages and provides easy comparison tools for them. Public APIs include PyPI, Github, and BitBucket.

The Site

A current example is live: http://www.djangopackages.org

Grids!

Grids let you compare packages. A grid comes with default comparison items and you can add features to get a more specific. We think comparison grids are an improvement over traditional tagging system because specificity helps make informed decisions.

Categories of Packages

The fixtures provide four categories: apps, frameworks, projects, and utilities.

What repo sites are supported?

	Github

	Bitbucket

License

	Copyright (c)

	
	Audrey & Daniel Roy Greenfeld and contributors.

	Colors and some design elements copied from djangoproject.com (c) Django Software Foundation: https://github.com/django/djangoproject.com/blob/master/LICENSE

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Installation

Do everything listed in this section to get your site up and running locally. If you run into problems, see the Troubleshooting section.

Pre-requisites

You need to install Docker [https://docs.docker.com/install/] and docker-compose [https://docs.docker.com/compose/install/].

Main instructions

These instructions install Django Packages on your computer, using Docker.

Git clone the project

Clone the Django Packages project using git:

git clone git@github.com:djangopackages/djangopackages.git
cd djangopackages

Set up the development environment

In order to run the project, you first need to add a file called .env.local.
The file holds all the configurable settings and secrets to run properly.

There’s an example file available. To get started, copy the file:

cp .env.local.example .env.local

Build Docker container

Now build the project using docker-compose:

docker-compose -f dev.yml build

Running the project

To start the project, run:

docker-compose -f dev.yml up

Then point your browser to http://localhost:8000 and start hacking!

Give yourself an admin account on the site

Create a Django superuser for yourself, replacing joe with your username/email:

docker-compose -f dev.yml run django python manage.py createsuperuser --username=joe --email=joe@example.com

And then login into the admin interface (/admin/) and create a profile for your user filling all the fields with any data.

Deployments

The only supported deployment is through Docker.

Contents:

	Foreword

	Stack

	Server Provisioning

	Backups

	When Things Go Wrong

Foreword

As of beginning 2016 the docker toolset is not quite there to provide a heroku like expierence
when deploying to production. A lot of parts are already there, but have a few quirks that need
to be adressed.

Because of that, the deployment strategy for djangopackages.org is a bit different from what you
read in the getting started with docker tutorials.

First, we don’t use docker-machine. It’s not reliable and has no team of maintainers comparable
to other distros like debian, ubuntu or rhel that manages security releases.

Second, there’s no way do daemonize the docker compose process. When the underlying VM is
restarded, the stack won’t start automatically.

The current strategy is:

	Use a virtual machine with a well patched OS (debian, ubuntu, RHEL), djangopackages.org is using

ubuntu 14.04
- Install docker, docker-compose, git and supervisord
- Clone the code on the server
- Let supervisord run it

Stack

The configuration in docker-compose.yml contains 4 services:

	postgres that powers the database

	django-a and django-b that runs the WSGI server and serves the app through gunicorn

	caddy that proxies incoming requests to the gunicorn server

	redis as cache

Server Provisioning

There’s a bootstrap script available, run:

curl https://raw.githubusercontent.com/pydanny/djangopackages/master/server_bootstrap.sh

This will install docker, docker-compose on ubuntu 14.04.

Backups

To create a backup, run:

docker-compose run postgres backup

To list backups, run:

docker-compose run postgres list-backups

To restore a backup, run:

docker-compose run postgres restore filename.sql

Backups are located at /data/djangopackages/backups as plain SQL files.

When Things Go Wrong

	Is docker running?:

service docker status

	Is supervisor and both daemonized processes running?:

supervisorctl status

	Are all services running?:

cd /code/djangopackages
docker-compose ps

	Check the logs for all services:

cd /code/djangopackages
docker-compose logs

	Check the logs for individual services:

cd /code/djangopackages
docker-compose logs postgres|django-a|django-b|caddy

Troubleshooting

Other problems

Don’t give up! Submit problems to http://github.com/djangopackages/djangopackages/issues. And don’t forget:

	Be polite! We are all volunteers.

	Spend the time to learn Github markup

FAQ

General

How did Django Packages get started?

	In 2010 We realized there was no effective method for finding apps in the Django community.

	After launch we realized it might be good to use the same software system for other package sets.

Are there any Case Studies?

	http://pycon.blip.tv/file/4878766

	http://www.slideshare.net/pydanny/django-packages-a-case-study

How can I contribute?

Read the page on contributions.

How can I add a listing for a new Package or an entirely new Grid?

	Go the Home page, https://www.djangopackages.org/

	Go to the left side section called “Add packages and grids”.

	Click the appropriate button, where a package is a program and a grid is a category.

What browsers does Django Packages support?

We do formal tests on Chrome, Safari and Firefox.

How hard is it to add support for a new repo?

We’ve done a lot of work to make it as straightforward as possible. At PyCon 2011 we launched our formal Repo Handler API.

Installation

What happened to the fixtures?

The effort to support databases besides PostGreSQL was hampered for long time, all caused by a third party package we’re not going to identify that caused grief in the use of fixtures. This was a significant issue in Django Packages, and used up a lot of development cycles.

So we use a Mock system of creating sample data in our tests and for running a development version of the site. To create some development data, just run:

docker-compose -f dev.yml run django python manage.py load_dev_data

Unsupported Repo Hosting Services

Django Packages supports GitHub and BitBucket. Here is some information about other repo hosting services.

Google Project Hosting

How come you don’t support google project hosting?

They don’t have an API. We’ve filed ticket #5088 and we hope the nice people there can close it in the near future. Google is part of the open source world and we would love to support projects using their hosting services.

What about the Google Project Hosting Issue API?

Django Packages doesn’t track a project’s tickets/issues.

What about just screen scraping their site?

Too brittle for our tastes. The Google Project hosting site uses a lot of JavaScript and AJAX to deliver content. Besides, we would like to think our fellow developers at Google will provide us with a really awesome, well-documented, stable API.

Launchpad

In 2011, when we provided support, their API client involved 5 MB of external dependencies, which is just plain silly for a RESTful API system. We also had a large number of failures by third-party contributors trying to work with their toolchain. We thought about creating a urlib/urllib2 (later requests) powered custom API client, but the demand for Launchpad support is too low to justify the work.

Since then, we’ve pulled all the Launchpad specific code out of Django Packages.

If you want launchpad support, we welcome pull requests.

Sourceforge

In 2011 we tried to provide support but their API was not adequate for our needs. Since then we’ve not had a request for Sourceforge support.

If you want Sourceforge support, we know their API has improved and we welcome pull requests.

Gitorious

We’ve had the odd request for Gitorious support. Their API is adequate and we welcome pull requests.

Settings

How to customize the settings to suit your needs.

ADMIN_URL_BASE (Default: r”^admin/”)

Used to control the URL for the admin in production.

FRAMEWORK_TITLE (Default: “Django”)

Used to create the name of the site.

PACKAGINATOR_SEARCH_PREFIX (Default: “django”)

Autocomplete searches for something like ‘forms’ was problematic because so many packages start with ‘django’. This prefix is accommodated in searches to prevent this sort of problem.

example:

PACKAGINATOR_SEARCH_PREFIX = 'django'

PACKAGINATOR_HELP_TEXT (Default: Included in settings.py)

Used in the Package add/edit form in both the admin and the UI, these are assigned to model form help text arguments. Takes a dict of the following items:

Example (also the default):

PACKAGINATOR_HELP_TEXT = {
 "REPO_URL" : "Enter your project repo hosting URL here.
Example: https://bitbucket.org/ubernostrum/django-registration",
 "PYPI_URL" : "Leave this blank if this package does not have a PyPI release.
What PyPI uses to index your package.
Example: django-registration"
}

Permissions Settings

Django Packages provides several ways to control who can make what changes to
things like packages, features, and grids. By default, a Django Packages project
is open to contributions from any registered user. If a given project would
like more control over this, there are two settings that can be used.

RESTRICT_PACKAGE_EDITORS
RESTRICT_GRID_EDITORS

If these are not set, the assumption is that you do not want to restrict
editing.

If set to True, a user must have permission to add or edit the given object.
These permissions are set in the Django admin, and can be applied per user, or per group.

Settings that are on by default

By default registered users can do the following:

Packages

	Can add package

	Can change package

Grids

	Can add Package

	Can change Package

	Can add feature

	Can change feature

	Can change element

In the default condition, only super users or those with permission can delete.

Testing permissions in templates

A context processor will add the user profile to every template context, the
profile model also handles checking for permissions:

{% if profile.can_edit_package %}
 <edit package UI here>
{% endif %}

The follow properties can be used in templates:

	can_add_package

	can_edit_package

	can_edit_grid

	can_add_grid

	can_add_grid_feature

	can_edit_grid_feature

	can_delete_grid_feature

	can_add_grid_package

	can_delete_grid_package

	can_edit_grid_element

Testing Instructions

Running the test suite

To run all of the Django Packages tests:

docker-compose -f dev.yml run django python manage.py test

To run tests for a particular Django Packages app, for example the feeds app:

docker-compose -f dev.yml run django python manage.py test feeds

Management Commands

package_updater

You can update all the packages with the following command:

docker-compose -f dev.yml run django python manage.py package_updater

Warning: This can take a long, long time.

searchv2_build

To populate the search engine, run:

docker-compose -f dev.yml run django python manage.py searchv2_build

pypi_updater

To update packages with the latest data on PyPi, run:

docker-compose -f dev.yml run django python manage.py pypi_updater

PyPI Issues

You may ask why the PyPI code is a bit odd in places. PyPI is an organically grown project and uses its own custom designed framework rather than the dominant frameworks that existed during its inception (these being Pylons, Django, TurboGears, and web.py). Because of this you get things like the API having in its package_releases() method an explicit license field that has been replaced by the less explicit list column in the very generic classifiers field. So we have to parse things like this to get a particular package’s license:

['Development Status :: 5 - Production/Stable', 'Environment :: Web Environment',
'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved
:: BSD License', 'Operating System :: OS Independent', 'Programming Language ::
Python', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP ::
Dynamic Content', 'Topic :: Internet :: WWW/HTTP :: WSGI', 'Topic :: Software
Development :: Libraries :: Application Frameworks', 'Topic :: Software
Development :: Libraries :: Python Modules']

The specification is here and this part of it just makes no sense to me:

http://docs.python.org/distutils/setupscript.html#additional-meta-data

Team

Project Leads

	Jannis Gebauer (@jayfk)

	Nikita Shupeyko (@webyneter)

Former Project Leads

	Audrey Roy Greenfeld <aroy@alum.mit.edu> (@audreyr)

	Daniel Roy Greenfeld <pydanny@gmail.com> (@pydanny)

Core Developer at Server Move 2012

	Randall Degges

Core Developers at DjangoCon 2011

	James Punteney

	Mike Johnson

	Taylor Mitchell

Core Developer at DataMigrationCon 2011

	Katharine Jarmul

Core Developers at PyCon 2011

	Gisle Aas

	Nate Aune

	Szilveszter Farkas

Core Developers at DjangoCon 2011

	James Punteney

	Jonas Obrist

	Taavi Taijala

Direct Contributors

	Aaron Kavlie

	Adam Saegebarth

	Alex Robbins

	Andrii Kurinny

	AnneTheAgile

	Baptiste Mispelon

	Brian Ball

	Bryan Weingarten

	Chris Adams

	Christopher Clark

	David Peters

	Dougal Matthews (@d0ugal)

	Emmanuelle Delescolle (@nanuxbe)

	Eric Spunagle

	Evgeny Fadeev

	Fábio C. Barrionuevo da Luz

	Flaviu Simihaian

	George Dorn

	Gisle Aas (Repo Man)

	idealatom

	Ilian Iliev (@IlianIliev)

	Jacob Burch

	James Pacileo

	James Punteney

	Jeff Schenck

	Jim Allman

	John M. Camara

	Jonas Obrist

	jrothenbuhler

	Kenneth Love

	Kenneth Reitz

	@kerridge0

	Kulbir Singh

	Leonardo Santagada (@santagada)

	Marc Tamlyn

	Marcin Lulek

	Mike Johnson

	Mike Fiedler

	Nate Aune

	Nolan Brubaker

	PA Parent

	Preston Holmes

	Randall Degges

	Rexhep Berlajolli (@rexhepberlajolli)

	Shubhendu Saurabh

	Skot Carruth

	Stuart Powers

	Szilveszter Farkas (Repo Man)

	Taavi Taijala

	Taylor Mitchell

	Tony Narlock

	Tom Brander

	Vasja Volin

	Vaibhav Jain

Indirect Contributors

The Django Software Foundation

Other Contributors

	The entire Python community for providing us the tools we needed to build this thing.

Contributing

Setup

Fork on GitHub

Before you do anything else, login/signup on GitHub and fork Django Packages from the GitHub project [https://github.com/djangopackages/djangopackages].

Clone your fork locally

If you have git-scm installed, you now clone your git repo using the following command-line argument where <my-github-name> is your account name on GitHub:

git clone git@github.com:<my-github-name>/djangopackages.git

Installing Django Packages

Follow our detailed installation instructions. Please record any difficulties you have and share them with the Django Packages community via our issue tracker [https://github.com/djangopackages/djangopackages/issues].

Issues!

The list of outstanding Django Packages feature requests and bugs can be found on our GitHub issue tracker [https://github.com/djangopackages/djangopackages/issues]. Pick an unassigned issue that you think you can accomplish, add a comment that you are attempting to do it, and shortly your own personal label matching your GitHub ID will be assigned to that issue.

Feel free to propose issues that aren’t described!

Tips

	starter labeled issues are deemed to be good low-hanging fruit for newcomers to the project, Django, or even Python.

	doc labeled issues must only touch content in the docs folder.

Setting up topic branches and generating pull requests

While it’s handy to provide useful code snippets in an issue, it is better for
you as a developer to submit pull requests. By submitting pull request your
contribution to Django Packages will be recorded by Github.

In git it is best to isolate each topic or feature into a “topic branch”. While
individual commits allow you control over how small individual changes are made
to the code, branches are a great way to group a set of commits all related to
one feature together, or to isolate different efforts when you might be working
on multiple topics at the same time.

While it takes some experience to get the right feel about how to break up
commits, a topic branch should be limited in scope to a single issue as
submitted to an issue tracker.

Also since GitHub pegs and syncs a pull request to a specific branch, it is the
ONLY way that you can submit more than one fix at a time. If you submit
a pull from your develop branch, you can’t make any more commits to your develop
without those getting added to the pull.

To create a topic branch, its easiest to use the convenient -b argument to git
checkout:

git checkout -b fix-broken-thing
Switched to a new branch 'fix-broken-thing'

You should use a verbose enough name for your branch so it is clear what it is
about. Now you can commit your changes and regularly merge in the upstream
develop as described below.

When you are ready to generate a pull request, either for preliminary review,
or for consideration of merging into the project you must first push your local
topic branch back up to GitHub:

git push origin fix-broken-thing

Now when you go to your fork on GitHub, you will see this branch listed under
the “Source” tab where it says “Switch Branches”. Go ahead and select your
topic branch from this list, and then click the “Pull request” button.

Here you can add a comment about your branch. If this in response to
a submitted issue, it is good to put a link to that issue in this initial
comment. The repo managers will be notified of your pull request and it will
be reviewed (see below for best practices). Note that you can continue to add
commits to your topic branch (and push them up to GitHub) either if you see
something that needs changing, or in response to a reviewer’s comments. If
a reviewer asks for changes, you do not need to close the pull and reissue it
after making changes. Just make the changes locally, push them to GitHub, then
add a comment to the discussion section of the pull request.

Pull upstream changes into your fork regularly

Django Packages is advancing quickly. It is therefore critical that you pull upstream changes from develop into your fork on a regular basis. Nothing is worse than putting in a days of hard work into a pull request only to have it rejected because it has diverged too far from develop.

To pull in upstream changes:

git remote add upstream https://github.com/opencomparison/opencomparison.git
git fetch upstream develop

Check the log to be sure that you actually want the changes, before merging:

git log upstream/develop

Then merge the changes that you fetched:

git merge upstream/develop

For more info, see http://help.github.com/fork-a-repo/

How to get your pull request accepted

We want your submission. But we also want to provide a stable experience for our users and the community. Follow these rules and you should succeed without a problem!

Run the tests!

Before you submit a pull request, please run the entire Django Packages test suite via:

docker-compose -f dev.yml run django python manage.py test

The first thing the core committers will do is run this command. Any pull request that fails this test suite will be rejected.

If you add code/views you need to add tests!

We’ve learned the hard way that code without tests is undependable. If your pull request reduces our test coverage because it lacks tests then it will be rejected.

For now, we use the Django Test framework (based on unittest).

Also, keep your tests as simple as possible. Complex tests end up requiring their own tests. We would rather see duplicated assertions across test methods then cunning utility methods that magically determine which assertions are needed at a particular stage. Remember: Explicit is better than implicit.

Don’t mix code changes with whitespace cleanup

If you change two lines of code and correct 200 lines of whitespace issues in a file the diff on that pull request is functionally unreadable and will be rejected. Whitespace cleanups need to be in their own pull request.

Keep your pull requests limited to a single issue

Django Packages pull requests should be as small/atomic as possible. Large, wide-sweeping changes in a pull request will be rejected, with comments to isolate the specific code in your pull request. Some examples:

	If you are making spelling corrections in the docs, don’t modify the settings.py file (pydanny [http://pydanny.com] is guilty of this mistake).

	Adding new Repo Handlers must not touch the Package model or its methods.

	If you are adding a new view don’t ‘cleanup’ unrelated views. That cleanup belongs in another pull request.

	Changing permissions on a file should be in its own pull request with explicit reasons why.

Follow PEP-8 and keep your code simple!

Memorize the Zen of Python:

>>> python -c 'import this'

Please keep your code as clean and straightforward as possible. When we see more than one or two functions/methods starting with _my_special_function or things like __builtins__.object = str we start to get worried. Rather than try and figure out your brilliant work we’ll just reject it and send along a request for simplification.

Furthermore, the pixel shortage is over. We want to see:

	package instead of pkg

	grid instead of g

	my_function_that_does_things instead of mftdt

Test any css/layout changes in multiple browsers

Any css/layout changes need to be tested in Chrome, Safari, Firefox, IE8, and IE9 across Mac, Linux, and Windows. If it fails on any of those browsers your pull request will be rejected with a note explaining which browsers are not working.

How pull requests are checked, tested, and done

First we pull the code into a local branch:

git checkout -b <branch-name> <submitter-github-name>
git pull git://github.com/<submitter-github-name/djangopackages.git develop

Then we run the tests:

python manage.py test --settings=settings.test

We finish with a merge and push to GitHub:

git checkout develop
git merge <branch-name>
git push origin develop

Repo Handlers

This document describes the Django Packages Repo Handler API.

Adding a new repo system like Github in Django Packages is a relatively straightforward task. You need to provide two things:

	Add a new repo handler in the apps.models.repos directory that follows the described API

	Add tests to check your work

	Document any special settings.

	Change the SUPPORTED_REPO to include the name of the new repo handler.

What if my target repo doesn’t support all the necessary fields?

Lets say you want to use GitBlarg, a new service whose API doesn’t provide the number of repo_watchers or participants. In order to handle them you would just set those values until such a time as GitBlarg would support the right data.

For example, as you can see in the apps.models.repos.base_handler.BaseHandler.fetch_metadata() method, the Package instance that it expects to see is a comma-seperated value:

def fetch_metadata(self, package):
 """ Accepts a package.models.Package instance:

 return: package.models.Package instance

 Must set the following fields:

 package.repo_watchers (int)
 package.repo_forks (int)
 package.repo_description (text)
 package.participants = (comma-seperated value)

 """
 raise NotImplemented()

So your code might do the following:

from GitBlargLib import GitBlargAPI
def fetch_metadata(self, package):

 # fetch the GitBlarg data
 git_blarg_data = GitBlargAPI.get(package.repo_name())

 # set the package attributes
 package.repo_watchers = 0 # GitBlagAPI doesn't have this so we set to 0
 package.repo_forks = git_blarg_data.forks
 package.repo_description = git_blarg_data.note
 package.participants = u"" # GitBlagAPI doesn't have this so we set to an empty string

 return package

How about cloning GitBlarg’s repos so we can get a better view of the data?

The problem is that developers, designers, and managers will happily put gigabytes of data into a git/hg/svn/fossil/cvs repo. For a single project that doesn’t sound like much, but when you are dealing with thousands of packages in a Django Packages instance the scale of the data becomes… well… terrifying. What is now a mild annoyance becomes a staggeringly large problem.

Therefore, pull requests on repo handlers that attempt to solve the problem this way will be summarily rejected.

Can I make a repo handler for Google Project Hosting?

Not at this time. Please read the FAQ.

Webservice APIv3

This is the APIv3 documentation for Django Packages. It is designed to be language and tool agnostic.

API Usage

This API is limited to read-only GET requests. Other HTTP methods will fail. Only JSON is provided.

API Reference

Representation Formats

Representation formats

	JSON.

	UTF-8.

Base URI

	URI

	Resource

	Methods

	<http-my-domain.com>/api/v3/

	Root

	GET

URIs

	URI

	Resource

	Methods

	/

	Index

	GET

	/categories/

	Category list

	GET

	/categories/{slug}/

	Category

	GET

	/grids/

	Grid list

	GET

	/grids/{slug}/

	Grid

	GET

	/grid_/{slug}/packages/

	Grid Packages list

	GET

	/packages/

	Package list

	GET

	/packages/{slug}/

	Package

	GET

	/users_/{slug}/

	User

	GET

Resources

Categories

Representation:

{
 "absolute_url": "/categories/apps/",
 "show_pypi": true,
 "slug": "apps",
 "title_plural": "Apps",
 "created": "2010-08-14T22:47:52",
 "description": "Small components used to build projects. An app is anything that is installed by placing in settings.INSTALLED_APPS.",
 "title": "App",
 "resource_uri": "/api/v3/categories/apps/",
 "modified": "2010-09-12T22:42:58.053"
}

Grids

Representation:

{
 absolute_url: "/grids/g/cms/",
 created: "Sat, 14 Aug 2010 20:12:46 -0400",
 description: "This is a list of Content Management System applications for Django.",
 is_locked: false,
 modified: "Sat, 11 Sep 2010 14:57:16 -0400",
 packages: [
 "/api/v3/package/django-cms/",
 "/api/v3/package/mezzanine/",
 "/api/v3/package/django-page-cms/",
 "/api/v3/package/django-lfc/",
 "/api/v3/package/merengue/",
 "/api/v3/package/philo/",
 "/api/v3/package/pylucid/",
 "/api/v3/package/django-gitcms/",
 "/api/v3/package/django-simplepages/",
 "/api/v3/package/djpcms/",
 "/api/v3/package/feincms/",
],
 resource_uri: "/api/v3/grid/cms/",
 slug: "cms",
 title: "CMS"
}

Packages

Representation:

{
 "last_fetched": "2015-02-28T12:04:58.537",
 "slug": "django",
 "resource_uri": "/api/v3/packages/django/",
 "pypi_url": "http://pypi.python.org/pypi/Django",
 "repo_url": "https://github.com/django/django",
 "absolute_url": "/packages/p/django/",
 "commits_over_52": "67,38,76,55,35,34,52,52,35,42,63,61,46,61,70,65,43,48,34,24,57,56,44,58,54,57,51,54,36,48,28,45,38,44,53,30,69,91,66,65,36,45,68,54,64,111,50,36,60,31,0,0",
 "category": "/api/v3/categories/frameworks/",
 "created_by": null,
 "created": "2010-08-14T22:50:35",
 "repo_description": "The Web framework for perfectionists with deadlines.",
 "commit_list": "[78, 36, 42, 71, 62, 48, 41, 59, 48, 47, 33, 53, 33, 23, 28, 36, 45, 34, 36, 25, 38, 52, 45, 43, 111, 115, 58, 49, 52, 62, 50, 29, 25, 14, 20, 55, 97, 109, 60, 32, 38, 47, 60, 53, 49, 26, 43, 48, 55, 29, 73, 0]",
 "repo_watchers": 13087,
 "last_modified_by": null,
 "title": "Django",
 "grids": [
 "/api/v3/grids/file-streaming/",
 "/api/v3/grids/this-site/"
],
 "repo_forks": 5113,
 "pypi_version": "1.8b1",
 "documentation_url": "https://djangoproject.com",
 "participants": "adrianholovaty,malcolmt,freakboy3742,timgraham,aaugustin,claudep,jezdez,jacobian,spookylukey,alex,ramiro,andrewgodwin,gdub,akaariai,kmtracey,jbronn,pydanny,audreyr,etc",
 "modified": "2015-03-01T08:00:39.708",
 "usage_count": 356
}

User

Representation:

{
 "username": "jezdez",
 "last_login": "2014-09-21T07:37:17.619",
 "date_joined": "2010-08-21T07:14:03",
 "created": "2011-09-09T17:10:29.509",
 "absolute_url": "/profiles/jezdez/",
 "google_code_url": null,
 "github_account": "jezdez",
 "bitbucket_url": "jezdez",
 "modified": "2014-09-21T07:37:17.598",
 "resource_uri": "/api/v3/users/jezdez/"
}

Lessons Learned

Some of these are common sense, and others we learned during the events in question.

DjangoCon 2010

	For sprints, show up early the first day.

	Stay in a hotel near the sprint. If you have to spend an hour going each way that’s up to 20% of sprint time you are wasting each day. If necessary, switch hotels.

PyCon 2011

Getting Sprinters

	Mark easy stuff for beginners. After they knock out an issue or two the stuff they’ve learned lets them handle harder tasks.

	Sit-down with each new contributor individually for at least 15 minutes to help them through the installation process. They get started much faster. you’ll spot the mistakes in your docs, and they’ll hang around longer.

	If you see anyone during the sprints who looks lost or without a project, invite them to join you.

	If you have a full sprint table and a non-sprinter is sitting with you get them to contribute something small. They go from being a distraction to a valued member of the team.

	Go out for dinner at a fun restaurant the first night with just your team. On other nights try to keep meals short since long meals mean hours of missed sprint time.

Assigning Work

	Assign issues in the issue tracker to specific people. No one should work a task unless they have had it assigned to them. This way you avoid duplication of effort.

	Tell people if they get stuck on something for 30 minutes to ask questions. We are all beginners and the hardest problems often become simple spelling mistakes when you try and explain them.

Be conservative

You don’t want to stall people from doing the work they are trying to get done. So that means:

	Keep the database as stable as possible during a large sprint.

	Freeze the design during a sprint. Have designer-oriented people prettify neglected views e.g. the login page, server error pages.

Helping people get stuff done

	If you are leading a sprint don’t expect to get any code done yourself. Your job is to facilitate other people to have fun hacking, learning, and getting things done.

	Go around and ask questions of your sprinters periodically. People are often too shy to come up to you but if you go up to them they’ll readily ask for help.

	Update your install documentation as your sprinters discover problems.

	If you have new dependencies, let everyone know as soon and as loudly as possible.

	Good documentation is as important as code. When people ask questions rather than just answering the question, walk them through the specific answer in your docs. If the answer doesn’t exist, document it yourself and have them help you write the answer.

	Demonstrate coverage.py to the sprinters, show them how to write tests, and provide good test examples. Good test coverage will save everyone a lot of grief during development and deployment.

	Have your code working on all major platforms with installation instructions for each platform. Your code on all platforms will be that much stable for it.

	Have a portable drive with the dependencies for your project on it. You can never count on the network being reliable at a sprint.

	If a beginning developer asks for help, try to get your advanced sprinters to answer the questions and possibly pair with them for a while.

	When someone is working really hard and is trying to focus, run interference for them.

Pull Requests

	Provide good and bad pull request examples.

	Don’t be afraid of sounding stupid if you don’t understand someone’s pull request. If it confuses you it’s going to confuse newcomers even more and hence make your code unmaintainable. Remember that simplicity is a virtue and is one of the best things of projects like Python, Pyramid, and Flask.

	Each time someone submits a pull request, ask them if they’ve run the full test suite. Yeah, it’s repetitive but they’ll thank you for it.

	If someone submits a broken pull request, see if you can work out the issue with them. If the problem is not easily corrected, ask them to fix the problem and resubmit the pull request.

Index

 _static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to Django Packages’s documentation!

 		
 Introduction

 		
 The Site

 		
 Grids!

 		
 Categories of Packages

 		
 What repo sites are supported?

 		
 License

 		
 Installation

 		
 Pre-requisites

 		
 Main instructions

 		
 Git clone the project

 		
 Set up the development environment

 		
 Build Docker container

 		
 Running the project

 		
 Give yourself an admin account on the site

 		
 Deployments

 		
 Foreword

 		
 Stack

 		
 Server Provisioning

 		
 Backups

 		
 When Things Go Wrong

 		
 Troubleshooting

 		
 Other problems

 		
 FAQ

 		
 General

 		
 How did Django Packages get started?

 		
 Are there any Case Studies?

 		
 How can I contribute?

 		
 How can I add a listing for a new Package or an entirely new Grid?

 		
 What browsers does Django Packages support?

 		
 How hard is it to add support for a new repo?

 		
 Installation

 		
 What happened to the fixtures?

 		
 Unsupported Repo Hosting Services

 		
 Google Project Hosting

 		
 Launchpad

 		
 Sourceforge

 		
 Gitorious

 		
 Settings

 		
 ADMIN_URL_BASE (Default: r”^admin/”)

 		
 FRAMEWORK_TITLE (Default: “Django”)

 		
 PACKAGINATOR_SEARCH_PREFIX (Default: “django”)

 		
 PACKAGINATOR_HELP_TEXT (Default: Included in settings.py)

 		
 Permissions Settings

 		
 Settings that are on by default

 		
 Testing permissions in templates

 		
 Testing Instructions

 		
 Running the test suite

 		
 Management Commands

 		
 package_updater

 		
 searchv2_build

 		
 pypi_updater

 		
 PyPI Issues

 		
 Team

 		
 Project Leads

 		
 Former Project Leads

 		
 Core Developer at Server Move 2012

 		
 Core Developers at DjangoCon 2011

 		
 Core Developer at DataMigrationCon 2011

 		
 Core Developers at PyCon 2011

 		
 Core Developers at DjangoCon 2011

 		
 Direct Contributors

 		
 Indirect Contributors

 		
 Other Contributors

 		
 Contributing

 		
 Setup

 		
 Fork on GitHub

 		
 Clone your fork locally

 		
 Installing Django Packages

 		
 Issues!

 		
 Tips

 		
 Setting up topic branches and generating pull requests

 		
 Pull upstream changes into your fork regularly

 		
 How to get your pull request accepted

 		
 Run the tests!

 		
 If you add code/views you need to add tests!

 		
 Don’t mix code changes with whitespace cleanup

 		
 Keep your pull requests limited to a single issue

 		
 Follow PEP-8 and keep your code simple!

 		
 Test any css/layout changes in multiple browsers

 		
 How pull requests are checked, tested, and done

 		
 Repo Handlers

 		
 What if my target repo doesn’t support all the necessary fields?

 		
 How about cloning GitBlarg’s repos so we can get a better view of the data?

 		
 Can I make a repo handler for Google Project Hosting?

 		
 Webservice APIv3

 		
 API Usage

 		
 API Reference

 		
 Representation Formats

 		
 Base URI

 		
 URIs

 		
 Resources

 		
 Lessons Learned

 		
 DjangoCon 2010

 		
 PyCon 2011

 		
 Getting Sprinters

 		
 Assigning Work

 		
 Be conservative

 		
 Helping people get stuff done

 		
 Pull Requests

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

