django-web-profiler Documentation
Release 0.0.1

django-web-profiler

Jun 07, 2017






Contents

1 Introduction: 1
2 Installation Procedure 3

3 Sample Application 5







CHAPTER 1

Introduction:

django-web-profiler is a django profiling tool which logs, stores debug toolbar statistics and also a set of URL’s
statistics using a management command. It logs request values such as device, ip address, user cpu time, system cpu
time, No of queries, sql time, no of cache calls, missing, setting data cache calls for a particular url.

It provides a basic U, which will differentiate development url statistics, production level statistics which generates
using a management command.

Source Code is available in Micropyramid Repository(https://github.com/MicroPyramid/django-web-profiler).
Modules used:

e Python >= 2.6 (or Python 3.4)

* Django=1.11.2

¢ Django Compressor = 2.1.1

* Django Debug Toolbar = 1.8

* requests =2.17.3

* JQuery >=1.7



https://github.com/MicroPyramid/django-web-profiler

django-web-profiler Documentation, Release 0.0.1

2 Chapter 1. Introduction:



CHAPTER 2

Installation Procedure

. Install django-web-packer using the following command:

pip install django-web-profiler

(or)
git clone git://github.com/micropyramid/django-web-profiler.git
cd django-web-profiler

python setup.py install

. Add app name in settings.py:

INSTALLED_APPS = |

'compressor',
'debug_toolbar',
'django_web_profiler',

]
Disable ‘debug_toolbar.middleware.DebugToolbarMiddleware’ if you’ve already using it.

. Make sure that ‘debug-toolbar’ has enabled for your application. After installing debug toolbar, add the follow-
ing details to settings.py:

INTERNAL_IPS = (‘127.0.0.1°,)

. After installing/cloning, add the following details in settings file about urls, logger names:




django-web-profiler Documentation, Release 0.0.1

URLS = ['http://stage.testsite.com/"',

'http://stage.testsite.com/testing/"]

6. Add the following logger to your existing loggers and create a folder called ‘logs’ where all profiler log files are

stored:

'request-logging': {
"level': 'DEBUG',
'handlers': ['console',
'propagate': False,

bo

'file_log'],

Here file_log is a handler which contains a path where log files are stored.

Chapter 2. Installation Procedure




CHAPTER 3

Sample Application

1. Install application requirements using the following command:

’pip install -r requirements.txt

2. Load the application load using the following command:

’python sandbox/manage.py loaddata sandbox/fixtures/users. json

3. Using the following command, we can generate url statistics in production environment i.e debug=False:
python sandbox/manage.py logging_urls
We are always looking to help you customize the whole or part of the code as you like.
Visit our Django Development page Here

We welcome your feedback and support, raise github ticket if you want to report a bug. Need new features? Contact
us here

or

mailto:: “hello@micropyramid.com*



https://micropyramid.com/django-development-services/
https://github.com/MicroPyramid/django-web-profiler/issues
https://micropyramid.com/contact-us/
https://micropyramid.com/contact-us/
mailto:hello@micropyramid.com

	Introduction:
	Installation Procedure
	Sample Application

