
Ussd Airflow Documentation
Release 0.0

Francis Mwangi

Apr 19, 2017

Contents

1 Getting Started 3
1.1 Setup . 3
1.2 Creating ussd screens . 6

2 How ussd works 25
2.1 How ussd works . 25
2.2 Why Ussd Airflow . 26

3 Internal Architecture 29

Python Module Index 31

i

ii

Ussd Airflow Documentation, Release 0.0

Ussd Airflow is a platform used to create ussd application by defining ussd screens in a yaml file

Contents 1

Ussd Airflow Documentation, Release 0.0

2 Contents

CHAPTER 1

Getting Started

Getting started with ussd airflow. This assumes you know how ussd works, to learn more how ussd works How ussd
works

Setup

• Run the following command to install

pip install ussd_airflow

• Add ussd_airflow in Installed application

INSTALLED_APPS = [
'ussd.apps.UssdConfig',
]

• Change session serializer to pickle serializer

SESSION_SERIALIZER = 'django.contrib.sessions.serializers.PickleSerializer
→˓'

• Add ussd view to handle ussd request.

– To use an existing ussd view that is implemented to handle AfricasTalking ussd gateway

from ussd.views import AfricasTalkingUssdGateway

urlpatterns = [
url(r'^africastalking_gateway',

AfricasTalkingUssdGateway.as_view(),
name='africastalking_url')

]

3

Ussd Airflow Documentation, Release 0.0

To use the existing Africastalking ussd gateway and your own ussd screen. Create a yaml file. On the
yaml create your ussd screen. Learn more on how to create ussd screen here Creating ussd screens.
For quick start copy the below yaml

initial_screen: enter_name

enter_name:
type: input_screen
text: Enter your name
input_identifier: name
next_screen: enter_age

enter_age:
type: input_screen
text: Enter your age
input_identifier: age
next_screen: show_details

show_details:
type: quit_screen
text: You have entered name as {{name}} and age as {{age}}

Next step add this to your settings. For ussd airflow to know where your ussd screens files are located.

DEFAULT_USSD_SCREEN_JOURNEY = "/file/path/of/the/screen"

To validate your ussd screen file. Run this command

python validate_ussd_journey /file/path

To test the ussd view do this curl request.

curl -X POST -H "Content-Type: application/json"
-H "Cache-Control: no-cache"
-H "Postman-Token: 3e3f3fb9-99b9-b47d-a358-618900d486c6"
-d '{"phoneNumber": "400","sessionId": "105","text":"1",
"serviceCode": "312"}'
"http://{your_host}/{you_path}/africastalking_gateway"

– To create your own Ussd View.

class ussd.core.UssdView(**kwargs)
To create Ussd View requires the following things:

* Inherit from UssdView (Mandatory)

from ussd.core import UssdView

* Define Http method either get or post (Mandatory) The http method should return
Ussd Request

class UssdRequest(session_id, phone_number, ussd_input,
language, default_language=None,
use_built_in_session_management=False, expiry=180,
**kwargs)

Parameters
· session_id – used to get session or create session if does not exits.

If session is less than 8 we add s to make the session equal to 8
· phone_number – This the user identifier
· input – This ussd input the user has entered.

4 Chapter 1. Getting Started

Ussd Airflow Documentation, Release 0.0

· language – Language to use to display ussd
· kwargs – Extra arguments. All the extra arguments will be set to the

self attribute

For instance:

from ussd.core import UssdRequest

ussdRequest = UssdRequest(
'12345678', '702729654', '1', 'en',
name='mwas'

)

accessing kwarg argument
ussdRequest.name

* define this varialbe customer_journey_conf This is the path of the file that has ussd
screens If you want your file to be dynamic implement the following method
get_customer_journey_conf it will be called by request object

* define this variable customer_journey_namespace Ussd_airflow uses this names-
pace to save the customer journey content in memory. If you want
customer_journey_namespace to be dynamic implement this method
get_customer_journey_namespace it will be called with request object

* override HttpResponse In ussd airflow the http method return UssdRequest object not
Http response. Then ussd view gets UssdResponse object and convert it to HttpRe-
sponse. The default HttpResponse returned is a normal HttpResponse with body
being ussd text

To override HttpResponse returned define this method. ussd_response_handler it
will be called with UssdResponse object.

class ussd.core.UssdResponse(text, status=True, ses-
sion=None)

Parameters
· text – This is the ussd text to display to the user
· status – This shows the status of ussd session.

True -> to continue with the session

False -> to end the session
· session – This is the session object of the ussd ses-

sion
Example of Ussd view

from ussd.core import UssdView, UssdRequest

class SampleOne(UssdView):

def get(self, req):
return UssdRequest(

phone_number=req.data['phoneNumber'].strip('+'),
session_id=req.data['sessionId'],
ussd_input=text,
service_code=req.data['serviceCode'],
language=req.data.get('language', 'en')

)

Example of Ussd View that defines its own HttpResponse.

1.1. Setup 5

Ussd Airflow Documentation, Release 0.0

from ussd.core import UssdView, UssdRequest

class SampleOne(UssdView):

def get(self, req):
return UssdRequest(

phone_number=req.data['phoneNumber'].strip('+'),
session_id=req.data['sessionId'],
ussd_input=text,
service_code=req.data['serviceCode'],
language=req.data.get('language', 'en')

)

def ussd_response_handler(self, ussd_response):
if ussd_response.status:

res = 'CON' + ' ' + str(ussd_response)
response = HttpResponse(res)

else:
res = 'END' + ' ' + str(ussd_response)
response = HttpResponse(res)

return response

Creating ussd screens

This document is a whirlwind tour of how to create ussd screen.

Strong feature of ussd airflow is to create ussd screen via yaml and not code. This make it easier to give the product
owners to design ussd without knowing how to code

In ussd airflow customer journey is created via yaml. Each section in a yaml defines a ussd screen. There different
types of ussd and each type has its own rule on how to write ussd application

Common rule in creating any kind of screen Each screen has field called “type” apart from initial_screen

The following are types of ussd and the rules to write them.

1. Initial screen (type -> initial_screen)

class ussd.screens.initial_screen.InitialScreen(ussd_request: ussd.core.UssdRequest,
handler: str, screen_content: dict,
initial_screen: dict, logger=None)

This screen is mandatory in any customer journey. It is the screen all new ussd session go to.

example of one

initial_screen: enter_height

first_screen:
type: quit
text: This is the first screen

Its is also used to define variable file if you have one. Example when defining variable file

initial_screen:
screen: screen_one

6 Chapter 1. Getting Started

Ussd Airflow Documentation, Release 0.0

variables:
file: /path/of/your/variable/file.yml
namespace: used_to_save_the_variable

Sometimes you want to send ussd session to some 3rd party application when the session has been terminated.

We can easily do that at end of session i.e quit screen, But for those scenarios where session is terminated by
user or mno we don’t know that unless the mno send us a request.

Most mnos don’t send notifier 3rd party application about the session being dropped. The work around we use
is schedule celery task to run after 15 minutes (by that time we know there is no active session)

Below is an example of how to schedule a ussd report session after 15min

example:

initial_screen:
type: initial_screen
next_screen: screen_one
ussd_report_session:

session_key: reported
retry_mechanism:

max_retries: 3
validate_response:

- expression: "{{reported.status_code}} == 200"
request_conf:

url: localhost:8006/api
method: post
data:

ussd_interaction: "{{ussd_interaction}}"
session_id: "{{session_id}}"

async_parameters:
queue: report_session
countdown: 900

Lets explain the variables in ussd_report_session
• session_key (Mandatory) response of ussd report session would be saved under that

key in session store
• request_conf (Mandatory) Those are the parameters to be used to make request to

report ussd session
• validate_response (Mandatory) After making ussd report request the framework

will evaluate your options and if one of them is valid it would mark session
as posted (This is used to avoid double ussd submission)

• retry_mechanism (Optional) After validating your response and all of them fail we
will go ahead and retry if this field is active.

• async_parameters (Optional) This is are the parameters used to make ussd request

2. Input screen (type -> input_screen)

class ussd.screens.input_screen.InputScreen(*args, **kwargs)
This screen prompts the user to enter an input
Fields required:

• text: this the text to display to the user.
• input_identifier: input amount entered by users will be saved with this key. To access this in

the input anywhere {{ input_identifier }}
• next_screen: The next screen to go after the user enters input
• validators:

1.2. Creating ussd screens 7

Ussd Airflow Documentation, Release 0.0

– text: This is the message to display when the validation fails regex: regex used to
validate ussd input. Its mutually exclusive with expression

– expression: if regex is not enough you can use a jinja expression

will be called ussd request object text: This the message thats going to be dis-
played if expression returns False

• options (This field is optional): This is a list of options to display to the user each option is a key
value pair of option text to display and next_screen to redirect if option is selected. Example
of option:

options:
- text: option one
next_screen: screen_one

- text: option two
next_screen: screen_two

Example:

initial_screen:
type: initial_screen
next_screen: enter_height
default_language: en

enter_height:
type: input_screen
text:
en: |
Enter your height

sw: |
Weka ukubwa lako

input_identifier: height
default_next_screen: enter_age
next_screen:
- condition: input|int == 60
next_screen: height_above_60

- condition: input|int == 30
next_screen: height_below_30

validators:
- regex: ^[0-9]{1,7}$
text:
en: |
Enter number between 1 and 7

sw: |
Weka namba kutoka 1 hadi 7

enter_age:
type: input_screen
text:
en: |
Enter your age

sw: |
Weka miaka yako

input_identifier: age
next_screen: show_information
options:
- text:

en: back
sw: rudi

next_screen: enter_height

8 Chapter 1. Getting Started

Ussd Airflow Documentation, Release 0.0

validators:
- regex: ^[0-9]{1,7}$
text:
en: |
Only nubers are allowed

sw: |
Nambari pekee ndio zimekubalishwa

default: en
- expression: ussd_request.input|int < 100
text:
en: |
Number over 100 is not allowed

sw: |
Nambari juu ya 100 haikubalishwi

show_information:
text:
en: |
Your age is {{ age }} and your height is {{ height }}.
Enter anything to go back to the first screen

sw: |
Miaka yako in {{ age }} na ukubwa wako in {{ height }}.
Weka kitu ingine yoyote unende kwenye screen ya kwanza

type: input_screen
input_identifier: foo
next_screen: enter_height

height_above_60:
type: quit_screen
text: We are not interested with height above 60

height_below_30:
type: quit_screen
text: We are not interested with height below 30

3. Menu screen (type -> menu_screen)

class ussd.screens.menu_screen.MenuScreen(*args, **kwargs)
This is the screen used to display options to select:

•text: This is the text to display to the user.
•options: This is a list of options to display to the user each option is a key value pair of option text to

display and next_screen to redirect if option is selected. Example of option:

options:
- text: option one
next_screen: screen_one

- text: option two
next_screen: screen_two

•items: Unlike options where each option has its own screen to redirect in items we have a list of items to
display and regardless of the input user will be redirected to one screen.

Example of items

menu_screen_with_item_example:
type: menu_screen
text: choose one item

1.2. Creating ussd screens 9

Ussd Airflow Documentation, Release 0.0

items:
text: "{{key}} for {{value}}"
value: "{{item}}"
next_screen: display_option
session_key: testing
with_dict:

a: apple
b: boy
c: cat

In the above example if will display the following text

Choose one item
1. apple
2. boy
3. cat

If the user selects “2”, that would be translated by the value key, it will result to “b”, then “b”
will be saved with session_key provided and the user will be directed to the next screen which is
display_option.

To reference the selected item, use {{your_session_key}}
•error_message: (optional) This is message to display if the user enter the wrong value.

defaults to “Please enter a valid choice.”
•option and items are mutual exclusive.

Example:

initial_screen:
type: initial_screen
next_screen: choose_meal
pagination_config:
ussd_text_limit: 90
more_option:
en: More

back_option:
en: Back

choose_meal:
type: menu_screen
text: Choose your favourite meal
error_message: |
You have selected invalid option try again

options:
- text: food
next_screen: types_of_food

- text: fruits
next_screen: types_of_fruit

- text: drinks
next_screen: types_of_drinks

- text: vegetables
next_screen: types_of_vegetables

- text: test pagination
next_screen: test_text_prompt_pagination

types_of_food:

10 Chapter 1. Getting Started

Ussd Airflow Documentation, Release 0.0

type: menu_screen
text: Choose your favourite food
options:
- text: rice
next_screen: rice_chosen

- text: back
next_screen: choose_meal

- text: test next screen routing
next_screen:
- condition: phone_number == '200'
next_screen: test_next_screen_routing_one

- condition: phone_number == '201'
next_screen: test_next_screen_routing_two

types_of_fruit:
type: menu_screen
text: No fruits available choose * to go back
options:
- text: back
next_screen: choose_meal
input_value: '*'

types_of_drinks:
type: menu_screen
text: No drinks available choose 0 to go back
options:
- text: back
next_screen: choose_meal
input_display: "0 "
input_value: '0'

rice_chosen:
type: menu_screen
text: Your rice will be delivered shortly. Choose 1 to go back
options:
- text: back
next_screen: choose_meal

types_of_vegetables:
type: menu_screen
text: Choose one of the following vegetables
items:
text: Vege {{ item }}
value: "{{ item }}"
with_items: "{{vegetables_list}}"
session_key: selected_vegetable
next_screen: choose_quantity

choose_quantity:
type: menu_screen
text: Choose vegetable size
items:
text: "{{ key }} at Ksh {{ value }}"
value: "{{ key }}"
with_dict: "{{ vegetable_quantity }}"
session_key: selected_quantity
next_screen: selected_vegetable

options:

1.2. Creating ussd screens 11

Ussd Airflow Documentation, Release 0.0

- text: back
next_screen: choose_meal

selected_vegetable:
type: menu_screen
text: >
You have selected this {{selected_vegetable}}
and this quantity {{selected_quantity}} at
{{vegetable_quantity[selected_quantity]}}

options:
- text: test_list
next_screen: test_list_with_native_loop

test_list_with_native_loop:
type: menu_screen
text: ""
items:
text: "{{item}}"
value: "{{item}}"
next_screen: test_explicit_dict_loop
session_key: alphabet
with_items:
- a
- b
- c
- d

test_explicit_dict_loop:
type: menu_screen
text: ""
items:
text: "{{key}} for {{value}}"
value: "{{item}}"
next_screen: test_invalid_jija_variable
session_key: testing
with_dict:
a: apple
b: boy
c: cat

we only support {{ }} jinja variables the otheres will be ingnored
for now
test_invalid_jija_variable:

type: menu_screen
text: Choose one of the following vegetables
items:
text: Vege {{ item }}
value: "{{ item }}"
with_items: "{%vegetables_list%}"
session_key: selected_vegetable
next_screen: choose_quantity

The screens below are testing pagination
test_text_prompt_pagination:
type: menu_screen
text: |
Ussd airflow should be able to wrap anytext that is larger than the one

12 Chapter 1. Getting Started

Ussd Airflow Documentation, Release 0.0

specified into two screens.
options:
- text: next
next_screen: test_pagination_in_menu_options

test_pagination_in_menu_options:
type: menu_screen
text: |
An example of screen with multiple options that need to be paginated

options:
- text: screen_with_both_text_and_menu_options_pagination
next_screen: test_pagination_in_both_text_and_options

- text: screen_with_both_text_item_options_pagination
next_screen: test_pagination_in_both_text_options_items

test_pagination_in_both_text_and_options:
type: menu_screen
text: |
This screen has both large text and options that exceed the limit

→˓required
so both the prompt and options will be paginated.

options:
- text: go back to the previous screen
next_screen: test_pagination_in_menu_options

- text: quit this session
next_screen: last_screen

- text: this options will be showed in the next_screen
next_screen: test_pagination_in_both_text_options_items

test_pagination_in_both_text_options_items:
type: menu_screen
text: |
This screen has both large text, options, items that exceed ussd text

→˓limit
part of this text would be displayed in the next screen

items:
text: "{{item}}"
value: "{{item}}"
next_screen: last_screen
session_key: testing
with_items:
- apple
- boy
- cat
- dog
- egg
- frog
- girl
- house
- ice
- joyce
- kettle
- lamp
- mum
- nurse
- ostrich
- pigeon
- queen

1.2. Creating ussd screens 13

Ussd Airflow Documentation, Release 0.0

- river
- sweet
- tiger
- umbrella
- van
- water

options:
- text: quit_session
next_screen: last_screen

last_screen:
type: quit_screen
text: end of session {{testing}}

test_next_screen_routing_one:
type: quit_screen
text: screen_one

test_next_screen_routing_two:
type: quit_screen
text: screen_two

4. Quit screen (type -> quit_screen)

class ussd.screens.quit_screen.QuitScreen(ussd_request: ussd.core.UssdRequest, handler: str,
screen_content: dict, initial_screen: dict, log-
ger=None)

This is the last screen to be shown in a ussd session.

Its the easiest screen to create. It requires only text

Example of quit screen:

initial_screen: example_of_quit_screen

example_of_quit_screen:
type: quit_screen
text: "Test getting variable from os environmen. {{TEST_VARIABLE}}"

5. Http screen (type -> http_screen)

class ussd.screens.http_screen.HttpScreen(ussd_request: ussd.core.UssdRequest, handler: str,
screen_content: dict, initial_screen: dict, log-
ger=None)

This screen is invisible to the user. Its used if you want to make an api call. Its very if you want to make a api
call so that you can show the user the results in the next screen.

For instance you can make call for balance check using this screen. And display the balance in the next screen.

Fields used to create this screen:
1.http_request This field contains all the fields used to make http request. It contains the following fields:

(a) method
This is the request method to use. either: get, post, put, delete

(b) url This is the url to be used to make the api call

14 Chapter 1. Getting Started

Ussd Airflow Documentation, Release 0.0

(c) And all the parameters python request module would accept

you will example below
2.session_key In this screen the api call is expected to return json body. The json body is saved in session

using this session_key
3.synchronous (optional defaults to true) This defines the nature of the api call. If its asynchronous the

request will be made later in celery task.
4.next_screen After the api call has been made or been scheduled to celery task ussd request is forwarded

to this next_screen
Examples of router screens:

initial_screen: http_get_example

http_get_example:
type: http_screen
next_screen: http_get_url_query
session_key: get_response
http_request:
method: get
url: http://localhost:8000/mock/balance
params:
phone_number: "{{ phone_number }}"
session_id: "{{ session_id }}"

verify: false
headers:
content-type: "application/json"
user-agent: 'my-app/0.0.1'

http_get_url_query:
type: http_screen
next_screen: http_post_example
session_key: get_url_query
http_request:
method: get
url: "http://localhost:8000/mock/balance/{{phone_number}}/"

http_post_example:
type: http_screen
next_screen: http_async_example
session_key: http_post_response
http_request:
method: post
url: http://localhost:8000/mock/balance
params:
phone_numbers:
- 200
- 201
- 202

session_id: "{{ session_id }}"
verify: true
timeout: 30
headers:
content-type: "application/json"

http_async_example:
type: http_screen
synchronous: True

1.2. Creating ussd screens 15

Ussd Airflow Documentation, Release 0.0

next_screen: end_of_http_example
session_key: http_async_response
http_request:
method: get
url: https://localhost:8000/mock/submission
params:
phone_number: "{{ phone_number }}"
session_id: "{{ session_id }}"

end_of_http_example:
type: quit_screen
text: >
Testing response is being saved in session status code is
{{http_post_response.status_code}} and balance is
{{http_post_response.balance}} and full content {{http_post_response.

→˓content}}.

6. Router screen (type -> router_screen)

class ussd.screens.router_screen.RouterScreen(ussd_request: ussd.core.UssdRequest, han-
dler: str, screen_content: dict, initial_screen:
dict, logger=None)

This screen is invisible to the user. Sometimes you would like to direct user to different screens depending on
some status.

For instance you want to show different screen to users who are not registered and a different screen to users
who have already registered. This is the screen to create.
Fields used to create this screen:

1. router_options This is a list of router option. Each router option has the following fields
(a) expression This is a jinja expression that’s is evaluating to boolean It can reference

anything in the session and parameters in ussd_request
(b) next_screen This is the screen to direct to if the above expression is true

2. default_next_screen (optional) This is the screen to direct to if all expression in router_options
failed.

3. with_items (optional) Sometimes you want to loop over something until an item passes the ex-
pression. In this case use with_items. When using with_items you can use variable item in
the expression.

see in the example below for more explanation
Examples of router screens

initial_screen: router_exa_1

router_exa_1:
type: router_screen
default_next_screen: default_screen
router_options:
- expression: "{{ phone_number == 200|string }}"
next_screen: 200_phone_number

- expression: "{{ phone_number == 202| string }}"
next_screen: 202_phone_number

- expression: "{{ phone_number in [203|string, 204|string,
→˓205|string] }}"

next_screen: sample_router_screen_with_loop
- expression: "{{ phone_number in [206|string, 207|string] }}"

16 Chapter 1. Getting Started

Ussd Airflow Documentation, Release 0.0

next_screen: sample_router_screen_with_dict_loop

200_phone_number:
type: quit_screen
text: This number is 200

202_phone_number:
type: quit_screen
text: This number is 202

default_screen:
type: quit_screen
text: This is the default screen

sample_router_screen_with_loop:
type: router_screen
default_next_screen: default_screen
with_items: "{{ phone_numbers[phone_number]}}"
router_options:
- expression: "{{ item == 'registered' }}"
next_screen: registred_screen

- expression: "{{ item == 'not_registered'}}"
next_screen: not_registered

registred_screen:
type: quit_screen
text: You are registered user

not_registered:
type: quit_screen
text: You are not registered user

sample_router_screen_with_dict_loop:
type: router_screen
default_next_screen: default_screen
with_items:
phone_number: '207'

router_options:
- expression: '{{ key == "phone_number" and value == phone_

→˓number}}'
next_screen: 207_screen

207_screen:
type: quit_screen
text: >
This screen has been routed here because the
phone number is {{phone_number}}

1.2. Creating ussd screens 17

Ussd Airflow Documentation, Release 0.0

7. Update session screen (type -> update_session_screen)

class ussd.screens.update_session_screen.UpdateSessionScreen(ussd_request:
ussd.core.UssdRequest,
handler: str,
screen_content:
dict, initial_screen:
dict, logger=None)

This screen is invisible to the user. Sometimes you may want to save something to the session to use later in
other screens.
Fields used to create this screen:

1. next_screen The screen to go after the session has been saved
2. values_to_update This section defines the session to be saved.

Inside this section should define the following fields
(a) key the key to be used to save
(b) value the value to store with the key above
(c) expression sometimes you want a condition before you can save data in section

Example:

initial_screen: screen_one

screen_one:
type: update_session_screen
next_screen: screen_two
values_to_update:
- expression: "{{phone_number == 200|string}}"
key: customer_status
value: registered

- expression: "{{phone_number == 404|string}}"
key: customer_status
value: not_registered

- key: aged_24
value: "{{[]}}"

- key: height_54
value: "{{[]}}"

screen_two:
type: update_session_screen
next_screen: show_saved_status
with_items:
- name: Francis Mwangi
age: 24
height: 5.4

- name: Isaac Karanja
age: 22
height: 5.4

- name: Stephen Gitigi
age: 20
height: 5.5

- name: Wambui
age: 24
height: 5.4

values_to_update:
- expression: "{{item.age == 24}}"
key: aged_24
value: "{{aged_24|append(item)}}"

- expression: "{{item.height == 5.4}}"

18 Chapter 1. Getting Started

Ussd Airflow Documentation, Release 0.0

key: "height_54"
value: "{{height_54|append(item)}}"

show_saved_status:
type: quit_screen
text: |
The customer status is {{customer_status}}.
People aged 24 {{aged_24}}
People with height 5.4 {{height_54}}

8. Custom screen (type -> custom_screen)

class ussd.screens.custom_screen.CustomScreen(ussd_request: ussd.core.UssdRequest, han-
dler: str, screen_content: dict, initial_screen:
dict, logger=None)

If you have a particular user case that’s not yet covered by our existing screens, this is the screen to use.

This screen allows us to define our own ussd screen.
To create it you need the following fields.

1. screen_object This is the path to be used to import the class
2. serializer (optional) This if you want to be validating your screen with specific fields
3. You can define any field that you feel your custom screen might need.

EXAMPLE:
examples of custom screen

class SampleCustomHandler1(UssdHandlerAbstract):
abstract = True # don't register custom classes
@staticmethod
def show_ussd_content(): # This method doesn't have to be static

Do anything custom here.
return UssdResponse("This is a custom Handler1")

def handle_ussd_input(self, ussd_input):
Do anything custom here
print(ussd_input) # pep 8 for the sake of using it.
return self.ussd_request.forward('custom_screen_2')

class SampleSerializer(UssdBaseSerializer, NextUssdScreenSerializer):
input_identifier = serializers.CharField(max_length=100)

class SampleCustomHandlerWithSerializer(UssdHandlerAbstract):
abstract = True # don't register custom classes
serializer = SampleSerializer

@staticmethod
def show_ussd_content(): # This method doesn't have to be static

return "Enter a digit and it will be doubled on your behalf"

def handle_ussd_input(self, ussd_input):
self.ussd_request.session[

self.screen_content['input_identifier']
] = int(ussd_input) * 2

return self.ussd_request.forward(

1.2. Creating ussd screens 19

Ussd Airflow Documentation, Release 0.0

self.screen_content['next_screen']
)

example of defining a yaml

initial_screen:
type: initial_screen
next_screen: choose_meal
pagination_config:
ussd_text_limit: 90
more_option:
en: More

back_option:
en: Back

choose_meal:
type: menu_screen
text: Choose your favourite meal
error_message: |
You have selected invalid option try again

options:
- text: food
next_screen: types_of_food

- text: fruits
next_screen: types_of_fruit

- text: drinks
next_screen: types_of_drinks

- text: vegetables
next_screen: types_of_vegetables

- text: test pagination
next_screen: test_text_prompt_pagination

types_of_food:
type: menu_screen
text: Choose your favourite food
options:
- text: rice
next_screen: rice_chosen

- text: back
next_screen: choose_meal

- text: test next screen routing
next_screen:
- condition: phone_number == '200'
next_screen: test_next_screen_routing_one

- condition: phone_number == '201'
next_screen: test_next_screen_routing_two

types_of_fruit:
type: menu_screen
text: No fruits available choose * to go back
options:
- text: back
next_screen: choose_meal
input_value: '*'

types_of_drinks:

20 Chapter 1. Getting Started

Ussd Airflow Documentation, Release 0.0

type: menu_screen
text: No drinks available choose 0 to go back
options:
- text: back
next_screen: choose_meal
input_display: "0 "
input_value: '0'

rice_chosen:
type: menu_screen
text: Your rice will be delivered shortly. Choose 1 to go back
options:
- text: back
next_screen: choose_meal

types_of_vegetables:
type: menu_screen
text: Choose one of the following vegetables
items:
text: Vege {{ item }}
value: "{{ item }}"
with_items: "{{vegetables_list}}"
session_key: selected_vegetable
next_screen: choose_quantity

choose_quantity:
type: menu_screen
text: Choose vegetable size
items:
text: "{{ key }} at Ksh {{ value }}"
value: "{{ key }}"
with_dict: "{{ vegetable_quantity }}"
session_key: selected_quantity
next_screen: selected_vegetable

options:
- text: back
next_screen: choose_meal

selected_vegetable:
type: menu_screen
text: >
You have selected this {{selected_vegetable}}
and this quantity {{selected_quantity}} at
{{vegetable_quantity[selected_quantity]}}
options:
- text: test_list
next_screen: test_list_with_native_loop

test_list_with_native_loop:
type: menu_screen
text: ""
items:
text: "{{item}}"
value: "{{item}}"
next_screen: test_explicit_dict_loop
session_key: alphabet
with_items:
- a

1.2. Creating ussd screens 21

Ussd Airflow Documentation, Release 0.0

- b
- c
- d

test_explicit_dict_loop:
type: menu_screen
text: ""
items:
text: "{{key}} for {{value}}"
value: "{{item}}"
next_screen: test_invalid_jija_variable
session_key: testing
with_dict:
a: apple
b: boy
c: cat

we only support {{ }} jinja variables the otheres will be ingnored
for now
test_invalid_jija_variable:
type: menu_screen
text: Choose one of the following vegetables
items:
text: Vege {{ item }}
value: "{{ item }}"
with_items: "{%vegetables_list%}"
session_key: selected_vegetable
next_screen: choose_quantity

The screens below are testing pagination
test_text_prompt_pagination:
type: menu_screen
text: |
Ussd airflow should be able to wrap anytext that is larger than

→˓the one
specified into two screens.

options:
- text: next
next_screen: test_pagination_in_menu_options

test_pagination_in_menu_options:
type: menu_screen
text: |
An example of screen with multiple options that need to be

→˓paginated
options:
- text: screen_with_both_text_and_menu_options_pagination
next_screen: test_pagination_in_both_text_and_options

- text: screen_with_both_text_item_options_pagination
next_screen: test_pagination_in_both_text_options_items

test_pagination_in_both_text_and_options:
type: menu_screen
text: |
This screen has both large text and options that exceed the

→˓limit required
so both the prompt and options will be paginated.

22 Chapter 1. Getting Started

Ussd Airflow Documentation, Release 0.0

options:
- text: go back to the previous screen
next_screen: test_pagination_in_menu_options

- text: quit this session
next_screen: last_screen

- text: this options will be showed in the next_screen
next_screen: test_pagination_in_both_text_options_items

test_pagination_in_both_text_options_items:
type: menu_screen
text: |
This screen has both large text, options, items that exceed

→˓ussd text limit
part of this text would be displayed in the next screen

items:
text: "{{item}}"
value: "{{item}}"
next_screen: last_screen
session_key: testing
with_items:
- apple
- boy
- cat
- dog
- egg
- frog
- girl
- house
- ice
- joyce
- kettle
- lamp
- mum
- nurse
- ostrich
- pigeon
- queen
- river
- sweet
- tiger
- umbrella
- van
- water

options:
- text: quit_session
next_screen: last_screen

last_screen:
type: quit_screen
text: end of session {{testing}}

test_next_screen_routing_one:
type: quit_screen
text: screen_one

test_next_screen_routing_two:
type: quit_screen
text: screen_two

1.2. Creating ussd screens 23

Ussd Airflow Documentation, Release 0.0

Once you have created your ussd screens run the following code to validate them:

python manage.py validate_ussd_journey /path/to/your/ussd/file.yaml

24 Chapter 1. Getting Started

CHAPTER 2

How ussd works

How ussd works

Unstructured Supplementary Service Data (USSD) is a protocol used by GSM cellphones to communicate with their
service provider’s computers. USSD can be used for WAP browsing, prepaid callback service, mobile money services,
location-based content services, menu-based information services, or even as part of configuring the phone on the
network.

From the diagram above, a request is sent from a mobile phone to a telecom network such Vodafone.

The Ussd Gateway (telecom) then sends the request to your ussd application (i.e where we have the business logic
which determines the menu to serve the use on receiving user’s request.)

Your ussd application then responds to the request, and Ussd gateway goes ahead and displays your content to the user

Below is a another diagram to help understand the concept

25

Ussd Airflow Documentation, Release 0.0

Why Ussd Airflow

Before I explain why we need Ussd Airflow lets first look at one example of ussd user case

Example Menu-Driven USSD Application

One could decide to develop a mobile-initiated “Balance Enquiry and Top Up” application using USSD signaling,
enabling a mobile user to interact with an application via the user’s handset, in order to view his/her current mobile
account balance and top up as needed.

An example of such an application could be as follows:

1. A mobile user initiates the “Balance Enquiry and Top Up” service by dialing the USSD string defined by the
service provider; for example, *#123#.

2. TheUSSD application receives the service request from the user and responds by sending the user a menu of
options.

3. The user responds by selecting a “current balance” option.

4. The USSD application sends back details of the mobile user’s current account balance and also gives the option
to top up the balance.

5. The user selects to top up his/her account.

6. The application responds by asking how much credit to add?

7. The mobile user responds with the amount to add.

8. The USSD application responds by sending an updated balance and ends the session.

The figure below shows an example of the MAP/TCAP message sequence required to realize the data transfers between
a mobile user’s handset and the USSD application to implement the “Balance Enquiry and Top Up” service described
above.

26 Chapter 2. How ussd works

Ussd Airflow Documentation, Release 0.0

How ussd airflow comes in

As you have seen in the previous section your ussd application is responsible for the content displayed.

Suppose you want to change the wordings in the ussd screen you are displaying to the user,what is involved in most
cases or rather all cases is you make a change in your code and deploy, that’s peanuts for most developers

The problem is once you start having many ussd screens and multiple ussd application and many requirements of
changing ussd screen, the task that was peanuts becomes overwhelming and would probably start thinking of a way
the Product owners would change the ussd content without you being involved and thats where ussd aiflow comes in,
providing an interface for users to change ussd workflows without code change

2.2. Why Ussd Airflow 27

Ussd Airflow Documentation, Release 0.0

28 Chapter 2. How ussd works

CHAPTER 3

Internal Architecture

Comming soon

29

Ussd Airflow Documentation, Release 0.0

30 Chapter 3. Internal Architecture

Python Module Index

u
ussd.core, 29
ussd.screens.initial_screen, 6
ussd.screens.input_screen, 7

31

Index

C
CustomScreen (class in ussd.screens.custom_screen), 19

H
HttpScreen (class in ussd.screens.http_screen), 14

I
InitialScreen (class in ussd.screens.initial_screen), 6
InputScreen (class in ussd.screens.input_screen), 7

M
MenuScreen (class in ussd.screens.menu_screen), 9

Q
QuitScreen (class in ussd.screens.quit_screen), 14

R
RouterScreen (class in ussd.screens.router_screen), 16

U
UpdateSessionScreen (class in

ussd.screens.update_session_screen), 18
ussd.core (module), 29
ussd.screens.initial_screen (module), 6
ussd.screens.input_screen (module), 7
UssdResponse (class in ussd.core), 5
UssdView (class in ussd.core), 4
UssdView.UssdRequest (class in ussd.core), 4

32

	Getting Started
	Setup
	Creating ussd screens

	How ussd works
	How ussd works
	Why Ussd Airflow

	Internal Architecture
	Python Module Index

