
django-tinycontent Documentation
Release 0.7.1

Dominic Rodger

Aug 16, 2017

Contents

1 Contents 3
1.1 Installation . 3
1.2 Version Support . 3
1.3 Using Blocks in Templates . 3
1.4 Adding and Editing Blocks . 4
1.5 Filters . 4
1.6 Release Notes . 6

i

ii

django-tinycontent Documentation, Release 0.7.1

django-tinycontent is a simple Django application for re-usable content blocks, much like django-boxes.

Blocks are configured via the Django admin, and are available to use in templates:

{% load tinycontent_tags %}

{% tinycontent_simple 'welcome' %}

That template fragment will look for a content block called welcome, and display the content of it.

Optionally, you can post-process the output with Filters.

Contents 1

https://github.com/eldarion/django-boxes

django-tinycontent Documentation, Release 0.7.1

2 Contents

CHAPTER 1

Contents

Installation

Installation is simple:

pip install django-tinycontent

Then, add tinycontent to your INSTALLED_APPS.

Version Support

Python 2.7, 3.4 and 3.5 are supported. Django versions from 1.5 upwards are supported with Python 2.7 and 3.4.
Django versions from 1.8 upwards are supported with Python 3.5.

Using Blocks in Templates

Usage in templates is simple - to show the content of a block called content_name you can just use the template
tag tinycontent_simple:

{% load tinycontent_tags %}

{% tinycontent_simple 'content_name' %}

Or, to specify a value if a content block by the given name cannot be found, use the tinycontent tag:

{% load tinycontent_tags %}

{% tinycontent 'content_name' %}
This will be shown if no matching object is found.
{% endtinycontent %}

3

django-tinycontent Documentation, Release 0.7.1

The name of the content block can also be a context variable, using both the simple and the complex variants.

Optionally, you can post-process the output with Filters.

Passing Multiple Arguments

New in version 0.5.

You can pass multiple arguments to the django-tinycontent template tags, like this:

{% load tinycontent_tags %}

{% tinycontent_simple 'content_name' 'extra' %}

Extra arguments are concatenated together before looking up the content block - the above example will look for a
content block called content_name:extra.

The main use case for this is internationalisation - each argument can either be a string literal (as in our example
above), or a context variable. For example - to include the language code as part of your block name, you could use:

{% load tinycontent_tags %}

{% tinycontent_simple 'content_name' request.LANGUAGE_CODE %}

For those of us running websites in Great Britain, that would result in fetching the content block
content_name:en-gb.

This feature is available both for tinycontent_simple, and tinycontent.

Adding and Editing Blocks

Content blocks themselves can be added and edited using Django’s admin interface. If a block with the name given in
the template tag cannot be found, either nothing is rendered (if using tinycontent_simple), or the text between
tinycontent and endtinycontent is rendered (if using the more complex variant).

If you’re logged in as a user with permission to add or edit content blocks (which you can set via permissions in the
Django admin), you’ll see links to the admin page for adding blocks (if there’s no block set up yet) or editing (if the
content block already exists).

Filters

By default, no transformations are applied to the content blocks - they’re just displayed as they were entered in the
admin. Since you probably want to display HTML, you’ll probably want to set up a filter to apply before displaying
content blocks, such as Markdown.

• Specifying Filters

• Chaining Filters

• Built-in Filters

– Markdown

4 Chapter 1. Contents

django-tinycontent Documentation, Release 0.7.1

– File-upload Handler

Specifying Filters

You can configure what filter is applied using the setting TINYCONTENT_FILTER, which should be set to a dotted
path to a function to call to filter the content (for example, to convert Markdown to HTML).

Warning: If the given path is invalid, any use of tinycontent tags will raise ImproperlyConfigured. If this
setting is not provided, the content will be returned exactly as stored.

For example, if your project has a file called utils.py, you might have a function in it called
tinycontent_transform that would look something like this:

def tinycontent_transform(content):
return do_something_to(content)

To get the tinycontent templates to use that function, in your settings.py file, you’d write something like:

TINYCONTENT_FILTER = 'myproj.utils.tinycontent_transform'

Chaining Filters

You can optionally set TINYCONTENT_FILTER to a list of dotted paths - filters will be applied in the order in which
you provide them.

For example, to use Markdown with tinycontent’s built-in file support, you could set TINYCONTENT_FILTER like
this:

TINYCONTENT_FILTER = [
'tinycontent.filters.md.markdown_filter',
'tinycontent.filters.builtin.uploaded_file_filter',

]

Built-in Filters

Markdown

django-tinycontent ships with a filter for Markdown. You can enable this by setting TINYCONTENT_FILTER like
this:

TINYCONTENT_FILTER = 'tinycontent.filters.md.markdown_filter'

File-upload Handler

The file-upload filter replaces instances of @file:slug (where slug is the slug of a TinyContentFileUpload) with
the URL to the file.

You can enable this filter by setting TINYCONTENT_FILTER like this:

1.5. Filters 5

django-tinycontent Documentation, Release 0.7.1

TINYCONTENT_FILTER = 'tinycontent.filters.builtin.uploaded_file_filter'

Release Notes

v0.7.1

• Added migration required for Python 3 (thanks @markus-hinsche).

v0.7.0

• Compatibility changes for Django 1.11 - dropped support for versions of Django earlier than 1.8, and Python
3.4 (Python 2.7 and Python 3.5 are still supported).

v0.6.1

• Modify cache name, to prevent warnings for non-ASCII characters or whitespace (thanks @ad-m).

v0.6.0

• Compatibility changes for Django 1.10.

v0.5.1

• Added a Polish translation and locale (thanks @ad-m).

v0.5.0

• Add support for multiple arguments to both the tinycontent and the tinycontent_simple template
tags. See the documentation about Passing Multiple Arguments.

• Start caching database queries - fetching a TinyContent block by name (as the template tags do), will only hit
the database the first time that content block is loaded (unless the content block is changed).

v0.4.0

• Require at least django-autoslug 1.8.0, to fix a warning about unapplied migrations.

v0.3.0

• Drop support for Django 1.4 (it’s quite hard to support Django 1.4 and 1.9 in a single release - since Django 1.4
requires {% load url from future %}, and Django 1.9 doesn’t support it).

• Ensure the wheel we upload to PyPI is universal.

• Forward compatibility for Django 1.9 - remove the {% load url from future %} from tinycontent
templates.

6 Chapter 1. Contents

django-tinycontent Documentation, Release 0.7.1

v0.2.1

• Forwards compatibility change for Django 1.9 - which will remove the version of importlib bundled with
Django. All supported versions of Python (2.7, 3.3 and 3.4) have importlib.

v0.2.0

• Dropped support for Python 2.6.

• Added a built-in markdown filter - you can use it by setting TINYCONTENT_FILTER to 'tinycontent.
filters.md.markdown_filter'.

• Added the ability to include links to files which you can upload via the admin.

• Added support for setting TINYCONTENT_FILTER to a list of dotted paths, to allow chaining filters.

v0.1.8

• Added the TINYCONTENT_FILTER setting for controlling the way content is output.

• Improved testing with Travis (we now test all supported Python versions and Django versions).

1.6. Release Notes 7

	Contents
	Installation
	Version Support
	Using Blocks in Templates
	Adding and Editing Blocks
	Filters
	Release Notes

