

Welcome to django-textplusstuff’s documentation!

[image: Travis CI Status]
 [https://travis-ci.org/WGBH/django-textplusstuff][image: Coverage Status]
 [https://coveralls.io/r/WGBH/django-textplusstuff][image: Latest Version]
 [https://pypi.python.org/pypi/django-textplusstuff/]

About

Summary

A django field that makes it easy to intersperse ‘stuff’ into blocks of text.

Documentation

Full documentation available at Read the Docs [http://django-textplusstuff.readthedocs.org/en/latest/].

A Flexible Interface

django-textplusstuff provides a simple interface for returning the contents of your field however you like: as either markdown-flavored text, valid HTML markup (with or without ‘stuff’ interspersed) or even plain text (with all markdown formatting removed).

Keep Track of Your Content

django-textplusstuff also keeps track of which model instances are associated within each TextPlusStuffField (via the TextPlusStuffLink model) so you can see where all your textplusstuff-integrated content is used across your django project.

Easy Integration

Registering existing models for use in TextPlusStuffFields is as easy as integrating a model into the admin.

Designer/Front-End Developer Friendly

Each model registered with django-textplusstuff can have as many ‘renditions’ as you like which keeps business logic DRY while enabling designers and front-end developers to have control over how content is displayed.

Current Version

0.6

Dependencies

	markdown2 >= 2.3.x

	beautifulsoup4 >= 4.4.0

	django >= 1.6.x

	djangorestframework >= 2.4.4

Python Compatibility

	2.7.x

	3.4.x

	3.5.x

Django Compatibility

	1.7.x

	1.8.x

	1.9.x

Django REST Framework Compatibility

	2.4.4

	3.0.x

	3.1.x

	3.2.x

	3.3.x (NOTE: Django 1.6.x is not compatible with DRF 3.3.x)

Contents

	Installation Instructions

	Using textplusstuff
	Registering Stuff

	Registering ‘Non-Core’ Renditions

	Using the TextPlusStuff field
	Adding just-in-time extra context to .as_html() rendering
	Automatically pass extra_context to all renditions associated with Stuff

	Admin Integration

	Django REST Framework Integration
	Example

	Improving Performance
	Defining a 'constructed_field'

	Signal Architecture

Release Notes

0.7

	Removed need to call findstuff() to discover stuff modules. Now we use Django’s built in autodiscover_modules function and set everything up in the AppConfig.

	Removed Django 1.6.x compatibility

0.6

	Added Python 3.5 support

	Deprecated Python 3.3 support

	Added Django 1.9.x compatibility

0.5

	Added as_json method to TextPlusStuffField

	Added a new field (TextPlusStuffConstructedField) and signal (update_constructed_fields) that can be leveraged to improve speed/performance.

0.4.1

	Fixed a UnicodeDecodeError bug that arose in Python 2.7.5 when encoding text nodes that had non-ASCII encoded HTML entities.

0.4

	Added ExtraContextSerializerMixin for simplifying extra_context-to-serializer handoff.

0.3

	Added the ability to register ‘non-core’ renditions in a third-party application’s already-registered Stuff class.

	django-textplusstuff is now available for installation via wheel [http://wheel.readthedocs.org/en/latest/].

0.2.1

	Squashed a bug that prevented TextPlusStuffField from serializing correctly (when using dumpdata).

0.2

	Added Django REST Framework serialization for TextPlusStuffField

0.1.3

	Fixed a Python 2.7.x-related encoding issue in the Stuff registry.

0.1.2

	Another pip installation hotfix: including template files in distribution.

0.1.1

	Squashed pip installation bug

0.1

	Initial open source release

Roadmap to v1.0

	Support Django 1.10 - 2.0

	Create a javascript powered editor for writing markdown-flavored text and placing tokens.

	textplusstuff API POST support (so model instances registered with the stuff_registry can be created directly from a TextPlusStuff field widget)

	Create an example registered model to explain how the rendition/token architecture works.

	Document ‘Constructed Field’ functionality to improve performance.

	Document ‘as_json’ method on a TextPlusStuff instance.

Installation Instructions

Installation is easy with pip:

	Installation is easy with pip [https://pypi.python.org/pypi/pip]:

$ pip install django-textplusstuff

Note

django-textplusstuff will not install django.

	Add required settings:

Add textplusstuff to INSTALLED_APPS:

INSTALLED_APPS = (
 # Other apps here
 'rest_framework',
 'textplusstuff',
)

Add the TEXTPLUSSTUFF_STUFFGROUPS setting with at least one StuffGroup. It can be named whatever you like (the one below is just ‘example’):

TEXTPLUSSTUFF_STUFFGROUPS = {
 'example': {
 'name': 'Example',
 'description': "This is an example of a StuffGroup!"
 },
}

Note

StuffGroups are used to organize Stuff in the upcoming editor tool and are required when you register Stuff.

	Add textplusstuff-required bits to your project’s base urls.py:

Base project urls.py
from django.conf.urls import patterns, include, url
from django.contrib import admin

Importing required textplusstuff bits
from textplusstuff.registry import stuff_registry

urlpatterns = patterns(
 '',
 # Admin URLs
 url(r'^admin/', include(admin.site.urls)),
 # textplusstuff URLs
 url(r'^textplusstuff/', include(stuff_registry.urls))
)

Using textplusstuff

Registering Stuff

To start using textplusstuff you have to register a model as Stuff. The examples below will use the creatively named TestModel which has one attribute, ‘name’ a CharField:

	Create a file called serializers.py within the app that has the model you want to register as stuff:

someproject/
 someapp/
 models.py
 serializers.py # Like this!

	Now open serializers.py to create your first serializer. For more information on serializing models check out django REST frameworks fantastic docs [http://www.django-rest-framework.org/api-guide/serializers#modelserializer].:

serializers.py

from rest_framework.serializers import ModelSerializer

from .models import TestModel

class TestModelSerializer(ModelSerializer):

 class Meta:
 model = TestModel
 fields = (
 'name',
)

	OK, now that we’ve got a serializer when need to create a file called stuff.py within the app that has the model you want to register as Stuff:

someproject/
 someapp/
 models.py
 serializers.py
 stuff.py # Like this!

	Now open the stuff.py file you just created and import the model you want to register and the serializer you just created:

someapp/stuff.py
from textplusstuff import registry

from .models import TestModel
from .serializers import TestModelSerializer

class TestModelStuff(registry.ModelStuff):
 # The queryset used to retrieve instances of TestModel
 # within the front-end interface. For instance, you could
 # exclude 'unpublished' instances or anything else you can
 # query the ORM against
 queryset = TestModel.objects.all()

 # What humans see when they see this stuff
 verbose_name = 'Test Model'
 verbose_name_plural = 'Test Models'
 description = 'Add a Test Model'

 # The serializer we just defined, this is what provides the context/JSON
 # payload for this Stuff
 serializer_class = TestModelSerializer

 # All Stuff must have at least one rendition (specified in
 # the `renditions` attribute below) which basically
 # just points to a template and some human-readable metadata.
 # At present there are only two options for setting rendition_type:
 # either 'block' (the default) or inline. These will be used by
 # the front-end editor when placing tokens.
 renditions = [
 registry.Rendition(
 short_name='sidebar_left',
 verbose_name='Test Model Sidebar',
 description='Displays a Test Model in the sidebar.',
 path_to_template='someapp/templates/sidebar_left.html',
 rendition_type='block'
)
]
 # The attributes used in the list (table) display of the front-end
 # editing tool.
 list_display = ('id', 'name')

OK, now let's register our Model and its Stuff config:
registry.stuff_registry.add_modelstuff(
 TestModel,
 TestModelStuff,
 groups=['image', 'media']
)

Once you’ve registered your Stuff you can test if it worked by firing up a webserver and visiting http://localhost:8000/textplusstuff/.

Registering ‘Non-Core’ Renditions

Sometimes you’ll want to add an additional rendition to some Stuff registered in a separate third-party application. Previously you’d have to do a bunch of boilerplate to accomplish this (unregister the model in question, import both it and its Stuff configuration, subclass the Stuff config, modify the renditions attribute and then re-register the subclassed Stuff config with textplusstuff.registry.stuff_registry). The 0.3 release introduced a painless way to register ‘non-core’ renditions with an already registered Stuff class.

Here’s how to do it with our TestModel example:

anotherapp/stuff.py

from textplusstuff import registry

from someapp.models import TestModel

registry.stuff_registry.add_noncore_modelstuff_rendition(
 TestModel,
 registry.Rendition(
 short_name='foo',
 verbose_name='Foo Rendition',
 description='Render TestModel instances as Foo.',
 path_to_template='anotherapp/foo.html',
 rendition_type='block'
)
)

That’s it! Remember: Rendition short_name values must be unique across all renditions associated with a Stuff class. If you try registering a rendition with the same short_name value as another registered rendition an AlreadyRegisteredRendition exception will raise.

Using the TextPlusStuff field

Using a TextPlusStuff field is easy just import it and set it to an attribute. Any options available to a django TextField (like blank=True) can be set on a TextPlusStuffField:

someapp/models.py

from django.db import models

from textplusstuff.fields import TextPlusStuffField

class MyModel(models.Model):
 content = TextPlusStuffField()

TextPlusStuff fields store rich text as markdown and can serve it back as either raw markdown, plain text (formatting removed), or as HTML (markdown entities converted into HTML tags):

>>> from someapp.models import MyModel
>>> instance = MyModel(content='Oh _hello there_!')
>>> instance.save()
>>> instance.content.as_markdown()
'Oh _hello there_!'
>>> instance.content.as_plaintext()
'Oh hello there!'
>>> instance.content.as_html()
'Oh hello there!'

Try pasting some tokens (that you find at /textplusstuff) into a TextPlusStuffField, saving the model instance associated with the field and then call the attributes above to see what happens.

Adding just-in-time extra context to .as_html() rendering

If you want to include extra context data beyond what is provided natively by a token just pass a dictionary to the extra_context keyword argument of the as_html() method:

>>> instance.content.as_html(extra_context={'some_key': 'some_value'})

This dictionary will then be passed to the context keyword argument of the serializer class [http://www.django-rest-framework.org/api-guide/serializers/#including-extra-context] associated with that token’s Stuff config. Click here [http://www.django-rest-framework.org/api-guide/serializers.html#including-extra-context] for more information about how to access this data within your serializer.

Automatically pass extra_context to all renditions associated with Stuff

If you’d like to automatically include the values passed to extra_context into your serializer context just use the ExtraContextSerializerMixin as one of your serializer superclasses.

Here’s how we’d integrate it into the TestModelSerializer example:

serializers.py

from rest_framework.serializers import ModelSerializer

from textplusstuff.serializers import ExtraContextSerializerMixIn

from .models import TestModel

class TestModelSerializer(ExtraContextSerializerMixIn,
 ModelSerializer):

 class Meta:
 model = TestModel
 fields = (
 'name',
)

Now any data passed like this: instance.text_plus_stuff_field.as_html(extra_context={'foo': 'bar'}) will be available on all its renditions/templates at {{ context.extra_content.foo }} (where {{ context.extra_content.foo }} would be rendered as bar).

Admin Integration

There currently isn’t a front-end interface for TextPlusStuff fields and this makes finding tokens unnecessarily difficult (unless you’re a weirdo who likes groking JSON). To mitigate this, just swap the superclass of your admin configurations from django.contrib.admin.ModelAdmin with textplusstuff.admin.TextPlusStuffRegisteredModelAdmin like so:

from django.contrib import admin

from textplusstuff.admin import TextPlusStuffRegisteredModelAdmin

A model registered with textplusstuff.registry.stuff_registry
from .models import SomeModel

class SomeModelAdmin(TextPlusStuffRegisteredModelAdmin):
 # Configure like you would any admin.ModelAdmin class
 pass

admin.site.register(SomeModel, SomeModelAdmin)

This will add an ‘Available Renditions’ sections beneath the change/edit form within the admin that contains a table that lists all the available renditions for that model (including their instance-associated tokens).

Django REST Framework Integration

If you’ve got an API powered by Tom Christie [https://twitter.com/_tomchristie]’s excellent Django REST Framework [http://www.django-rest-framework.org/] you can serve the content of a TextPlusStuffField simultaneously in a variety of formats with the TextPlusStuffFieldSerializer.

Example

To demonstrate how it works we’ll use this simple model:

myproject/content/models.py

from django.db import models

from textplusstuff.fields import TextPlusStuffField

class Content(models.Model):
 """Represents a piece of content."""
 content = TextPlusStuffField('Content')

 class Meta:
 verbose_name = 'Content Block'
 verbose_name_plural = 'Content Blocks'

OK, let’s write a simple ModelSerializer subclass to serialize Content instances:

myproject/content/serializers.py

from rest_framework import serializers

from textplusstuff.serializers import TextPlusStuffFieldSerializer

from .models import Content

class ContentSerializer(serializers.ModelSerializer):
 """Serializes Content instances"""
 content = TextPlusStuffFieldSerializer()

 class Meta:
 model = Content
 fields = (
 'content',
)

And here’s what it would look like serialized:

>>> from myproject.content.models import Content
>>> content = Person.objects.create(
... content="""# Oh hello!\n\nHere's some _italic_ and **bold** text."""
...)
>>> content.save()
>>> from myproject.content.serializers import ContentSerializer
>>> content_serialized = ContentSerializer(content)
>>> content_serialized.data
{
 "content": {
 "raw_text": "# Oh hello!\n\nHere's some _italic_ and **bold** text.", # The 'raw' content of the field as it is stored in the database.
 "as_plaintext": "Oh hello!\n\nHere's some italic and bold text.", # The content of this field as plaintext (all markup/formatting and tokens removed)
 "as_markdown": "# Oh hello!\n\nHere's some _italic_ and **bold** text.", # The content of this field as markdown (with tokens removed)
 "as_html": "<h1>Oh hello!</h1>\n\n<p>Here's some italic and bold text.", # The content of this field as HTML with tokens rendered
 "as_html_no_tokens": "<h1>Oh hello!</h1>\n\n<p>Here's some italic and bold text.", # The content of this field as HTML with tokens removed
 "as_json": {
 "text_as_html": "<h1>Oh hello!</h1>\n\n<p>Here's some italic and bold text.",
 "text_as_markdown": "# Oh hello!\n\nHere's some _italic_ and **bold** text.",
 "content_nodes": []
 }
 }
}

Note

The example content used above doesn’t include any tokens which is why the 'as_html' and 'as_html_no_tokens' as well as the 'raw_text' and 'as_markdown' values are identical.

Improving Performance

Docs coming soon!

Defining a 'constructed_field'

Signal Architecture

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to django-textplusstuff’s documentation!

 		
 Installation Instructions

 		
 Using textplusstuff

 		
 Registering Stuff

 		
 Registering ‘Non-Core’ Renditions

 		
 Using the TextPlusStuff field

 		
 Adding just-in-time extra context to .as_html() rendering

 		
 Admin Integration

 		
 Django REST Framework Integration

 		
 Example

 		
 Improving Performance

 		
 Defining a 'constructed_field'

 		
 Signal Architecture

_static/up-pressed.png

_static/up.png

