

 Navigation

 	
 index

 	
 next |

 	Django SuperTagging 0.5.4 documentation

Welcome to Django SuperTagging’s documentation!

SuperTagging is an auto-tagging app using OpenCalais [http://opencalais.com],
based off of Django Tagging [http://code.google.com/p/django-tagging/]

Contents:

	Installation
	Download SuperTagging

	Dependencies

	Add SuperTagging to your project

	Getting Started
	Create basic settings

	Setting up OpenCalais API

	Setting up models to be tagged

	Set up automatic processing

	Conclusion

	Real World Example
	Our current SuperTagging settings

	Showcasing what SuperTagging does

	Running the process

	API Reference
	SuperTag

	SuperTagRelation

	SuperTaggedItem

	SuperTaggedRelationItem

	SuperTagProcessQueue

	Rendering Items

	Markup
	Setup

	How It Works

	Markup handler

	Markup Template

	Caching

	Gotchas

	Reference
	Settings

	Template Tags

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2010, The Washington Times.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django SuperTagging 0.5.4 documentation

Installation

Download SuperTagging

There are a couple ways for you to get Django-SuperTagging,

	Clone the git repository from GitHub [https://github.com/callowayproject/django-supertagging]

	Use pip to install it from PyPI [http://pypi.python.org/pypi/supertagging]

pip install supertagging

Dependencies

	simplejson [http://code.google.com/p/simplejson/] (Required)

	freebase [http://code.google.com/p/freebase-python/] (Optional)

Add SuperTagging to your project

Add to INSTALLED_APPS

INSTALLED_APPS = (
 ...
 supertagging,
 ...
)

Run syncdb:

>>> ./manage.py syncdb

 Copyright 2010, The Washington Times.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django SuperTagging 0.5.4 documentation

Getting Started

If you have not installed SuperTagging yet, go to the Installation page.

Create basic settings

In your settings.py file:

SUPERTAGGING_SETTINGS = {
 'ENABLED': True,
 'DEBUG': True,
}

Setting up OpenCalais API

Go to OpenCalais [http://www.opencalais.com/]‘s website and register for
an api key, and in your settings.py file, alter SUPERTAGGING_SETTINGS:

SUPERTAGGING_SETTINGS = {
 'ENABLED': True,
 'DEBUG': True,
 'OPEN_CALAIS': {
 'API_KEY': 'YOUR_API_KEY',
 }
}

Setting up models to be tagged

You will need to decide which models and which fields in those models you
will want SuperTagging to mark for tagging:

SUPERTAGGING_SETTINGS = {
 'ENABLED': True,
 'DEBUG': True,
 'OPEN_CALAIS': {
 'API_KEY': 'YOUR_API_KEY',
 },
 'WATCHED_FIELDS': {
 'stories.story': {
 'fields':[
 {'name': 'body'},
],
 },
 },
}

The code above tells SuperTagging to tag the body field of model
stories.story. We can specify any number of fields and models as well.

SUPERTAGGING_SETTINGS = {
 'ENABLED': True,
 'DEBUG': True,
 'OPEN_CALAIS': {
 'API_KEY': 'YOUR_API_KEY',
 },
 'WATCHED_FIELDS': {
 'stories.story': {
 'fields':[
 {'name': 'body'},
 {'name': 'tease'},
 {'name': 'kicker'},
],
 },
 'media.image': {
 'fields':[
 {'name': 'caption'},
 {'name': 'description'},
],
 }
 },
}

View WATCHED_FIELDS for more information.

Set up automatic processing

Finally, add:

SUPERTAGGING_SETTINGS = {
 'ENABLED': True,
 'DEBUG': True,
 'OPEN_CALAIS': {
 'API_KEY': 'YOUR_API_KEY',
 },
 'WATCHED_FIELDS': {
 'stories.story': {
 'fields':[
 {'name': 'body'},
],
 },
 },
 'AUTO_PROCESS': True,
}

Post save and post delete signals will be connected to the models
specified in WATCHED_FIELDS. Visit Settings to
view more details about the SuperTagging settings

View the complete list of Settings

Conclusion

That is all that is needed to get SuperTagging to start tagging your data.
Upon saving a instance of one of the models specified in
SUPERTAGGING_MODULES, the field(s) data will be sent to OpenCalais
for processing.

Next step: View the Real World Example section of how The Washington
Times has SuperTagging setup.

 Copyright 2010, The Washington Times.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django SuperTagging 0.5.4 documentation

Real World Example

SuperTagging came about when The Washington Times was looking for a cheap
alternative method of tagging its contents. The previous method was the
process of sending the content to a similar, but paid service, and that
service would return keywords and the content in its marked up state. The
content then was saved into our story body field with the links in place.
These links went to a section of our site we then called “Themes”.

The first thing we wanted to get rid of was the monthly fee we had to paid
for the service, we ended up finding OpenCalais [http://opencalais.com],
which gave us a free way to tag our content and also be able to easily markup
our content with the links as before.

We now have a similar section on our site called
Topics [http://washingtontimes.com/topics/] which is powered by
SuperTagging, and most of our stories have the links to this section
as before.

This section of the documentation, we will go through all the pieces of
SuperTagging we use here at The Washington Times.

Our current SuperTagging settings

This first group of settings are the general settings.

SUPERTAGGING_DEBUG = False
SUPERTAGGING_ENABLED = True
SUPERTAGGING_AUTO_PROCESS = True
SUPERTAGGING_CALAIS_API_KEY = '...'
SUPERTAGGING_USE_QUEUE = True

Explanation:

We have USE_QUEUE set to True. Together with AUTO_PROCESS set to True,
the objects are saved into the SuperTagQueue model for later processing.
We run the management command provided by SuperTagging every 5 minutes.

This next group is what we call the processing settings for SuperTagging.

SUPERTAGGING_PROCESS_RELATIONS = True
SUPERTAGGING_PROCESS_TOPICS = True
SUPERTAGGING_RESOLVE_PROPERTY_KEYS = True
SUPERTAGGING_ONLY_NON_TAGGED_OBJECTS = False

SUPERTAGGING_MIN_RELEVANCE = 200

SUPERTAGGING_USE_FREEBASE = True

Explanation:

We process pretty much all OpenCalais gives us, that includes the
Events/Facts (relations) and Topics, which are just tags but with no
meta data.

We try to convert Calais ID’s to tag names
(SUPERTAGGING_RESOLVE_PROPERTY_KEYS = True)

We tag all objects every time they are saved
(SUPERTAGGING_ONLY_NON_TAGGED_OBJECTS = False). This is so we can
efficiently markup up the content without worry of data being stale.

We only accept tags that have at least 200 relevance

We use Freebase to disambiguate the tag names.

Next group is the markup settings

SUPERTAGGING_MARKUP = True
SUPERTAGGING_MARKUP_EXCLUDES = ['his', 'her', 'he', 'she', 'him',]
SUPERTAGGING_MARKUP_CONTENT_CACHE_TIMEOUT = 3600
SUPERTAGGING_MARKUP_FIELD_SUFFIX = "tagged"

Explanation:

We markup all the objects that get processed by OpenCalais, below is an
example of content after it has been marked up.

<p>Mr. Rangel, the longtime top Democrat on the House
Ways and Means Committee who stepped down under
pressure in March, has been under investigation by the panel for two years. At issue is a
plethora of subjects, including Mr. Rangel's ownership
of several rent-controlled apartments in New York; his failure to report $75,000 in earnings
on tax returns; and use of his official position to raise money for the
Charles B. Rangel Center

 API Reference

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django SuperTagging 0.5.4 documentation

API Reference

Contents

	API Reference
	SuperTag
	Fields

	Optional Fields

	Methods

	SuperTagRelation
	Fields

	Methods

	SuperTaggedItem
	Fields

	Methods

	SuperTaggedRelationItem
	Fields

	Methods

	SuperTagProcessQueue
	Fields

	Rendering Items
	Template Locations

	Template Context

SuperTag

Fields

	
	calais_id - Contains the OpenCalais entity ID

	
	CharField

	Length: 255

	Unique

	
	substitute - Substitute tags in order to have better disambiguation.

	
	ForeignKey to self

	null=True, blank=True

	
	name - The tag name.

	
	CharField

	Length: 150

	
	slug - Slugified name

	
	SlugField

	Length: 150

	
	stype - Tag type as returned by OpenCalais

	
	CharField

	Length: 100

	
	properties - Tag properties as returned by OpenCalais

	
	PickledObjectField [http://djangosnippets.org/snippets/513/]

	null=True, blank=True

	
	enabled - Weather or not this tag is used.

	
	BooleanField

	Default: True

Optional Fields

If INCLUDE_DISPLAY_FIELDS is True, these fields will be
included with the model.

	
	display_name - Name used for display purposes. Since all SuperTag name are lowered when returned from calais, we can use this field to set the case correctly for example

	
	CharField

	Length: 150

	null=True, blank=True

	
	description - Description of the tag

	
	TextField

	null=True, blank=True

	
	icon - Image field for the tag

	
	ImageField

	null=True, blank=True

	
	related - Manually relating tags

	
	ManyToManyField to self

	null=True, blank=True

Methods

get_name

Gets the name of the tag, this will try to retrieve the display name first
if the display fields are available, if the display fields are not available
the normal name will be returned.

has_display_fields

Returns True or False, if the display fields are available.

render

Renders the instance, view Rendering Items for more information.

SuperTagRelation

Fields

	
	tag - The associated tag

	
	ForeignKey to SuperTag

	
	stype - The type of relation

	
	CharField

	Length: 100

	
	name - Name of the relation

	
	CharField

	Length: 150

	
	properties - Relation properties returned by OpenCalais

	
	PickledObjectField [http://djangosnippets.org/snippets/513/]

	null=True, blank=True

Methods

render

Renders the instance, view Rendering Items for more information.

SuperTaggedItem

Generic relation to a SuperTag

Fields

	
	tag - The associated tag

	
	ForeignKey to SuperTag

	
	content_type - Content type of an object

	
	ForeignKey to django.contrib.contenttypes.models.ContentType

	
	object_id - Instance primary key

	
	PositiveIntegerField

	
	content_object - Gernric relation

	
	GenericForeignKey to content_type and object_id

	
	field - The name of the field this instance refers to

	
	CharField

	Length: 100

	
	process_type - The type used to process the data, “TEXT/HTML”, “TEXT/RAW” or “TEXT/XML”

	
	CharField

	Length: 10

	null=True, blank=True

	
	relevance - The relevance score

	
	IntegerField

	null=True, blank=True

	
	instances - Contains a list of all the tags found in the content.

	
	PickledObjectField [http://djangosnippets.org/snippets/513/]

	null=True, blank=True

	
	item_date - Date of the object

	
	DateTimeField

	null=True, blank=True

Methods

render

Renders the instance, view Rendering Items for more information.

SuperTaggedRelationItem

Fields

	
	relation - Associated relation

	
	ForignKey to SuperTagRelation

	
	content_type - Content type of an object

	
	ForeignKey to django.contrib.contenttypes.models.ContentType

	
	object_id - Instance primary key

	
	PositiveIntegerField

	
	content_object - Gernric relation

	
	GenericForeignKey to content_type and object_id

	
	field - The name of the field this instance refers to

	
	CharField

	Length: 100

	
	process_type - The type used to process the data, “TEXT/HTML”, “TEXT/RAW” or “TEXT/XML”

	
	CharField

	Length: 10

	null=True, blank=True

	
	instances - Contains a list of all the tags found in the content.

	
	PickledObjectField [http://djangosnippets.org/snippets/513/]

	null=True, blank=True

	
	item_date - Date of the object

	
	DateTimeField

	null=True, blank=True

Methods

render

Renders the instance, view Rendering Items for more information.

SuperTagProcessQueue

Holds a generic relation to an object to be processed at a later time, this
model is only used when USE_QUEUE is set to True

Fields

	
	content_type - Content type of an object

	
	ForeignKey to django.contrib.contenttypes.models.ContentType

	
	object_id - Instance primary key

	
	PositiveIntegerField

	
	content_object - Gernric relation

	
	GenericForeignKey to content_type and object_id

	
	locked - Weather the object is being processed

	
	BooleanField

	Default: False

Rendering Items

SuperTag, SuperTaggedItem, SuperTagRelation
and SuperTaggedRelationItem have a render method in order to
correctly display its contents.

Template Locations

Default location for these templates are in supertagging/templates/render.
For each model there is an additional folder:

	SuperTag: “tags/”

	SuperTaggedItem: “tagged_items/”

	SuperTagRelation: “relations/”

	SuperTaggedRelationItem: “tagged_relations/”

For example the default template for a SuperTaggedItem would be
“supertagging/templates/render/tagged_items/default.html”

This default template is the last resort, below is a detail list of template
paths that will be checked first

	template argument - this is a full path starting in your templates dir

	
	template_path + stype + app + model + suffix - for SuperTag and SuperTagRelation a type, model, app and suffix will be added.

	
	supertagging/render/tags/<stype>/<app>__<model>__<suffix>.html

	supertagging/render/tags/people/stories__story__custom.html

	
	template_path + stype + app + model - Same as above but without the suffix

	
	supertagging/render/tags/people/stories__story.html

	
	template_path + stype + default + suffix - Same as #2 except not app and model

	
	supertagging/render/tags/people/default__custom.html

	
	template_path + stype + default - Same as #4 except without the suffix

	
	supertagging/render/tags/people/default.html

	
	template_path + default - the last possible path to look for the template

	
	supertagging/render/tags/default.html

Note

As stated in #2 of the list above, stype only applies to SuperTag and SuperTagRelation
since SuperTaggedItem and SuperTaggedRelationItem
doesn’t contain the stype field. It will simply not be part of the path.

Template Context

SuperTag and SuperTagRelation has only it self returned
in the context

	obj - self

SuperTaggedItem and SuperTaggedRelationItem has 2 conext
variables

	obj - the generic related item

	content - self

 Copyright 2010, The Washington Times.
 Created using Sphinx 1.3.4.

 Markup

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django SuperTagging 0.5.4 documentation

Markup

This is a way to populate your content with extra content in relation to the
tags. The most common way would be to replace where the tags are located with
links to another section of your site with more information.

Setup

In the settings you will need to have

SUPERTAGGING_SETTINGS = {

 # ... Other settings

 'MARKUP': {
 'ENABLED': True,
 }
}

How It Works

When SuperTagging loads up and markup is enabled, it will add an additional
attribute for every field specified in WATCHED_FIELDS.

SUPERTAGGING_SETTINGS = {
 'ENABLED': True,
 'WATCHED_FIELDS': {
 'stories.story':
 {'fields':[
 {'name': 'body',
 'markup_handler': 'MyCustomHandler'}]},
 'media.image':
 {'fields':[
 {'name': 'caption'}]},
 'blog.entry':
 {'fields':[
 {'name': 'content'},
 {'name': 'tease',
 'markup': False}]}
 },

 # ... Other settings

 'MARKUP': {
 'ENABLED': True,
 'FIELD_SUFFIX': "tagged",
 },
}

Lets take the code sample above as an example. We notice that markup is
enabled and the prefix for the markup fields is tagged. The first module
is a story model, and the field named body is marked to be tagged.
It also specifies a custom markup handler, which we’ll get to a bit later.
The next model is a image model and the caption field is marked for
tagging. The last model is an entry model and it has 2 fields marked for
tagging, content and tease, but tease is not to be marked up.

After SuperTagging is done loading you will end up with three additional
attributes for the three different models.

	Story model: body__tagged

	Image model: caption__tagged

	Entry model: content__tagged

Notice that the a tease__tagged does not exist for the Entry model because the markup flag for that field is False.

Markup handler

Each field will be assigned a MarkupHandler object, which can be found
in supertagging/markup.py file. This module does all the markup processing
for you on the fly. If an error occurs, since the original content is never
touched, the original content is returned.

You can create your own custom handler as well.

from supertagging.markup import MarkupHandler

class MyCustomHandler(MarkupHandler):
 def handle(self, instance):
 # DO YOUR CUSTOM MARKUP HERE
 return "MARKED UP CONTENT"

The handle method needs to return a string of the marked up content.

If you want a create a custom handler but use the default markup method, your code might look something like this:

from supertagging.markup import MarkupHandler, markup_content

class MyCustomHandler(MarkupHandler):
 def handle(self, instance):
 # DO SOMETHING HERE
 return markup_content(instance, self.field)

Markup Template

markup.html

This template is used to render the tags in a marked up state. Below is the
default html rendered.

{{ actual_value }}

Context

	actual_value - the value of the tag, this might be the same as the tag name or a reference to the tag, IE: ‘his’, ‘her’ etc.

	tag - a SuperTag instance

Caching

There is a build-in cache for the markup, since every time we call this new
attribute, a couple database calls need to happen to retrieve all the tags
and its meta data for an instance.

You can change the default timeout for this cache by changing the following setting

SUPERTAGGING_MARKUP_CONTENT_CACHE_TIMEOUT = 3600

Gotchas

In some cases, after enabling markup and successfully tagging an instance the markup
does not show up. Two things might cause this, 1 is the cache has not expired and 2
the markup did not validate.

Markup validation happens when the markup field is called and the data retrieved does
not match what the instance has stored. This usually means that the instance was edited
and the field that gets tagged was changed and it has not been re-processed by
OpenCalais.

 Copyright 2010, The Washington Times.
 Created using Sphinx 1.3.4.

 Reference

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django SuperTagging 0.5.4 documentation

Reference

	Settings

	Template Tags

 Copyright 2010, The Washington Times.
 Created using Sphinx 1.3.4.

 Settings

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django SuperTagging 0.5.4 documentation

 	Reference

Settings

Contents

	Settings
	ENABLED

	DEBUG

	WATCHED_FIELDS

	INCLUDE_DISPLAY_FIELDS

	AUTO_PROCESS

	ONLY_NON_TAGGED_OBJECTS

	RESOLVE_PROPERTY_KEYS

	REGISTER_MODELS

	SUBSTITUTE_TAG_UPDATE

	REMOVE_REL_ON_UPDATE

	FILE_STORAGE

	USE_QUEUE

	CONTENTTYPE_NAME_MAPPING

	OPEN_CALAIS
	DEFAULT_PROCESS_TYPE

	API_KEY

	USER_DIRECTIVES

	PROCESSING_DIRECTIVES

	PROCESS_RELATIONS

	PROCESS_TOPICS

	PROCESS_SOCIALTAGS

	EXCLUSIONS
	TAG_TYPE_EXCLUSIONS

	REL_TYPE_EXCLUSIONS

	TAG_TYPE_QUERY_EXCLUSIONS

	MIN_RELEVANCE

	FREEBASE
	ENABLED

	TYPE_MAPPINGS

	RETRIEVE_DESCRIPTIONS

	DESCRIPTION_URL

	MARKUP
	ENABLED

	MIN_RELEVANCE

	FIELD_SUFFIX

	EXCLUDES

	CONTENT_CACHE_TIMEOUT

The default SuperTagging settings are:

SUPERTAGGING_SETTINGS = {
 'ENABLED': False,
 'DEBUG': False,
 'WATCHED_FIELDS': {},
 'AUTO_PROCESS': False,
 'ONLY_NON_TAGGED_OBJECTS': False,
 'CONTENTTYPE_NAME_MAPPING': {},
 'INCLUDE_DISPLAY_FIELDS': True,
 'REGISTER_MODELS': True,
 'REMOVE_REL_ON_DISABLE': True,
 'RESOLVE_PROPERTY_KEYS': True,
 'SUBSTITUTE_TAG_UPDATE': True,
 'USE_QUEUE': False,
 'FILE_STORAGE': 'django.core.files.storage.FileSystemStorage',
 'EXCLUSIONS': {
 'MIN_RELEVANCE': 0,
 'REL_TYPE_EXCLUSIONS': [],
 'TAG_TYPE_EXCLUSIONS': [],
 'TAG_TYPE_QUERY_EXCLUSIONS': []},
 'FREEBASE': {
 'DESCRIPTION_URL': 'http://www.freebase.com/api/trans/raw',
 'ENABLED': False,
 'RETRIEVE_DESCRIPTIONS': False,
 'TYPE_MAPPINGS': {}},
 'MARKUP': {
 'CONTENT_CACHE_TIMEOUT': 3600,
 'ENABLED': False,
 'EXCLUDE': [],
 'FIELD_SUFFIX': 'tagged',
 'MIN_RELEVANCE': 0},
 'OPEN_CALAIS': {
 'API_KEY': '',
 'DEFAULT_PROCESS_TYPE': 'TEXT/RAW',
 'PROCESSING_DIRECTIVES': {
 'calculateRelevanceScore': True,
 'contentType': 'TEXT/RAW',
 'docRDFaccessible': True,
 'enableMetadataType': '',
 'outputFormat': 'application/json',
 'reltagBaseURL': ''},
 'PROCESS_RELATIONS': True,
 'PROCESS_SOCIALTAGS': True,
 'PROCESS_TOPICS': True,
 'USER_DIRECTIVES': {
 'allowDistribution': False,
 'allowSearch': False,
 'externalID': '',
 'submitter': 'python-calais client v.1.5'}},
}

ENABLED

Default: False

Whether or not SuperTagging is enabled. Will not process any objects if False. This allows starting and stopping tag processing while preserving the value of AUTO_PROCESS.

DEBUG

Default: False

If True, errors will fail loudly in order to debug the code.

WATCHED_FIELDS

Default: {}

This settings is a dictionary that specifies all the models, fields
and options.

The keys of the dictionary are strings in the format app_name.model_name. The value of each key is a dictionary, where the fields and other options are specified.

	fields - (Required) List of dictionaries that specify field names and its options
	name - (Required) String The name of the field

	process_type - (Optional) String The process type that OpenCalais should use when tagging the data, possible values are TEXT/RAW, TEXT/HTML, TEXT/HTMLRAW, or TEXT/XML. Default is the value of DEFAULT_PROCESS_TYPE.

	markup - (Optional) bool Should SuperTagging automatically markup this field? Default is False.

	combine_fields - (Optional) list A list of two or more fields on the model to combine into one submission to OpenCalais for processing. Markup is not available for these combined fields.

	match_kwargs - (Optional) dict A dictionary of extra query parameters to check when processing instances of the model. Performs an extra .get(**kwargs) on the instance to ensure it validates against the extra query parameters.

	date_field - (Optional) String The name of the field to retrieve the instance date. If this is not specified, supertagging will try to retrieve the data from the instance _meta.get_latest_by or _meta.ordering. This field is saved into SuperTaggedItem to allow easy sorting of the items by date.

Here is a complete example:

SUPERTAGGING_MODULES = {
 'stories.story': {
 'fields': [{
 'name': 'body',
 'process_type': 'TEXT/HTML',
 'markup': True
 }, {
 'name': 'tease'
 }, {
 'name': 'kicker',
 'markup': True
 }],
 'match_kwargs': {
 'status__in': [1,2,3,],
 'published_date__isnull': False},
 'date_field': 'published_date'
 },
 'media.image': {
 'fields': [{'name': 'caption',
 'process_type': 'TEXT/HTML',
 'markup': True}],
 'date_field': 'creation_date'
 }
}

INCLUDE_DISPLAY_FIELDS

Default: True

Should SuperTagging include three extra fields for display purposes:

	description - a text field

	icon - a image field

	related - a many2many field to ‘self’ (SuperTag)

AUTO_PROCESS

Default: False

If True, will set up post_save and post_delete signals to process the data.

ONLY_NON_TAGGED_OBJECTS

Default: False

Used with AUTO_PROCESS. If True, will only process objects that have not been tagged before. Objects that have tags but need re-processing must be added to the queue manually.

If False, process all objects.

RESOLVE_PROPERTY_KEYS

Default: True

If True, SuperTagging will try resolve the Calais ID to a tag name.

REGISTER_MODELS

Default: False

If True, an additional attribute will be avilable in a model’s instance for easy query related access to SuperTagging.

SUBSTITUTE_TAG_UPDATE

Default: False

When True, and a substitute is specified in SuperTag all
associated SuperTaggedItem and SuperTagRelation will be
updated with the new tag.

REMOVE_REL_ON_UPDATE

Default: False

If True, all content related to a tag is removed (items from models
SuperTaggedItem and SuperTaggedRelationItem.

FILE_STORAGE

Default: settings.DEFAULT_FILE_STORAGE

Default file storage used for the icon display field.

USE_QUEUE

Default: False

If True, use the queuing system. When a object is saved, it will be saved to a queue for later processing. A management command is included for you to process the queue.

If False, process the object on save.

CONTENTTYPE_NAME_MAPPING

Default: {}

A dict of mapped content type ids to names, used for the views

{
 34: 'stories',
 83: 'images',
}

Where the key is the content type id and the value is the string
used in the url:

This:

/supertagging/tag/barack_obama/stories/

/supertagging/tag/barack_obama/images/

instead of this:

/supertagging/tag/barack_obama/34/

/supertagging/tag/barack_obama/83/

This was done in order to make readable urls.

OPEN_CALAIS

DEFAULT_PROCESS_TYPE

Default: TEXT/RAW

Tells the default process type for OpenCalais to process the data.

There are four options that can be supplied.

	TEXT/RAW

	TEXT/HTML

	TEXT/HTMLRAW

	TEXT/XML

API_KEY

Default: ''

Your OpenCalais API Key

These next two settings are options for open calais.

USER_DIRECTIVES

Default:

{
 "allowDistribution": False,
 "allowSearch": False,
 "externalID": '',
 "submitter": "python-calais client v.1.5",
}

View Input Parameters [http://www.opencalais.com/documentation/calais-web-service-api/forming-api-calls/input-parameters] on OpenCalais.com for more information.

PROCESSING_DIRECTIVES

Default:

{
 "contentType": "TEXT/RAW",
 "outputFormat": "application/json",
 "reltagBaseURL": '',
 "calculateRelevanceScore": True,
 "enableMetadataType": '',
 "docRDFaccessible": True,
}

View Input Parameters [http://www.opencalais.com/documentation/calais-web-service-api/forming-api-calls/input-parameters] on OpenCalais.com for more information.

PROCESS_RELATIONS

Default: False

If True, save the tag relations (Events/Facts) returned by OpenCalais

PROCESS_TOPICS

Default: False

If True, save the topics returned by OpenCalais. These will simply be added as tags, but will not include all tag details.

PROCESS_SOCIALTAGS

Default: False

If True, save the social tags returned by OpenCalais. These will simply be added as tags, but will not include all tag details.

EXCLUSIONS

TAG_TYPE_EXCLUSIONS

Default: []

Tag types as strings to exclude from being added. These tags should be all
the “Entities” listed on the following link.

OpenCalais Entities, Events and Facts [http://www.opencalais.com/documentation/calais-web-service-api/api-metadata/entity-index-and-definitions]

REL_TYPE_EXCLUSIONS

Default: []

Same as above but these are the relations and are shown on the following link
as “Events and Facts”

OpenCalais Entities, Events and Facts [http://www.opencalais.com/documentation/calais-web-service-api/api-metadata/entity-index-and-definitions]

TAG_TYPE_QUERY_EXCLUSIONS

NOT IMPLEMENTED (YET)

Tags will be saved, but not returned in the queries

MIN_RELEVANCE

Default: 0

Integer between 0 and 1000, will only save tags that have a higher relevance
that this setting.

FREEBASE

ENABLED

Default: False

Use Freebase to disambiguate the tags?

TYPE_MAPPINGS

Default: {}

For better disambiguation, use this setting to map Calais types to freebase types.

RETRIEVE_DESCRIPTIONS

Default: False

If the display fields are enabled, you can have freebase retrieve the description for the tags.

DESCRIPTION_URL

Default: "http://www.freebase.com/api/trans/raw"

The first part of the url from where to retrieve the descriptions.

MARKUP

ENABLED

Default: False

Is automatic markup of content enabled?

MIN_RELEVANCE

Default: 0

Integer between 0 and 1000, tells SuperTagging the minimum relevance to use when marking up the content.

FIELD_SUFFIX

Default: "tagged"

If markup is enabled, SuperTagging will add a field to the instance with the
marked up content, this setting specifies the suffix.

For example: if 'body' field is marked for tagging, by default a field called 'body__tagged' will be available in the instance that contains the content with marked up content.

EXCLUDES

Default: []

List of strings of values to exclude from being marked up. For example,
OpenCalais returns ‘his’, ‘her’, ‘him’ etc. in reference to a tag.

CONTENT_CACHE_TIMEOUT

Default: 3600

Cache timeout for the markup content in seconds.

 Copyright 2010, The Washington Times.
 Created using Sphinx 1.3.4.

 Template Tags

 Navigation

 	
 index

 	
 previous |

 	Django SuperTagging 0.5.4 documentation

 	Reference

Template Tags

Contents

	Template Tags
	Tags from Django-Tagging
	Tag reference
	supertags_for_model

	supertag_cloud_for_model

	supertags_for_object

	supertagged_objects

	New Tags for SuperTagging
	Tag reference
	relations_for_supertag

	relations_for_object

	relations_for

	supertag_render

Here is the list of current template tags, most of these are tags from
Django Tagging [http://code.google.com/p/django-tagging/] with some addtions

Note

Tag names have changed slightly, the biggest difference is that now there
is “super” prepended to them. This is so we don’t clash with a project
that uses Django-Tagging and SuperTagging together.

The following “Tags from Django-Tagging” section are a modified version
of Django-Tagging template tag documentation

Tags from Django-Tagging

The supertagging.templatetags.supertagging_tags module defines a number of
template tags which may be used to work with tags.

Tag reference

supertags_for_model

Retrieves a list of SuperTag objects associated with a given model and
stores them in a context variable.

Usage

{% supertags_for_model [model] as [varname] %}

The model is specified in [appname].[modelname] format.

Extended usage

{% supertags_for_model [model] as [varname] with counts %}

If specified - by providing extra with counts arguments - adds a
count attribute to each tag containing the number of instances of
the given model which have been tagged with it.

Examples

{% supertags_for_model products.Widget as widget_tags %}
{% supertags_for_model products.Widget as widget_tags with counts %}

supertag_cloud_for_model

Retrieves a list of SuperTag objects for a given model, with tag cloud
attributes set, and stores them in a context variable.

Usage

{% supertag_cloud_for_model [model] as [varname] %}

The model is specified in [appname].[modelname] format.

Extended usage

{% supertag_cloud_for_model [model] as [varname] with [options] %}

Extra options can be provided after an optional with argument, with
each option being specified in [name]=[value] format. Valid extra
options are:

	steps

	Integer. Defines the range of font sizes.

	min_count

	Integer. Defines the minimum number of times a tag must have
been used to appear in the cloud.

	distribution

	One of linear or log. Defines the font-size
distribution algorithm to use when generating the tag cloud.

Examples

{% supertag_cloud_for_model products.Widget as widget_tags %}
{% supertag_cloud_for_model products.Widget as widget_tags with steps=9 min_count=3 distribution=log %}

supertags_for_object

Retrieves a list of SuperTag objects associated with an object and stores
them in a context variable.

Usage

{% supertags_for_object [object] as [varname] %}

Example

{% supertags_for_object foo_object as tag_list %}

supertagged_objects

Retrieves a list of instances of a given model which are tagged with a
given SuperTag and stores them in a context variable.

Usage

{% supertagged_objects [tag] in [model] as [varname] %}

The model is specified in [appname].[modelname] format.

The tag must be an instance of a SuperTag, not the name of a tag.

Example

{% supertagged_objects comedy_tag in tv.Show as comedies %}

New Tags for SuperTagging

Below is a list of the new tags that can be used with SuperTagging

Tag reference

relations_for_supertag

Usage

{% relations_for_supertag [tag] as [varname] %}
{% relations_for_supertag [tag] as [varname] with type=[TYPE] %}

The tag must of an instance of a SuperTag, not the name of a tag.

Example

{% relations_for_supertag state_tag as relations %}
{% relations_for_supertag state_tag as relations with type=Quotation %}

relations_for_object

Useage

{% relations_for_object [object] as [varname] %}
{% relations_for_object [object] as [varname] with [type=TYPE]}

Example

{% relations_for_object story as story_relations %}
{% relations_for_object story as story_relations with type=Quotation %}

relations_for

Returns a list of SuperTagRelation objects for a tag within a given object.

Useage

{% relations_for [tag] in [object] as [varname] %}

Example

{% relations_for state_tag in obj as obj_relations %}

supertag_render

Useage

{% supertag_render [SuperTag or SuperTaggedItem or SuperTagRelation or SuperTaggedRelationItem] [with] [suffix=S] [template=T] %}

Example

{% supertag_render tag %}
{% supertag_render tagged_item with suffix=custom %}
{% supertag_render rel_item with template=mycustomtemplates/supertags/custom.html %}

Only suffix OR template can be specified, but not both.

View Rendering Items for more information about rendering.

 Copyright 2010, The Washington Times.
 Created using Sphinx 1.3.4.

 Index

 Navigation

 	
 index

 	Django SuperTagging 0.5.4 documentation

Index

 Copyright 2010, The Washington Times.
 Created using Sphinx 1.3.4.

_static/scrn2.png
A Diango v1.0 documentation

» Table of Contents previous | next | modules | index

Main Page
Getting started Users 0

Using Django
How to install Django

s s s

Handling HTTP requests.

Working with forms API reference
Creating forms from models

‘The Django template language Fields
Generic views.

Managing files
class models.User

Testing Django applications
User objects have the following fields:

User authentication in Django

Diango's cache framework username
Conditional View Processing

Required. 30 characters or fewer. Alphanumeric characters only (letters,
digits and underscores).

Sending e-mail
Internationalization

first_name

Seralzing Django objects
= Optional. 30 characters or fewer.

Django settings
Signals

. last name

_static/up-pressed.png

_static/down.png

_static/breadcrumb_background.png

_static/ajax-loader.gif

_static/scrn1.png
