

django-staticfiles

This is a Django app that provides helpers for serving static files.

Django developers mostly concern themselves with the dynamic parts of web
applications – the views and templates that render new for each request. But
web applications have other parts: the static media files (images, CSS,
Javascript, etc.) that are needed to render a complete web page.

For small projects, this isn’t a big deal, because you can just keep the media
somewhere your web server can find it. However, in bigger projects – especially
those comprised of multiple apps – dealing with the multiple sets of static
files provided by each application starts to get tricky.

That’s what staticfiles is for:

Collecting static files from each of your Django apps (and any other
place you specify) into a single location that can easily be served in
production.

The main website for django-staticfiles is
github.com/jezdez/django-staticfiles [http://github.com/jezdez/django-staticfiles] where you can also file tickets.

Note

django-staticfiles is now part of Django (since 1.3) as django.contrib.staticfiles.

The django-staticfiles 0.3.X series will only receive security and data los
bug fixes after the release of django-staticfiles 1.0. Any Django 1.2.X
project using django-staticfiles 0.3.X and lower should be upgraded to use
either Django >= 1.3’s staticfiles app or django-staticfiles >= 1.0 to
profit from the new features and stability.

You may want to chose to use django-staticfiles instead of Django’s own
staticfiles app since any new feature (additionally to those backported
from Django) will be released first in django-staticfiles.

Installation

	Use your favorite Python packaging tool to install staticfiles
from PyPI [http://pypi.python.org/pypi/django-staticfiles], e.g.:

pip install django-staticfiles

You can also install the in-development version [http://github.com/jezdez/django-staticfiles/tarball/develop#egg=django-staticfiles-dev] of django-staticfiles
with pip install django-staticfiles==dev.

	Added "staticfiles" to your INSTALLED_APPS setting:

INSTALLED_APPS = [
 # ...
 "staticfiles",
]

	Set your STATIC_URL setting to the URL that handles serving
static files:

STATIC_URL = "/static/"

	In development mode (when DEBUG = True) the runserver command will
automatically serve static files:

python manage.py runserver

	Once you are ready to deploy all static files of your site in a central
directory (STATIC_ROOT) to be served by a real webserver (e.g. Apache [http://httpd.apache.org/],
Cherokee [http://www.cherokee-project.com/], Lighttpd [http://www.lighttpd.net/], Nginx [http://wiki.nginx.org/] etc.), use the collectstatic management
command:

python manage.py collectstatic

See the webserver’s documentation for descriptions how to setup serving
the deployment directory (STATIC_ROOT).

	(optional) In case you use Django’s admin app, make sure the
ADMIN_MEDIA_PREFIX setting is set correctly to a subpath of
STATIC_URL:

ADMIN_MEDIA_PREFIX = STATIC_URL + "admin/"

Differences to django.contrib.staticfiles

Features of django-staticfiles which Django’s staticfiles doesn’t
support:

	Runs on Django 1.2.X.

	STATICFILES_EXCLUDED_APPS settings – A
sequence of dotted app paths that should be ignored when searching for
static files.

	STATICFILES_IGNORE_PATTERNS settings – A
sequence of glob patterns of files and directories to ignore when running
collectstatic.

	Legacy ‘media’ dir file finder – a staticfiles finder that supports the
location for static files that a lot of 3rd party apps support
(staticfiles.finders.LegacyAppDirectoriesFinder).

See the Settings docs for more information.

Contents

	Management Commands
	collectstatic

	findstatic

	runserver

	Helpers
	Context processors

	Template tags

	Storages

	Settings

	Changelog
	v1.2.1 (2012-02-16)

	v1.2 (2012-02-12)

	v1.1.2 (2011-08-25)

	v1.1.1 (2011-08-22)

	v1.1 (2011-08-18)

	v1.0.1 (2011-03-28)

	v1.0 (2011-03-23)

	v0.3.4 (2010-12-25)

	v0.3.3 (2010-12-23)

	v0.3.2 (2010-08-27)

	v0.3.1 (2010-08-21)

	v0.3.0 (2010-08-18)

	v0.2.0 (2009-11-25)

	v0.1.2 (2009-09-02)

	v0.1.1 (2009-09-02)

	v0.1.0 (2009-09-02)

Management Commands

collectstatic

Collects the static files from all installed apps and copies them to the
STATICFILES_STORAGE.

Duplicate file names are resolved in a similar way to how template resolution
works. Files are initially searched for in
STATICFILES_DIRS locations, followed by apps in
the order specified by the INSTALLED_APPS setting.

Some commonly used options are:

	--noinput

	Do NOT prompt the user for input of any kind.

	-i PATTERN or --ignore=PATTERN

	Ignore files or directories matching this glob-style pattern. Use multiple
times to ignore more.

	-n or --dry-run

	Do everything except modify the filesystem.

	-l or --link

	Create a symbolic link to each file instead of copying.

	--no-default-ignore

	Don’t ignore the common private glob-style patterns 'CVS', '.*'
and '*~'.

-c or --clear

New in version 1.1.

Clear the existing files before trying to copy or link the original file.

--no-post-process

New in version 1.1.

Don’t call the
post_process()
method of the configured
STATICFILES_STORAGE storage backend.

For a full list of options, refer to the collectstatic management command help
by running:

$ python manage.py collectstatic --help

findstatic

Searches for one or more relative paths with the enabled finders:

$ python manage.py findstatic css/base.css admin/js/core.css
/home/special.polls.com/core/media/css/base.css
/home/polls.com/core/media/css/base.css
/home/polls.com/src/django/contrib/admin/media/js/core.js

By default, all matching locations are found. To only return the first match
for each relative path, use the --first option:

$ python manage.py findstatic css/base.css --first
/home/special.polls.com/core/media/css/base.css

This is a debugging aid; it’ll show you exactly which static file will be
collected for a given path.

runserver

Overrides the core runserver command if the staticfiles app
is installed (in INSTALLED_APPS) and adds automatic serving of static
files and the following new options.

--nostatic

Use the --nostatic option to disable serving of static files with the
staticfiles app entirely. This option is only available if the
staticfiles app is in your project’s INSTALLED_APPS setting.

Example usage:

django-admin.py runserver --nostatic

--insecure

Use the --insecure option to force serving of static files with the
staticfiles app even if the DEBUG setting is False.

Warning

By using this you acknowledge the fact that it’s
grossly inefficient and probably insecure.

This is only intended for local development, should
never be used in production and is only available if the
staticfiles app is in your project’s INSTALLED_APPS setting.

Example usage:

django-admin.py runserver --insecure

Helpers

Context processors

The static context processor

	
context_processors.static()

	

This context processor adds the STATIC_URL into each template
context as the variable {{ STATIC_URL }}. To use it, make sure that
'staticfiles.context_processors.static' appears somewhere in your
TEMPLATE_CONTEXT_PROCESSORS setting.

Remember, only templates rendered with a RequestContext will have
acces to the data provided by this (and any) context processor.

Template tags

static

	
templatetags.staticfiles.static()

	

New in version 1.1.

Uses the configued STATICFILES_STORAGE storage
to create the full URL for the given relative path, e.g.:

{% load staticfiles %}

The previous example is equal to calling the url method of an instance of
STATICFILES_STORAGE with "css/base.css".
This is especially useful when using a non-local storage backend to deploy
files to a CDN [https://docs.djangoproject.com/en/dev/howto/static-files/#serving-static-files-from-a-cloud-service-or-cdn].

get_static_prefix

	
templatetags.static.get_static_prefix()

	

If you’re not using RequestContext, or if you need more control over
exactly where and how STATIC_URL is injected into the template,
you can use the get_static_prefix template tag instead:

{% load static %}

There’s also a second form you can use to avoid extra processing if you need
the value multiple times:

{% load static %}
{% get_static_prefix as STATIC_PREFIX %}

get_media_prefix

	
templatetags.static.get_media_prefix()

	

Similar to get_static_prefix() but
uses the MEDIA_URL setting instead.

Storages

StaticFilesStorage

	
class storage.StaticFilesStorage

	A subclass of the FileSystemStorage [https://docs.djangoproject.com/en/dev/_objects/ref/files/storage/#django.core.files.storage.FileSystemStorage]
storage backend that uses the STATIC_ROOT
setting as the base file system location and the
STATIC_URL setting respectively as the base
URL.

	
post_process(paths, **options)

	

New in version 1.1.

This method is called by the collectstatic management command
after each run and gets passed the paths of found files, as well as the
command line options.

The CachedStaticFilesStorage uses this
behind the scenes to replace the paths with their hashed counterparts
and update the cache appropriately.

CachedStaticFilesStorage

	
class storage.CachedStaticFilesStorage

	
New in version 1.1.

A subclass of the StaticFilesStorage
storage backend which caches the files it saves by appending the MD5 hash
of the file’s content to the filename. For example, the file
css/styles.css would also be saved as css/styles.55e7cbb9ba48.css.

The purpose of this storage is to keep serving the old files in case some
pages still refer to those files, e.g. because they are cached by you or
a 3rd party proxy server. Additionally, it’s very helpful if you want to
apply far future Expires headers [http://developer.yahoo.com/performance/rules.html#expires] to the deployed files to speed up the
load time for subsequent page visits.

The storage backend automatically replaces the paths found in the saved
files matching other saved files with the path of the cached copy (using
the post_process()
method). The regular expressions used to find those paths
(storage.CachedStaticFilesStorage.cached_patterns)
by default cover the @import [http://www.w3.org/TR/CSS2/cascade.html#at-import] rule and url() [http://www.w3.org/TR/CSS2/syndata.html#uri] statement of Cascading
Style Sheets [http://www.w3.org/Style/CSS/]. For example, the 'css/styles.css' file with the
content

@import url("../admin/css/base.css");

would be replaced by calling the
url() [https://docs.djangoproject.com/en/dev/_objects/ref/files/storage/#django.core.files.storage.Storage.url]
method of the CachedStaticFilesStorage storage backend, ultimatively
saving a 'css/styles.55e7cbb9ba48.css' file with the following
content:

@import url("/static/admin/css/base.27e20196a850.css");

To enable the CachedStaticFilesStorage you have to make sure the
following requirements are met:

	the STATICFILES_STORAGE setting is set to
'staticfiles.storage.CachedStaticFilesStorage'

	the DEBUG setting is set to False

	you use the staticfiles
static() template
tag to refer to your static files in your templates

	you’ve collected all your static files by using the
collectstatic management command

Since creating the MD5 hash can be a performance burden to your website
during runtime, staticfiles will automatically try to cache the
hashed name for each file path using Django’s caching framework. If you
want to override certain options of the cache backend the storage uses,
simply specify a custom entry in the CACHES setting named
'staticfiles'. It falls back to using the 'default' cache backend.

Static file development view

	
staticfiles.views.serve(request, path)

	

This view function serves static files in development.

Warning

This view will only work if DEBUG is True.

That’s because this view is grossly inefficient and probably
insecure. This is only intended for local development, and should
never be used in production.

This view is automatically enabled by runserver (with a
DEBUG setting set to True). To use the view with a different
local development server, add the following snippet to the end of your
primary URL configuration:

from django.conf import settings

if settings.DEBUG:
 urlpatterns += patterns('staticfiles.views',
 url(r'^static/(?P<path>.*)$', 'serve'),
)

Note, the begin of the pattern (r'^static/') should be your
STATIC_URL setting.

URL patterns helper

	
staticfiles.urls.staticfiles_urlpatterns()

	

Warning

This helper function will only work if DEBUG is True
and your STATIC_URL setting is neither empty nor a full
URL such as http://static.example.com/.

Since configuring the URL patterns is a bit finicky, there’s also a helper
function that’ll do this for you.

This will return the proper URL pattern for serving static files to your
already defined pattern list. Use it like this:

from staticfiles.urls import staticfiles_urlpatterns

... the rest of your URLconf here ...

urlpatterns += staticfiles_urlpatterns()

Settings

	
django.conf.settings.STATIC_ROOT

	

	Default:	"" (Empty string)

The absolute path to the directory that contains static content after
using collectstatic.

Example: "/home/example.com/static/"

When using the collectstatic management command this will be used
to collect static files into, to be served under the URL specified as
STATIC_URL.

This is a required setting to use collectstatic – unless
you’ve overridden STATICFILES_STORAGE and
are using a custom storage backend.

Warning

This is not a place to store your static files permanently
under version control!

You should do that in directories that will be found by your
STATICFILES_FINDERS (by default,
per-app 'static' subdirectories, and any directories you
include in STATICFILES_DIRS setting).
Files from those locations will be collected into
STATIC_ROOT.

See also STATIC_URL.

	
django.conf.settings.STATIC_URL

	

	Default:	None

URL that handles the files served from STATIC_ROOT and used by
runserver in development mode (when DEBUG = True).

Example: "/site_media/static/" or "http://static.example.com/"

It must end in a slash if set to a non-empty value.

See also STATIC_ROOT.

	
django.conf.settings.STATICFILES_DIRS

	

	Default:	()

This setting defines the additional locations the staticfiles app will
traverse if the FileSystemFinder finder is enabled, e.g. if you
use the collectstatic or findstatic management command or
use the static file serving view.

This should be set to a list or tuple of strings that contain full paths
to your additional files directory(ies) e.g.:

STATICFILES_DIRS = (
 "/home/special.polls.com/polls/static",
 "/home/polls.com/polls/static",
 "/opt/webfiles/common",
)

In case you want to refer to files in one of the locations with an
additional namespace, you can OPTIONALLY provide a prefix as
(prefix, path) tuples, e.g.:

STATICFILES_DIRS = (
 # ...
 ("downloads", "/opt/webfiles/stats"),
)

Example:

Assuming you have STATIC_URL set
'/static/', the collectstatic management command would collect
the stats files in a 'downloads' subdirectory of
STATIC_ROOT.

This would allow you to refer to the local file
'/opt/webfiles/stats/polls_20101022.tar.gz' with
'/static/downloads/polls_20101022.tar.gz' in your templates, e.g.:

	
django.conf.settings.STATICFILES_IGNORE_PATTERNS

	

	Default:	()

This setting defines patterns to be ignored by the collectstatic
management command.

This should be set to a list or tuple of strings that contain file or
directory names and may include an absolute file system path or a path
relative to STATIC_ROOT, e.g.:

STATICFILES_IGNORE_PATTERNS = (
 "*.txt",
 "tests",
 "css/*.old",
 "/opt/webfiles/common/*.txt",
 "/opt/webfiles/common/temp",
)

New in version 1.2.

	
django.conf.settings.STATICFILES_EXCLUDED_APPS

	

	Default:	()

A sequence of app paths that should be ignored when searching for static
files, e.g.:

STATICFILES_EXCLUDED_APPS = (
 'annoying.app',
 'old.company.app',
)

	
django.conf.settings.STATICFILES_STORAGE

	

	Default:	'staticfiles.storage.StaticFileStorage'

The file storage engine to use when collecting static files with the
collectstatic management command.

	
django.conf.settings.STATICFILES_FINDERS

	

	Default:	('staticfiles.finders.FileSystemFinder',
'staticfiles.finders.AppDirectoriesFinder')

The list of finder backends that know how to find static files in
various locations.

The default will find files stored in the
STATICFILES_DIRS setting
(using staticfiles.finders.FileSystemFinder) and in a
static subdirectory of each app (using
staticfiles.finders.AppDirectoriesFinder)

One finder is disabled by default:
staticfiles.finders.DefaultStorageFinder. If added to
your STATICFILES_FINDERS setting, it will
look for static files in the default file storage as defined by the
DEFAULT_FILE_STORAGE setting.

Note

When using the AppDirectoriesFinder finder, make sure your apps
can be found by staticfiles. Simply add the app to the
INSTALLED_APPS setting of your site.

Static file finders are currently considered a private interface, and this
interface is thus undocumented.

To ease the burden of upgrading a Django project from a
non-staticfiles setup, the optional finder backend
staticfiles.finders.LegacyAppDirectoriesFinder is shipped as
part of django-staticfiles.

When added to the STATICFILES_FINDERS
setting, it’ll enable staticfiles to use the media directory of
the apps in INSTALLED_APPS, similarly
staticfiles.finders.AppDirectoriesFinder.

This is especially useful for 3rd party apps that haven’t been switched
over to the static directory instead. If you want to use both
static and media, don’t forget to have
staticfiles.finders.AppDirectoriesFinder in the
STATICFILES_FINDERS, too.

Changelog

v1.2.1 (2012-02-16)

	Backported a change from Django trunk that prevents openening too
many files at once when running the collectstatic management
command.

v1.2 (2012-02-12)

	Added STATICFILES_IGNORE_PATTERNS setting to globally ignore
files when running the collectstatic management command.

	Refactored CachedFilesMixin and management command to only
post process the collected files if really needed.

	Added support for URL fragment to the CachedStaticFilesStorage.

	Stopped using versiontools [http://pypi.python.org/pypi/versiontools] again as it caused installation time issues.

v1.1.2 (2011-08-25)

	Fixed a minor bug in how django-appconf [http://django-appconf.rtfd.org/] was used.

v1.1.1 (2011-08-22)

	Fixed resolution of relative paths in CachedStaticFilesStorage.

	Started to use django-appconf [http://django-appconf.rtfd.org/] and versiontools [http://pypi.python.org/pypi/versiontools].

v1.1 (2011-08-18)

	Pulled all changes from upstream Django:
	static template tag to refer to files saved with the
STATICFILES_STORAGE storage backend. It’ll use the storage url
method and therefore supports advanced features such as serving files
from a cloud service.

	CachedStaticFilesStorage which caches the files it saves (when
running the collectstatic management command) by appending the MD5
hash of the file’s content to the filename. For example, the file
css/styles.css would also be saved as css/styles.55e7cbb9ba48.css

	Added a staticfiles.storage.staticfiles_storage instance of the
configured STATICFILES_STORAGE.

	--clear option for the management command which clears the
target directory (by default STATIC_ROOT) before collecting

	Stop trying to show directory indexes in the included serve view.

	Correctly pass kwargs to the URL patterns when using the static URL
patterns helper.

	Use sys.stdout in management command, not self.stdout which was only
introduced in a later Django version.

	Refactored AppSettings helper class to be only a proxy for Django’s
settings object instead of a singleton on its own.

	Updated list of supported Django versions: 1.2.X, 1.3.X and 1.4.X

	Updated list of supported Python versions: 2.5.X, 2.6.X and 2.7.X

v1.0.1 (2011-03-28)

	Fixed an encoding related issue in the tests.

	Updated tox configuration to use 1.3 release tarball.

	Extended docs a bit.

v1.0 (2011-03-23)

Note

django-staticfiles is a backport of the staticfiles app in
Django contrib. If you’re upgrading from django-staticfiles < 1.0,
you’ll need to make a few changes. See changes below.

	Renamed StaticFileStorage to StaticFilesStorage.

	Application files should now live in a static directory in each app
(previous versions of django-staticfiles used the name media,
which was slightly confusing).

	The management commands build_static and resolve_static are now
called collectstatic and findstatic.

	The settings STATICFILES_PREPEND_LABEL_APPS and
STATICFILES_MEDIA_DIRNAMES were removed.

	The setting STATICFILES_RESOLVERS was removed, and replaced by the new
STATICFILES_FINDERS setting.

	The default for STATICFILES_STORAGE was renamed from
staticfiles.storage.StaticFileStorage to
staticfiles.storage.StaticFilesStorage

	If using runserver for local development (and the setting
DEBUG setting is True), you no longer need to add
anything to your URLconf for serving static files in development.

v0.3.4 (2010-12-25)

	Minor documentation update.

v0.3.3 (2010-12-23)

Warning

django-staticfiles was added to Django 1.3 as a contrib app.

The django-staticfiles 0.3.X series will only receive security and data los
bug fixes after the release of django-staticfiles 1.0. Any Django 1.2.X
project using django-staticfiles 0.3.X and lower should be upgraded to use
either Django 1.3’s staticfiles app or django-staticfiles >= 1.0 to profit
from the new features and stability.

You may want to chose to use django-staticfiles instead of Django’s own
staticfiles app since any new feature (additionally to those backported
from Django) will be released first in django-staticfiles.

	Fixed an issue that could prevent the build_static management command
to fail if the destination storage doesn’t implement the listdir
method.

	Fixed an issue that caused non-local storage backends to fail saving
the files when running build_static.

v0.3.2 (2010-08-27)

	Minor cosmetic changes

	Moved repository back to Github: http://github.com/jezdez/django-staticfiles

v0.3.1 (2010-08-21)

	Added Sphinx config files and split up README.

Documetation now available under
django-staticfiles.readthedocs.org [http://django-staticfiles.readthedocs.org/]

v0.3.0 (2010-08-18)

	Added resolver API which abstract the way staticfiles finds files.

	Added staticfiles.urls.staticfiles_urlpatterns to avoid the catch-all
URLpattern which can make top-level urls.py slightly more confusing.
From Brian Rosner.

	Minor documentation changes

	Updated testrunner to work with Django 1.1.X and 1.2.X.

	Removed custom code to load storage backend.

v0.2.0 (2009-11-25)

	Renamed build_media and resolve_media management commands to build_static
and resolve_media to avoid confusions between Django’s use of the term
“media” (for uploads) and “static” files.

	Rework most of the internal logic, abstracting the core functionality away
from the management commands.

	Use file system storage backend by default, ability to override it with
custom storage backend

	Removed –interactive option to streamline static file resolving.

	Added extensive tests

	Uses standard logging

v0.1.2 (2009-09-02)

	Fixed a typo in settings.py

	Fixed a conflict in build_media (now build_static) between handling
non-namespaced app media and other files with the same relative path.

v0.1.1 (2009-09-02)

	Added README with a bit of documentation :)

v0.1.0 (2009-09-02)

	Initial checkin from Pinax’ source.

	Will create the STATIC_ROOT directory if not existent.

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 staticfiles	
 An app for handling static files.

Index

 C
 | P
 | S
 | T

C

 	
 	context_processors.static() (in module staticfiles)

P

 	
 	post_process() (staticfiles.storage.StaticFilesStorage method)

S

 	
 	STATIC_ROOT (in module django.conf.settings)

 	STATIC_URL (in module django.conf.settings)

 	staticfiles (module)

 	staticfiles.urls.staticfiles_urlpatterns() (in module staticfiles)

 	staticfiles.views.serve() (in module staticfiles)

 	STATICFILES_DIRS (in module django.conf.settings)

 	
 	STATICFILES_EXCLUDED_APPS (in module django.conf.settings)

 	STATICFILES_FINDERS (in module django.conf.settings)

 	STATICFILES_IGNORE_PATTERNS (in module django.conf.settings)

 	STATICFILES_STORAGE (in module django.conf.settings)

 	storage.CachedStaticFilesStorage (class in staticfiles)

 	storage.StaticFilesStorage (class in staticfiles)

T

 	
 	templatetags.static.get_media_prefix() (in module staticfiles)

 	
 	templatetags.static.get_static_prefix() (in module staticfiles)

 	templatetags.staticfiles.static() (in module staticfiles)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		django-staticfiles

 		Management Commands

 		collectstatic

 		findstatic

 		runserver

 		Helpers

 		Context processors

 		The static context processor

 		Template tags

 		static

 		get_static_prefix

 		get_media_prefix

 		Storages

 		StaticFilesStorage

 		CachedStaticFilesStorage

 		Static file development view

 		URL patterns helper

 		Settings

 		Changelog

 		v1.2.1 (2012-02-16)

 		v1.2 (2012-02-12)

 		v1.1.2 (2011-08-25)

 		v1.1.1 (2011-08-22)

 		v1.1 (2011-08-18)

 		v1.0.1 (2011-03-28)

 		v1.0 (2011-03-23)

 		v0.3.4 (2010-12-25)

 		v0.3.3 (2010-12-23)

 		v0.3.2 (2010-08-27)

 		v0.3.1 (2010-08-21)

 		v0.3.0 (2010-08-18)

 		v0.2.0 (2009-11-25)

 		v0.1.2 (2009-09-02)

 		v0.1.1 (2009-09-02)

 		v0.1.0 (2009-09-02)

_static/comment.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

