

django-simplekeys

django-simplekeys is a reusable Django app that provides a simple way to add
API keys to an existing Django project, regardless of API framework.

	GitHub: https://github.com/jamesturk/django-simplekeys

	Documentation: https://django-simplekeys.readthedocs.io/en/latest/

[image: _images/django-simplekeys.svg]
 [https://travis-ci.org/jamesturk/django-simplekeys][image: _images/django-simplekeys1.svg]
 [https://pypi.python.org/pypi/django-simplekeys][image: _images/bdb2cb0d9eaf83dbdee5ecf356904e47d8d92053.svg]
 [https://django-simplekeys.readthedocs.io/en/latest/]
Features

	Token bucket [https://en.wikipedia.org/wiki/Token_bucket] rate limiting, for limiting requests/second with optional bursting behavior.

	Quota-based rate limiting (e.g. requests/day)

	Ability to configure different usage tiers, to give different users different rates/quotas.

	Ability to configure different ‘zones’ so that different API methods can have different limits. (e.g. some particularly computationally expensive queries can have a much lower limit than cheap GET queries)

	Provided views for very simple email-based API key registration.

Requirements

	simplekeys requires Django 2.0 or later and Python 3.6 and later

Further Reading

	Getting Started
	Step 1- Configure Settings

	Step 2- Configure Default Zones & Tiers

	Step 3- Protect API Views

	Step 4- Add Registration Views (optional)

	Advanced Usage
	Understanding Tiers & Zones

	Models

	Class-based Views

	Advanced Settings

	Custom Rate Limiting Backends

	Changelog
	0.6.0

	0.5.3

	0.5.2

	0.5.1

	0.5.0

	0.4.2

	0.4.0

	0.3.0

	0.2.0

	0.1.0

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Step 1- Configure Settings

	Add simplekeys to INSTALLED_APPS as you would any app.

	Be sure to run the migrate command after adding the app to your project.

	If you plan on using the provided registration view be sure you’ve set DEFAULT_FROM_EMAIL [https://docs.djangoproject.com/en/1.11/ref/settings/#default-from-email].

	Unless otherwise configured simplekeys will use Django’s CACHE['default'] to store ephemeral information used for rate-limiting. Depending on your use case it may
be desirable to configure Django’s cache with this in mind.

	simplekeys doesn’t require any other settings, but there are plenty of other things you can configure. See Advanced Settings for details.

Step 2- Configure Default Zones & Tiers

Typically this will be done via the Django admin, if you’re not using the Django admin it is possible to do this via the shell but that is beyond the scope of this documentation.

For the simplest usage it is sufficient to create a Tier and a Zone with the slug default. You should then edit the Tier to have a Limit configuration for the default zone.

For more detail on these concepts, see Models.

Warning

If you do not create an association between a Tier and a Zone then users will not be able to access any views that you define as being within a given Zone.

Step 3- Protect API Views

There are two ways to let Django know which views are protected and assign them
to particular zones:

	simplekeys.middleware.SimpleKeysMiddleware allows you to define views by regex, similar to a urlconf. The downside is that this check has to happen on every request.

	You can also use the key_required() decorator to annotate certain views, this will be more efficient, but requires you to decorate views individually- which may be difficult depending upon your setup.

If you add simplekeys.middleware.SimpleKeysMiddleware to your installed
middleware, by default it will protect every view. Unless your app is very
simple (and you don’t use the Django admin, etc.) you probably also want to
add the SIMPLEKEYS_ZONE_PATHS setting.

SIMPLEKEYS_ZONE_PATHS is a list of tuples that looks like:

SIMPLEKEYS_ZONE_PATHS = [
 ('/api/v1/legislators/geo/', 'geo'),
 ('/api/v1/', 'default'),
]

This would place the /api/v1/legislators/geo/ method into the ‘geo’ zone
and all other /api/v1/ methods into the default zone. These strings are
matched with re.match- so you can design complex rules as needed.

Alternatively, if you choose to use the key_required() decorator,
it might look like:

@key_required()
def simple_api_view(request):
 ...

	
simplekeys.decorators.key_required(zone=None)

	Decorator that specifies that a view should require an API key and will be
throttled according to the rules of a specified zone.

If zone parameter is omitted SIMPLEKEYS_DEFAULT_ZONE will be used
(default unless overriden)

Step 4- Add Registration Views (optional)

simplekeys provides two class-based views that can be used together to provide
a simple email-based workflow for obtaining API keys.

You can also create Key instances via the Django admin or within your own
app, but these views are provided to accomodate a common flow out of the box.

You can use these two views by adding them to your urls.py like so:

url(r'^register/$', RegistrationView.as_view()),
url(r'^confirm/$', ConfirmationView.as_view()),

These two views are designed to work without any parameters but take quite a
few optional parameters should you wish to customize their behavior.

See Class-based Views for more details on overiding the defaults.

Advanced Usage

Understanding Tiers & Zones

Some of the real power of simplekeys comes from using multiple zones and tiers.

	Zones allow you to give different levels of access & rate limits to different API methods.

	Tiers allow you to give different types of users different access across zones.

	Limits connect these two, each Tier defines appropriate rate limits and quotas for Zones it has access to.

As noted in the introduction, be sure each tier has an association with each
zone unless you intend to prevent a given tier from accessing that zone at all.

Models

	
class simplekeys.models.Tier

	
	
slug

	internal name of the Tier (e.g. default)

	
name

	human-readable name of the Tier (e.g. Default API Users)

simplekeys has the concept of different keys having different usage
limits, this is done with Tiers.

For example: you could define a silver tier and a gold tier, where gold
tier keys have higher rate limits due to being trusted users.

Each API key is associated with a single tier.

If you only want to have one tier, it is recommended you call it
default.

	
class simplekeys.models.Zone

	
	
slug

	internal name of the Zone (e.g. default)

	
name

	human-readable name of the Zone (e.g. Default API Methods)

simplekeys allows you to define different API zones. This is intended to
allow you to specify different rate limits for different API methods.

Each tier can have different limitations defined on different zones.
If a tier doesn’t have any association with a zone it will not be allowed
to access it, giving you fine grained control over which keys can access
which endpoints.

If all of your API methods will have the same rate limits, you can just
use a single zone. Default settings assume you call this default.

	
class simplekeys.models.Limit

	
	
tier

	ForeignKey relationship to a Tier

	
zone

	ForeignKey relationship to a Zone

	
quota_requests

	How many requests to allow overall each day/month (according to quota_period).

This is independent of the requests_per_second and burst_size,
and sets a hard quota that the user cannot exceed in the given period.

	
quota_period

	Specifies if quota_requests is a daily or a monthly limitation.

This relies upon whatever SIMPLEKEYS_RATE_LIMIT_BACKEND you’re using
storing data long enough. If you’re using the default cache-based backend
you may want to configure SIMPLEKEYS_CACHE_TIMEOUT to be longer than a month
if you’re using a monthly quota.

	
requests_per_second

	Limits how quickly a user can access the API, regardless of their quota.

It is possible for the user to briefly exceed this rate up to their burst_size
after which they’ll be throttled back to this rate until they back off
for a sufficient period of time.

For specifics on this behavior you can read about
token bucket [https://en.wikipedia.org/wiki/Token_bucket]
rate-limiting.

	
burst_size

	The maximum number of requests allowed in a burst situation. This should
be configured to be somewhat higher than requests_per_second.

	
class simplekeys.models.Key

	Keys are the tokens given to users to access the API.

	
key

	The actual key used for access, by default these are randomly generated UUIDs.

	
status

	
	‘u’ - Unactivated, requests will not be allowed, but validation will be. (If you’re using the default views keys are created in this state and updated once the user confirms their email address.)

	‘a’ - Activated, requests will be allowed

	‘s’ - Suspended, requests will not be allowed, neither will activation.

	
tier

	ForeignKey relationship to Tier indicating which Tier this key has access to.

	
email

	Email address associated with the key.

	
name

	Name of individual associated with the key.

	
organization

	(Optional) organization associated with the key.

	
website

	(Optional) website associated with the key.

	
usage

	(Optional) Description of intended usage of the API key.

Class-based Views

	
class simplekeys.views.RegistrationView

	Presents user with a simple form they can fill out to obtain a key.

Upon successful submission of the form a non-active key is created for the
user, and an email is sent with a link that the user must click to verify
their email address.

Optional Arguments:

	template_name

	Name of template to use for registration form.

This template should render the form context variable
and provide a <form method="POST" action="."> to send the form
contents back to the view for processing.

Default: simplekeys/register.html

	email_subject

	Subject of email sent to user.

Default: API Key Registration

	email_message_template

	Name of template to use for plain text email.

This template is provided the newly-created Key instance as well
as the fully-qualified confirmation_url based on the optional
parameter described below.

Default: simplekeys/confirmation_email.txt

	from_email

	Email address from which to send.

Default: DEFAULT_FROM_EMAIL

	tier

	tier that will be used for permissions/rate limiting for this
view.

Default: default

	redirect

	URL, view name, or model to redirect to after registration is complete.

See django’s redirect shortcut [https://docs.djangoproject.com/en/1.11/topics/http/shortcuts/#redirect] for options.

	confirmation_url

	URL to include in email, should match URL of ConfirmationView

If URL is a relative URL, will be appended to the current
Site <https://docs.djangoproject.com/en/1.11/ref/contrib/sites/>`_

Default: /confirm/

	
class simplekeys.views.ConfirmationView

	After filling out the registration form the user is emailed a link to confirm
their email address. The user must visit this link to finish the process and
activate their API key.

This view is quite simple, when accessed via GET it will render
confirmation_template_name and then when accessed via a successful POST
will show confirmed_template_name.

If an attempt is made to access this view with invalid activation data
this view returns an HttpResponseBadRequest 400 error.

Optional Arguments:

	confirmation_template_name

	This template should render the form context variable
and provide a <form method="POST" action="."> to send the form
contents back to the view for processing.

All fields on the form render as hidden, you can simply ask the user
to press submit to proceed.

Default: simplekeys/confirmation.html

	confirmed_template

	Default: simplekeys/confirmed.html

This template is shown after the key is sucessfully activated.

It is passed the newly activated Key instance, be sure to let the
user know what their API key is!

Advanced Settings

	SIMPLEKEYS_DEFAULT_ZONE

	If you use the key_required() without a zone parameter,
simplekeys will consider your view part of this zone.

Default: default

	SIMPLEKEYS_ZONE_PATHS

	Used in conjunction with SimpleKeysMiddleware to associate
request paths with zones.

Default: [('.*', 'default')]

	SIMPLEKEYS_HEADER

	HTTP header that SimpleKeysMiddleware and key_required()
will check for presence of API key.

Default: HTTP_X_API_KEY

	SIMPLEKEYS_QUERY_PARAM

	HTTP query parameter that SimpleKeysMiddleware and
key_required() will check for presence of API key.
(This check occurs after SIMPLEKEYS_HEADER check.)

Default: apikey

	SIMPLEKEYS_RATE_LIMIT_BACKEND

	String representing full import path to a rate limit backend.

Default: simplekeys.backends.CacheBackend

	SIMPLEKEYS_CACHE

	settings.CACHE entry to use for simplekeys.backends.CacheBackend

Default: default

	SIMPLEKEYS_CACHE_TIMEOUT

	Timeout for entries created by simplekeys.backends.CacheBackend

Default: 25*60*60 (25 hours)

	SIMPLEKEYS_ERROR_NOTE

	Will be included in error messages, a useful place to direct users to
an email address to address their rate quota/etc.

Custom Rate Limiting Backends

Keeping track of how many times a key is used requires some semi-permanent
storage that is relatively cheap to access.

Since Django’s existing cache framework provides easy access to such data
stores, that is the default backend.

There is also a memory backend, which stores the rate-limiting data locally,
this is not intended for production use and should only be used if you know
what you’re doing.

In both of these cases, the rate-limiting data is somewhat ephemeral, a
process restarting or a cache getting cleared will allow users to make more
calls than you might otherwise have expected. If this does not meet your
needs it may be necessary to explore other options, or you may be able to
simply write a custom backend that writes to your storage of choice.

If you write a rate limiting backend that you think others might find useful,
please consider contributing back to the project.

Changelog

0.6.0

	drop Django 1.x & Python 2 support

	use newer Django cache features to improve performance

0.5.3

	2018-12-19

	
	reactivating an active key doesn’t show unhelpful error message anymore

0.5.2

	2018-10-29

	
	add missing migration

0.5.1

	2018-05-18

	
	added abillity to search keys to admin

0.5.0

	2017-12-12

	
	exportkeys management command

	usagereport management command

0.4.2

2017-05-22

	error message tweak

	addition of SIMPLEKEYS_ERROR_NOTE

0.4.0

2017-05-22

	refactored decorator and middleware to be independent

	added SIMPLEKEYS_ZONE_PATHS for middleware

0.3.0

2017-04-21

	made organization optional & added optional website & usage fields to Key
(requires migration!)

0.2.0

2017-04-18

	documented & cleaned up API and made more consistent with Django

0.1.0

	initial prototype with MVP functionality for Open States [https://openstates.org].

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 simplekeys	

 	
 	
 simplekeys.models	

 	
 	
 simplekeys.views	

Index

 B
 | C
 | E
 | K
 | L
 | N
 | O
 | Q
 | R
 | S
 | T
 | U
 | W
 | Z

B

 	
 	burst_size (simplekeys.models.Limit attribute)

C

 	
 	ConfirmationView (class in simplekeys.views)

E

 	
 	email (simplekeys.models.Key attribute)

K

 	
 	Key (class in simplekeys.models)

 	
 	key (simplekeys.models.Key attribute)

L

 	
 	Limit (class in simplekeys.models)

N

 	
 	name (simplekeys.models.Key attribute)

 	(simplekeys.models.Tier attribute)

 	(simplekeys.models.Zone attribute)

O

 	
 	organization (simplekeys.models.Key attribute)

Q

 	
 	quota_period (simplekeys.models.Limit attribute)

 	
 	quota_requests (simplekeys.models.Limit attribute)

R

 	
 	RegistrationView (class in simplekeys.views)

 	
 	requests_per_second (simplekeys.models.Limit attribute)

S

 	
 	simplekeys.decorators.key_required() (built-in function)

 	simplekeys.models (module)

 	simplekeys.views (module)

 	
 	slug (simplekeys.models.Tier attribute)

 	(simplekeys.models.Zone attribute)

 	status (simplekeys.models.Key attribute)

T

 	
 	Tier (class in simplekeys.models)

 	
 	tier (simplekeys.models.Key attribute)

 	(simplekeys.models.Limit attribute)

U

 	
 	usage (simplekeys.models.Key attribute)

W

 	
 	website (simplekeys.models.Key attribute)

Z

 	
 	Zone (class in simplekeys.models)

 	
 	zone (simplekeys.models.Limit attribute)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 django-simplekeys

 		
 Getting Started

 		
 Step 1- Configure Settings

 		
 Step 2- Configure Default Zones & Tiers

 		
 Step 3- Protect API Views

 		
 Step 4- Add Registration Views (optional)

 		
 Advanced Usage

 		
 Understanding Tiers & Zones

 		
 Models

 		
 Class-based Views

 		
 Advanced Settings

 		
 Custom Rate Limiting Backends

 		
 Changelog

 		
 0.6.0

 		
 0.5.3

 		
 0.5.2

 		
 0.5.1

 		
 0.5.0

 		
 0.4.2

 		
 0.4.0

 		
 0.3.0

 		
 0.2.0

 		
 0.1.0

_static/up-pressed.png

_static/up.png

