django-rg-mail Documentation
Release 0.1.3.alpha

2012, Florent Messa and contributors

Oct 04, 2017

Contents

Architecture
Installation
Logging
Utilisation

Configuration

5.1 RQ_MAII_PREFIX
5.2 RQ_MAIL_MAIN_QUEUE
53 RQ_MAIL_EMAIL_BACKEND
54 RQ_MAIL_REDIS_HOST
5.5 RQ_MAIL_ REDIS_PORT
5.6 RQ_MAIL_REDIS_DB
57 RQ_MAIL_REDIS_PASSWORD
58 RQ_MAIL_REDIS_URL
59 RQ_MAIL_REDIS_SOCKET
5.10 RQ_MAIL_FALLBACK_STEPS

6 Reference

7 Issues

django-rg-mail Documentation, Release 0.1.3.alpha

This project is not maintained anymore, it doesn’t support latest changes from rq

django-rg-mail is a simple Python library based on rq to store emails sent by Django and process them in the back-
ground with workers.

As django-rg-mail is based on rq, it’s entirely backed by Redis.

Contents 1

https://github.com/nvie/rq
https://www.djangoproject.com/
https://github.com/nvie/rq
http://redis.io/

django-rg-mail Documentation, Release 0.1.3.alpha

2 Contents

CHAPTER 1

Architecture

django-rg-mail adds new elements to enjoy Sorted Sets from Redis.

For the purpose of django-rq-mail, it implements the concept of Wait ingQueue which delays the processing of a
job with a timestamp.

The default behavior of rq is to process jobs via BLPOP which blocks the connection when there are no elements to
pop from any of the given queues. With this behavior there is no way to delays the processing of a job and when it’s
failing rq pushs it in a failed queue. Of course, you can requeue this job later but there is no fallback mechanism.

In django-rg-mail you can define fallback steps (in seconds) to retry a job until it’s not failing. When a job has been
tested on each steps we reintroduce the default behavior of rq on pushing it in the failed queue.

Each steps will create a waiting queue and when a job is failing we take the current timestamp with the delta to retry
it in the future.

This mechanism is possible with ZADD which adds a serialized job in the queue with a score and ZREVRANGE-
BYSCORE to return all the elements in the sorted set with a score between max (current timestamp) and min.

As you may understood, we have dropped the default blocking behavior to replace it by a daemon which is running
each seconds.

http://redis.io/commands#sorted_set
http://redis.io/
https://github.com/nvie/rq
http://redis.io/commands/blpop
https://github.com/nvie/rq
https://github.com/nvie/rq
http://redis.io/commands/zadd
http://redis.io/commands/zrevrangebyscore
http://redis.io/commands/zrevrangebyscore

django-rg-mail Documentation, Release 0.1.3.alpha

4 Chapter 1. Architecture

CHAPTER 2

Installation

1. Either check out the package from GitHub or it pull from a release via PyPI

pip install django-rg-mail

2. Add ‘rq_mail’ to your INSTALLED_APPS

INSTALLED_APPS = (
'rg mail',

to use the rg_mail command (via Django commandline) shipped by django-rq-mail.
This command is a minimal integration of rq into Django to launch the Dispatcher.

3. Define EMAIL_BACKEND

’EMAIL_BACKEND = 'rg_mail.backends.RgBackend'

4. Define RQ_MAIL_EMAIL_BACKEND the backend used to send your emails, for example

’RQ_MAIL_EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'

https://github.com/thoas/django-rq-mail
https://github.com/nvie/rq
https://www.djangoproject.com/

django-rg-mail Documentation, Release 0.1.3.alpha

6 Chapter 2. Installation

CHAPTER 3

Logging

RQ 0.3.3 uses standard Python’s 10gging, this means you can easily configure rqworker ‘s logging mechanism in
django’s settings.py. For example:

LOGGING = {

'version': 1,
'disable_existing_loggers': False,
'formatters': {
'rg_console': {
'format': '$(asctime)s % (message)s',
'datefmt': '$H:$M:%S',

by

b
'handlers': {
'rg_console': {

'level': 'DEBUG',

'class': 'rg.utils.ColorizingStreamHandler',
'formatter': 'rg_console',

'exclude': ['$% (asctime)s'],

by
br
'loggers': {

'rg.worker': {
'handlers': ['rg_console'],
'level': 'DEBUG'

by

django-rg-mail Documentation, Release 0.1.3.alpha

8 Chapter 3. Logging

CHAPTER 4

Utilisation

Once you have installed it, you can run python manage.py rqg_mail from your shell.

django-rg-mail Documentation, Release 0.1.3.alpha

10 Chapter 4. Utilisation

CHAPTER B

Configuration

RQ_ MATL_PREFIX

The prefix used to name all queues created by django-rq-mail.

RQ MATL_ MAIN_QUEUE

The name of the main queue.

RQ MATL_EMAIL_BACKEND

The email backend used to send emails when they are processed in the background.

RQ MATL_REDIS_HOST

The Redis host used to connect.

RQ MATL_REDIS_PORT

The Redis port used to connect.

RQ_MATL_REDIS_DB

The Redis database used to connect.

11

django-rg-mail Documentation, Release 0.1.3.alpha

RQ_MATL_REDIS_PASSWORD

The Redis password used to connect.

RQ_MATL_REDIS_URL

The Redis url used to connect.

RQ MAIL_ REDIS_SOCKET

The Redis socket used to connect.

RQ MAIL_ FALLBACK_ STEPS

A simple list of timing to create waiting queues.

You can define as much steps as you want, each will be transformed to a queue. So if you define 10 steps, you will
allow a message to fail 10 times until it will go in the failed queue.

12 Chapter 5. Configuration

CHAPTER O

Reference

For further details see the reference documentation:
¢ genindex
¢ modindex

¢ search

13

django-rg-mail Documentation, Release 0.1.3.alpha

14 Chapter 6. Reference

CHAPTER /

Issues

For any bug reports and feature requests, please use the Github issue tracker.

15

https://github.com/thoas/django-rq-mail/issues

	Architecture
	Installation
	Logging
	Utilisation
	Configuration
	RQ_MAIL_PREFIX
	RQ_MAIL_MAIN_QUEUE
	RQ_MAIL_EMAIL_BACKEND
	RQ_MAIL_REDIS_HOST
	RQ_MAIL_REDIS_PORT
	RQ_MAIL_REDIS_DB
	RQ_MAIL_REDIS_PASSWORD
	RQ_MAIL_REDIS_URL
	RQ_MAIL_REDIS_SOCKET
	RQ_MAIL_FALLBACK_STEPS

	Reference
	Issues

