

    
      
          
            
  
Django-PuSH

PuSH is the other name of PubSubHubbub [http://code.google.com/p/pubsubhubbub/], a publish/subscribe protocol based
on HTTP and allowing near-instant notifications of topic updates.


	Publishers are entities that publish their updates via HTTP resources. When a
resource is updated with a new entry, they ping their hub saying they have
some new content. The hub is also declared in the resource.


	Subscribers are feed readers or followers. When they fetch a resource, they
notice a hub is declared and subscribe to the resource’s updates with the
hub.


	Hubs fetch the published resource when it gets a ping from the publisher and
takes care of notifying all the subscribers.




This library provides hooks to add PubSubHubbub support to your Django
project: you can use it to be a publisher and/or subscriber.

The PubSubHubbub spec was initially designed for Atom feeds. The 0.3
version [http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.3.html] of the spec defines resources as feeds. The 0.4 [http://superfeedr-misc.s3.amazonaws.com/pubsubhubbub-core-0.4.html] version allows
arbitrary content types. The 0.4 [http://superfeedr-misc.s3.amazonaws.com/pubsubhubbub-core-0.4.html] spec is supported since version 0.5 of
django-push. We unfortunately missed the chance of having version numbers
match properly.


Installation

pip install django-push








Manual



	Being a publisher
	Declare your hub

	Ping the hub on feed updates





	Being a subscriber
	Initial subscription

	Renewing the leases

	Unsubscribing

	Authentication

	Using HTTPS Callback URLs

	Listening to Hubs’ notifications

	Listening with a view instead of the updated signal

	Logging












Changelog


	1.1 (2018-06-06)


	Remove support for Django < 1.11.


	Add support for Django 2.0 and 2.1.






	1.0 (2017-04-25):


	Confirm support for Django 1.11 (no code changes required).






	0.9 (2016-07-13):


	Remove support for Django 1.7.


	Drop support for Python 3.2.


	Confirm support for Django 1.10.






	0.8 (2015-09-29):


	Remove support for Django < 1.7.


	Use a transaction hook in Subscription.objects.subscribe() when
available (Django 1.9+).






	0.7 (2015-07-10):


	Remove warnings with Django versions up to 1.8.






	0.6.1 (2014-01-14):


	Added PUSH_TIMEOUT setting for passing timeouts to the
subscribe/unsubscribe HTTP calls.






	0.6 (2013-07-10):


	Removed get_hub().


	Removed the unsubscribe() manager method. Unsubscribing must be done
with subscription instances.


	Added request and links keyword arguments to the updated
signal. request is the raw HTTP request object, links is a parsed
version of the Link header, if present.






	0.5 (2013-06-24):


	Python 3 support, Django >= 1.4.1 support.


	HTTP handling via requests instead of urllib2.


	Deprecation of Subscription.objects.unsubscribe() in favor of an
instance method on the subscription object. The unsubscribe() manager
method will be removed in version 0.6.


	Subscription.objects.subscribe() raises a warning if the hub kwarg
is not provided. It will become mandatory in version 0.6.


	Removed hub.verify_token from subscription requests. It’s optional in
the 0.3 spec and absent from the 0.4 spec.


	Secret generation code uses django.utils.crypto instead of the
random module. In addition, subscriptions over HTTP don’t use a secret
anymore (as recommended in the spec).


	The updated signal is sent with the raw payload instead of the result
of a feedparser.parse call. This allows other content types than feeds
to be processed, as suggested in version 0.4 of the PubSubHubbub spec.


	The callback view is now a class-based view, allowing listening for content
distribution via a custom view if the updated signal is not suitable.


	django.contrib.sites is no longer a hard requirement. You can set
PUSH_DOMAIN in your settings to your site’s canonical hostname.


	South migrations support. If you don’t use South, you should. If you’re
upgrading from 0.4, just fake the first migration and apply the
others:

./manage.py migrate subscriber 0001_initial --fake
./manage.py migrate







	Tremendously improved admin support. If you were using a custom ModelAdmin
for subscriptions, you might want to try the built-in one.






	0.4 (2011-06-30):


	Support for hub authentication via PUSH_HUB_CREDENTIALS.


	Support for SSL callback URLs.






	0.3 (2010-08-18):


	Subscribers can unsubscribe.






	0.2 (2010-08-12):


	Signature handling of content distribution requests.






	0.1 (2010-08-11):


	Initial release.














          

      

      

    

  

    
      
          
            
  
Being a publisher


Declare your hub

First, you need a hub. You can either use your own or use a public hub [https://pubsubhubbub.appspot.com].
See the hub’s documentation for adding a new feed and add your hub’s URL as
a PUSH_HUB setting (the URL must be a full URL):

PUSH_HUB = 'https://pubsubhubbub.appspot.com'





Finally, use django-push’s base feed to declare your feeds. Instead of
importing django.contrib.syndication.views.Feed, do it this way:

from django_push.publisher.feeds import Feed

class MyFeed(Feed):
    title = 'My Feed'
    link = '...'

    def items(self):
        return MyModel.objects.filter(...)





Django-push will take care of adding the hub declaration to the feeds. By
default, the hub is set to your PUSH_HUB setting. If you want to change
it, see Use different hubs for each feed.

Django-push’s feed is just a slightly modified version of the Feed class
from the contrib.syndication app, however its type is forced to be an
Atom feed. While some hubs may be compatible with RSS and Atom feeds, the
PubSubHubbub specifications encourages the use of Atom feeds. Make sure you
use the Atom attributes, like subtitle instead of description for
instance. If you’re already publishing Atom feeds, you’re fine.


Use different hubs for each feed

If you want to use different hubs for different feeds, just set the hub
attribute to the URL you want:

from django_push.publisher.feeds import Feed

class MyFeed(Feed):
    title = 'My Feed'
    link = '...'
    hub = 'http://hub.example.com'

class MyOtherFeed(Feed):
    hub = 'http://some-other-hub.com'





By default, the Feed class will use the PUSH_HUB setting.

If you need to compute the hub URL at runtime, override the get_hub
method on your feed subclass:

from django_push.publisher.feeds import Feed

class MyFeed(Feed):
    def get_hub(self, obj):
        return some_dynamic_url





The get_hub method was added in django-push 0.5.






Ping the hub on feed updates

Once your feeds are configured, you need to ping the hub each time a new
item/entry is published. Since you may have your own publishing mechanics, you
need to call a ping_hub function when a new entry is made available. For
example, if a model has a publish() method:

from django.contrib.sites.models import get_current_site
from django.core.urlresolvers import reverse
from django.db import models
from django.utils import timezone

from django_push.publisher import ping_hub

class MyModel(models.Model):
    def publish(self):
        self.published = True
        self.timestamp = timezone.now()
        self.save()

        ping_hub('http://%s%s' % (get_current_site().domain,
                                  reverse('feed_for_mymodel')))





ping_hub has to be called with the full URL of the Atom feed as parameter,
using either the Sites framework or your own mechanism to add the domain
name. By default, ping_hub will ping the hub declared in the PUSH_HUB
setting. A different hub can be set using an optional hub_url keyword
argument:

from django_push.publisher import ping_hub

ping_hub('http://example.com/feed.atom',
         hub_url='http://hub.example.com')











          

      

      

    

  

    
      
          
            
  
Being a subscriber


	Add django_push.subscriber to your INSTALLED_APPS and
run manage.py migrate.


	Include django_push.subscriber.urls in your main urlconf:

urlpatterns = [
    # ...
    url(r'^subscriber/', include('django_push.subscriber.urls')),
]







	If you have django.contrib.sites installed, make sure it is correctly
configured: check that Site.objects.get_current() actually returns the
domain of your publicly accessible website.


	If you don’t use django.contrib.sites, set PUSH_DOMAIN to your
site’s domain in your settings.


	Additionally if your site is available via HTTPS, set PUSH_SSL_CALLBACK
to True.





Initial subscription

Let’s assume you’re already parsing feeds. Your code may look like this:

import feedparser


parsed = feedparser.parse('http://example.com/feed/')
for entry in parsed.entries:
    # Do something with the entries: store them, email them...
    do_something()





You need to modify this code to check if the feed declares a hub and initiate
a subscription for this feed.

parsed = feedparser.parse('http://example.com/feed/')

if 'links' in parsed.feed:
    for link in parsed.feed.links:
        if link.rel == 'hub':
            # Hub detected!
            hub = link.href





Now that you found a hub, you can create a subscription:

from django_push.subscriber.models import Subscription


subscription = Subscription.objects.subscribe(feed_url, hub=hub,
                                              lease_seconds=12345)





If a subscription for this feed already exists, no new subscription is
created but the existing subscription is renewed.

lease_seconds is optional and only a hint for the hub. If the hub has
a custom expiration policy it may chose another value arbitrarily. The value
chose by the hub is saved in the subscription object when the subscription
gets verified.

If you want to set a default lease_seconds, you can use the
PUSH_LEASE_SECONDS setting.

If there’s a danger of hub freezing the connection (it happens in the wild)
you can use the PUSH_TIMEOUT setting. Its value should be the number
of seconds (float) to wait for the subscription request to finish. Good number
might be 60.




Renewing the leases

As we can see, the hub subscription can be valid for a certain amount of time.

Version 0.3 of the PubSubHubbub spec explains that hub must recheck with
subscribers before subscriptions expire to automatically renew subscriptions.
This is not the case in version 0.4 of the spec.

In any case you can renew the leases before the expire to make sure they are
not forgotten by the hub. For instance, this could be run once a day:

import datetime

from django.utils import timezone

from django_push.subscriber.models import Subscription


tomorrow = timezone.now() + datetime.timedelta(days=1)

for subscription in Subscription.objects.filter(
    verified=True,
    lease_expiration__lte=tomorrow
):
    subscription.subscribe()








Unsubscribing

If you want to stop receiving notification for a feed’s updates, you need to
unsubscribe. This is as simple as doing:

from django_push.subscriber.models import Subscription

subscription = Subscription.objects.get(topic='http://example.com/feed')
subscription.unsubscribe()





The hub is notified to cancel the subscription and the Subscription object is
deleted. You can also specify the hub if a topic uses several hubs:

subscription = Subscription.objects.get(topic=feed_url, hub=hub_url)
subscription.unsubscribe()








Authentication

Some hubs may require basic auth for subscription requests. Django-PuSH
provides a way to supply authentication information via a callable that takes
the hub URL as a parameter and returns None (no authentication required) or a
(username, password) tuple. For instance:

def custom_hub_credentials(hub_url):
    if hub_url == 'http://superfeedr.com/hubbub':
        return ('my_superfeedr_username', 'password')





And then, set the PUSH_CREDENTIALS setting to the dotted path to your
custom function:

PUSH_CREDENTIALS = 'path.to.custom_hub_credentials'





This way you have full control of the way credentials are stored (database,
settings, filesystem…)




Using HTTPS Callback URLs

By default, callback URLs will be constructed using HTTP. If you would like
to use HTTPS for callback URLs, set the PUSH_SSL_CALLBACK setting to True:

PUSH_SSL_CALLBACK = True








Listening to Hubs’ notifications

Once subscriptions are setup, the hubs will start to send notifications to
your callback URLs. Each time a notification is received, the
django_push.subscriber.signals.updated signal is sent. You can define a
receiver function:

import feedparser

from django_push.subscriber.signals import updated

def listener(notification, **kwargs):
    parsed = feedparser.parse(notification)
    for entry in parsed.entries:
        print entry.title, entry.link

updated.connect(listener)





The notification parameter is the raw payload from the hub. If you expect
an RSS/Atom feed you should process the payload using a library such as the
universal feedparser [http://pythonhosted.org/feedparser/].

kwargs also contains the raw HTTP request object and the parsed Link
header if it is present. You can take advantage of them to validate the
notification:

def listener(notification, request, links, **kwargs):
    if links is not None:
        for link in links:
            if link['rel'] == 'self':
                break
        url = link['url']  # This is the topic URL








Listening with a view instead of the updated signal

If Django signals are not your thing, you can inherit from the base subscriber
view to listen for notifications:

from django_push.subscriber.views import CallbackView

class MyCallback(CallbackView):
    def handle_subscription(self):
        payload = self.request.body
        parsed = feedparser.parse(payload)
        for entry in payload.entries:
            do_stuff_with(entry)
callback = MyCallback.as_view()





Then instead of including django_push.subscriber.urls in your urlconf,
define a custom URL with subscriber_callback as a name and a pk named
parameter:

from django.conf.urls import patterns, url

from .views import callback

urlpatterns = patterns(
    '',
    url(r'^subscriber/(?P<pk>\d+)/$', callback, name='subscriber_callback'),
)





In the handle_subscription method of the view, you can access
self.request, self.subscription and self.links.




Logging

You can listen for log messages by configuring the django_push logger:

LOGGING = {
    'handlers': {
        'console': {
            'level': 'DEBUG',
            'class': 'logging.StreamHandler',
        },
    },
    'loggers': {
        'django_push': {
            'handlers': ['console'],
            'level': 'DEBUG',
        },
    },
}











          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Django-PuSH
        


        		
          Being a publisher
          
            		
              Declare your hub
              
                		
                  Use different hubs for each feed
                


              


            


            		
              Ping the hub on feed updates
            


          


        


        		
          Being a subscriber
          
            		
              Initial subscription
            


            		
              Renewing the leases
            


            		
              Unsubscribing
            


            		
              Authentication
            


            		
              Using HTTPS Callback URLs
            


            		
              Listening to Hubs’ notifications
            


            		
              Listening with a view instead of the updated signal
            


            		
              Logging
            


          


        


      


    
  

_static/file.png





_static/ajax-loader.gif





_static/minus.png





_static/down.png





_static/up-pressed.png





_static/up.png





_static/plus.png





_static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/down-pressed.png





