

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-photologue 2.8 documentation

Welcome to django-photologue’s documentation!

The Photologue documentation is being transferred from a Google Code wiki to a
Sphinx-generated setup (if you’re reading this at readthedocs.org, then you’re
looking at these docs).

This documentation is accurate and up-to-date (hopefully!);
the old docs on the Google Code wiki [http://code.google.com/p/django-photologue/w/list]
are extensive but have not been updated in a long time.

Contents:

	Installation & configuration
	Installation

	Dependencies

	Configure Your Django Settings

	Add the urls

	Sync Your Database

	Instant Photo Gallery

	Sitemap

	Sites

	Customisation: extending templates

	Customisation: Settings
	PHOTOLOGUE_USE_CKEDITOR

	PHOTOLOGUE_GALLERY_PAGINATE_BY

	PHOTOLOGUE_PHOTO_PAGINATE_BY

	PHOTOLOGUE_GALLERY_LATEST_LIMIT

	PHOTOLOGUE_GALLERY_SAMPLE_SIZE

	PHOTOLOGUE_IMAGE_FIELD_MAX_LENGTH

	PHOTOLOGUE_SAMPLE_IMAGE_PATH

	PHOTOLOGUE_MAXBLOCK

	PHOTOLOGUE_DIR

	PHOTOLOGUE_PATH

	PHOTOLOGUE_MULTISITE

	Customisation: Admin
	Create a customisation application

	Changing the admin

	Possible uses

	Customisation: Views and Urls
	Create a customisation application

	Changing pagination from our new urls.py

	Values that can be overridden from urls.py

	Changing views.py to create a RESTful api

	Customisation: third-party contributions
	Bootstrap templates

	Contributing to Photologue
	Example project

	Workflow

	Coding style

	Unit tests

	Documentation

	Translations

	New features

	And finally...

	Changelog
	2.8 (2014-05-04)

	2.7 (2013-10-27)

	2.6.1 (2013-05-19)

	2.6 (2013-05-19)

	2.5 (2012-12-13)

	2.4 (2012-08-13)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Justin Driscoll/Richard Barran.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-photologue 2.8 documentation

Installation & configuration

Installation

The easiest way to install Photologue is with pip:

pip install django-photologue

You can also live life on the edge and install the latest code directly from the
Github repository:

pip install -e git+https://github.com/jdriscoll/django-photologue.git#egg=django-photologue

This code should work ok - like Django [https://www.djangoproject.com/]
itself, we try to keep the master branch bug-free.

Python 3

Django from version 1.5 onwards works with Python 3.

Photologue also works with Python 3 (3.3 or later). Like Django itself,
support for Python 3 can be described as “should work, but needs more time on
production sites to prove itself”. Use it, but apply caution!

Dependencies

5 apps that will be installed automatically if required.

	Django [https://www.djangoproject.com/].

	Pillow [http://python-imaging.github.io/Pillow/].

	South [http://south.aeracode.org/].

	Django-sortedm2m [https://pypi.python.org/pypi/django-sortedm2m].

	Django-model-utils [https://pypi.python.org/pypi/django-model-utils].

And 2 dependencies that you will have to manage yourself:

	Pytz [https://pypi.python.org/pypi/pytz]. Only applies if you’re using Django >= 1.6, see the
Django release notes for more information [https://docs.djangoproject.com/en/1.6/releases/1.6/#time-zone-aware-day-month-and-week-day-lookups].

	Django’s site framework [https://docs.djangoproject.com/en/dev/ref/contrib/sites/#enabling-the-sites-framework]
- only applies if you’re using Django >= 1.6.

Note

	Photologue has the same support policy as Django.

That troublesome Pillow...

Pillow can be tricky to install; sometimes it will install smoothly
out of the box, sometimes you can spend hours figuring it out - installation
issues vary from platform to platform, and from one OS release to the next, so listing
them all here would not be realistic. Google
is your friend, and it’s worth noting that Pillow is a fork of PIL,
so googling ‘PIL installation <your platform>’ can also help.

	You should not have installed both PIL and Pillow; this can cause strange bugs.
Please uninstall PIL before you install Pillow.

	In some situations, you might not be able to use Pillow at all (e.g. if another
package has a dependency on PIL). Photologue has a clumsy answer for this:
write a temporary file /tmp/PHOTOLOGUE_NO_PILLOW, then install Photologue.
This will tell Photologue to install without Pillow. It should work, but it
hasn’t been tested!

	Sometimes Pillow will install... but is not actually installed. This ‘undocumented feature’ has been
reported by a user on Windows. If you can’t get Photologue to disaply any images, check
that you can actually import Pillow:

$ python manage.py shell
Python 3.3.1 (default, Sep 25 2013, 19:29:01)
[GCC 4.7.3] on linux
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> from PIL import Image
>>>

Configure Your Django Settings

	Add to your INSTALLED_APPS setting:

INSTALLED_APPS = (
 # ...other installed applications,
 'photologue',
 'south', # if it's not already in your INSTALLED_APPS.
 'sortedm2m',
)

	Confirm that your MEDIA_ROOT [https://docs.djangoproject.com/en/dev/ref/settings/#media-root] and
MEDIA_URL [https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-MEDIA_URL] settings
are correct (Photologue will store uploaded files in a folder called ‘photologue’ under your MEDIA_ROOT).

	Enable the admin app if you have not already done so [https://docs.djangoproject.com/en/dev/ref/contrib/admin/].

Add the urls

Add photologue to your projects urls.py file:

urlpatterns += patterns('',
 ...
 (r'^photologue/', include('photologue.urls')),
)

Sync Your Database

Use South to setup the new tables:

python manage.py migrate photologue

If you are installing Photologue for the first time, this will set up some
default PhotoSizes to get you started - you are free to change them of course!

Instant Photo Gallery

Photologue comes with basic templates for galleries and photos. You can of course override them, or completely
replace them. Note that all Photologue templates inherit from photologue/root.html, which itself just inherits from
a site-wide base.html - you can change this to use a different base template.

Sitemap

The Sitemaps protocol [http://en.wikipedia.org/wiki/Sitemaps] allows a webmaster
to inform search engines about URLs on a website that are available for crawling.
Django comes with a high-level framework that makes generating sitemap XML files easy.

Install the sitemap application as per the instructions in the django documentation [https://docs.djangoproject.com/en/dev/ref/contrib/sitemaps/], then edit your
project’s urls.py and add a reference to Photologue’s Sitemap classes in order to
included all the publicly-viewable Photologue pages:

...
from photologue.sitemaps import GallerySitemap, PhotoSitemap

sitemaps = {...
 'photologue_galleries': GallerySitemap,
 'photologue_photos': PhotoSitemap,
 ...
 }
etc...

There are 2 sitemap classes, as in some case you may want to have gallery pages,
but no photo detail page (e.g. if all photos are displayed via a javascript
lightbox).

Note

There is also a PhotologueSitemap class which combines the above 2 classes,
but it will be removed in Photologue 3.0.

Sites

Photologue supports Django’s site framework [http://django.readthedocs.org/en/latest/ref/contrib/sites.html] since version 2.8. That means
that each Gallery and each Photo can be displayed on one or more sites.

Please bear in mind that photos don’t necessarily have to be assigned to the
same sites as the gallery they’re belonging to: each gallery will only display
the photos that are on its site. When a gallery does not belong the current site
but a single photo is, that photo is only accessible directly as the gallery
won’t be shown in the index.

Note

If you’re upgrading from a version earlier than 2.8 you don’t need to
worry about the assignment of already existing objects to a site because a
datamigration will assign all your objects to the current site automatically.

Note

This feature is switched off by default. See here to enable it and for more information.

 Copyright 2013, Justin Driscoll/Richard Barran.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-photologue 2.8 documentation

Customisation: extending templates

Photologue comes with a set of basic templates to get you started quickly - you
can of course replace them with your own. That said, it is possible to extend the basic templates in
your own project and override various blocks, for example to add css classes.
Often this will be enough.

The trick to extending the templates is not special to Photologue, it’s used
in other projects such as Oscar [https://django-oscar.readthedocs.org/en/latest/recipes/how_to_customise_templates.html].

First, set up your template configuration as so:

TEMPLATE_LOADERS = (
 'django.template.loaders.filesystem.Loader',
 'django.template.loaders.app_directories.Loader',
)

from photologue import PHOTOLOGUE_APP_DIR
TEMPLATE_DIRS = (
 ...other template folders...,
 PHOTOLOGUE_APP_DIR
)

The PHOTOLOGUE_APP_DIR points to the directory above Photologue’s normal
templates directory. This means that path/to/photologue/template.html can also
be reached via templates/path/to/photologue/template.html.

For example, to customise photologue/gallery_list.html, you can have an implementation like:

Create your own photologue/gallery_list.html
{% extends "templates/photologue/gallery_list.html" %}

... we are now extending the built-in gallery_list.html and we can override
the content blocks that we want to customise ...

 Copyright 2013, Justin Driscoll/Richard Barran.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-photologue 2.8 documentation

Customisation: Settings

Photologue has several settings to customise behaviour.

PHOTOLOGUE_USE_CKEDITOR

Default: False

If you have already installed django-ckeditor [https://pypi.python.org/pypi/django-ckeditor]
then you can use to edit the TextArea fields of Gallery
and Photo in the admin. Simply set the setting to True.

Deprecated since version 2.8: Instead, override the admin; see here.

PHOTOLOGUE_GALLERY_PAGINATE_BY

Default: 20

Number of galleries to display per page for GalleryListView.

Deprecated since version 2.8: Instead, override the view; see here.

PHOTOLOGUE_PHOTO_PAGINATE_BY

Default: 20

Number of photos to display per page for PhotoListView.

Deprecated since version 2.8: Instead, override the view; see here.

PHOTOLOGUE_GALLERY_LATEST_LIMIT

Default: None

Default limit for gallery.latest

PHOTOLOGUE_GALLERY_SAMPLE_SIZE

Default: 5

Number of random images from the gallery to display.

PHOTOLOGUE_IMAGE_FIELD_MAX_LENGTH

Default: 100

max_length setting for the ImageModel ImageField

PHOTOLOGUE_SAMPLE_IMAGE_PATH

Default: os.path.join(os.path.dirname(__file__), 'res', 'sample.jpg'))

Path to sample image

PHOTOLOGUE_MAXBLOCK

Default: 256 * 2 ** 10

Modify image file buffer size.

PHOTOLOGUE_DIR

Default: 'photologue'

The relative path from your MEDIA_ROOT setting where Photologue will save image files. If your MEDIA_ROOT is set to “/home/user/media”, photologue will upload your images to “/home/user/media/photologue”

PHOTOLOGUE_PATH

Default: None

Look for user function to define file paths. Specifies a “callable” that takes a model instance and the original uploaded filename and returns a relative path from your MEDIA_ROOT that the file will be saved. This function can be set directly.

For example you could use the following code in a util module:

myapp/utils.py:

import os

def get_image_path(instance, filename):
 return os.path.join('path', 'to', 'my', 'files', filename)

Then set in settings:

settings.py:

from utils import get_image_path

PHOTOLOGUE_PATH = get_image_path

Or instead, pass a string path:

settings.py:

PHOTOLOGUE_PATH = 'myapp.utils.get_image_path'

PHOTOLOGUE_MULTISITE

Default: False

Photologue can integrate galleries and photos with Django’s site framework [http://django.readthedocs.org/en/latest/ref/contrib/sites.html].
Default is for this feature to be switched off, as only a minority of Django projects
will need it.

In this case, new galleries and photos are automatically linked to the current site
(SITE_ID = 1). The Sites many-to-many field is hidden is the admin, as there is no
need for a user to see it.

If the setting is True, the admin interface is slightly changed:

	The Sites many-to-many field is displayed on Gallery and Photos models.

	The Gallery Upload allows you to associate one more sites to the uploaded photos (and gallery).

Note

Gallery Uploads (zip archives) are always associated with the current site. This will be
fixed in a future version of Photologue.

 Copyright 2013, Justin Driscoll/Richard Barran.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-photologue 2.8 documentation

Customisation: Admin

The Photologue admin can easily be customised to your project’s requirements. The technique described on this page
is not specific to Photologue - it can be applied to any 3rd party library.

Create a customisation application

For clarity, it’s best to put our customisation code in a new application; let’s call it
photologue_custom; create the application and add it to your INSTALLED_APPS setting.

Changing the admin

In the new photologue_custom application, create a new empty admin.py file. In this file we
can replace the admin configuration supplied by Photologue, with a configuration specific to your project.
For example:

from django import forms
from django.contrib import admin

from photologue.admin import GalleryAdmin as GalleryAdminDefault
from photologue.models import Gallery

class GalleryAdminForm(forms.ModelForm):

 class Meta:
 model = Gallery
 exclude = ['tags']

class GalleryAdmin(GalleryAdminDefault):
 form = GalleryAdminForm

admin.site.unregister(Gallery)
admin.site.register(Gallery, GalleryAdmin)

This snippet will define a new Gallery admin class based on Photologue’s own. The only change we make
is to exclude the tags field from the change form.

We then unregister the default admin for the Gallery model and replace it with our new class.

Possible uses

The technique outlined above can be used to make many changes to the admin; here are a couple of suggestions.

Custom rich text editors

The description field on the Gallery model (and the caption field on the Photo model) are plain text fields.
With the above technique, it’s easy to use a rich text editor to manage these fields in the admin. For example,
if you have django-ckeditor [https://github.com/shaunsephton/django-ckeditor] installed:

from django import forms
from django.contrib import admin

from ckeditor.widgets import CKEditorWidget
from photologue.admin import GalleryAdmin as GalleryAdminDefault
from photologue.models import Gallery

class GalleryAdminForm(forms.ModelForm):

 description = forms.CharField(widget=CKEditorWidget())

 class Meta:
 model = Gallery
 exclude = ['']

class GalleryAdmin(GalleryAdminDefault):
 form = GalleryAdminForm

admin.site.unregister(Gallery)
admin.site.register(Gallery, GalleryAdmin)

 Copyright 2013, Justin Driscoll/Richard Barran.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-photologue 2.8 documentation

Customisation: Views and Urls

The photologue views and urls can be tweaked to better suit your project. The technique described on this page
is not specific to Photologue - it can be applied to any 3rd party library.

Create a customisation application

For clarity, it’s best to put our customisation code in a new application; let’s call it
photologue_custom; create the application and add it to your INSTALLED_APPS setting.

We will also want to customise urls:

	Create a urls.py that will contain our customised urls:

from django.conf.urls import *

urlpatterns = patterns('',

 # Nothing to see here... for now.

)

2. These custom urls will override the main Photologue urls, so place them just before Photologue
in the project’s main urls.py file:

... other code
(r'^photologue/', include('photologue_custom.urls')),
(r'^photologue/', include('photologue.urls')),

... other code

Now we’re ready to make some changes.

Changing pagination from our new urls.py

The list pages of Photologue (both Gallery and Photo) display 20 objects per page. Let’s change this value.
Edit our new urls.py file, and add:

from django.conf.urls import *

from photologue.views import GalleryListView

urlpatterns = patterns('',

 url(r'^gallery/page/(?P<page>[0-9]+)/$',
 GalleryListView.as_view(paginate_by=5), name='pl-gallery-list'),

)

We’ve copied the urlpattern for
the gallery list view from Photologue itself [https://github.com/jdriscoll/django-photologue/blob/master/photologue/urls.py],
and changed it slightly by passing in paginate_by=5.

And that’s it - now when that page is requested, our customised urls.py will be called first, with pagination
set to 5 items.

Values that can be overridden from urls.py

GalleryListView

	paginate_by: number of items to display per page.

PhotoListView

	paginate_by: number of items to display per page.

Changing views.py to create a RESTful api

More substantial customisation can be carried out by writing custom views. For example,
it’s easy to change a Photologue view to return JSON objects rather than html webpages. For this
quick demo, we’ll use the
django-braces library [http://django-braces.readthedocs.org/en/latest/index.html]
to override the view returning a list of all photos.

Add the following code to views.py in photologue_custom:

from photologue.views import PhotoListView

from braces.views import JSONResponseMixin

class PhotoJSONListView(JSONResponseMixin, PhotoListView):

 def render_to_response(self, context, **response_kwargs):
 return self.render_json_object_response(context['object_list'],
 **response_kwargs)

And call this new view from urls.py; here we are replacing the standard Photo list page provided by Photologue:

from .views import PhotoJSONListView

urlpatterns = patterns('',

 # Other urls...

 url(r'^photo/page/(?P<page>[0-9]+)/$',
 PhotoJSONListView.as_view(),
 name='pl-photo-list-json'),

 # Other urls as required...
)

And that’s it! Of course, this is simply a demo and a real RESTful api would be rather more complex.

 Copyright 2013, Justin Driscoll/Richard Barran.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-photologue 2.8 documentation

Customisation: third-party contributions

Photologue has a ‘contrib’ folder that includes some
useful tweaks to the base project. At the moment, we have just one contribution:

Bootstrap templates

Replaces the normal templates with a new set that work well with Bootstrap [http://twitter.github.io/bootstrap/index.html].

To use these, edit your TEMPLATE_DIRS setting:

from photologue import PHOTOLOGUE_APP_DIR
TEMPLATE_DIRS = (
 ...
 os.path.join(PHOTOLOGUE_APP_DIR, 'contrib/bootstrap/templates'),
 ... other folders containing Photologue templates should come after...
)

The templates are incomplete - for example, we are missing templates for date-filtered galleries and photos.
Pull requests are welcome!

 Copyright 2013, Justin Driscoll/Richard Barran.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-photologue 2.8 documentation

Contributing to Photologue

Contributions are always very welcome. Even if you have never contributed to an
open-source project before - please do not hesitate to offer help. Fixes for typos in the
documentation, extra unit tests, etc... are welcome. And look in the issues
list for anything tagged “easy_win”.

Example project

Photologue includes an example project to get you quickly ready for
contributing to the project - do not hesitate to use it!

Workflow

Photologue is hosted on Github, so if you have not already done so, read the excellent
Github help pages [https://help.github.com/articles/fork-a-repo]. We try to keep the workflow
as simple as possible; most pull requests are merged straight into the master branch.

Features that will take a while to develop might warrant a separate branch in the project;
at present only the ImageKit integration project is run on a separate branch.

Coding style

No surprises here - just try to follow the conventions used by Django itself [https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/].

Unit tests

Including unit tests with your contributions will earn you bonus points, maybe even a beer. So write
plenty of tests.

Documentation

Keeping the documentation up-to-date is very important - so if your code changes
how Photologue works, or adds a new feature, please check that the documentation is still accurate, and
update it if required.

We use Sphinx [http://sphinx.pocoo.org/] to prepare the documentation; please refer to the excellent docs
on that site for help.

Note

The CHANGELOG is part of the documentation, so if your patch needs the
end user to do something - e.g. run a South migration - don’t forget to update
it!

Translations

Photologue manages string translations with Transifex [https://www.transifex.com/projects/p/django-photologue/]. The easiest way to help is
to add new/updated translations there.

Once you’ve added translations, give the maintainer a wave and he will pull the updated
translations into the master branch, so that you can install Photologue directly from the
Github repository (see Installation) and use your translations straight away. Or you can do nothing - just before a release
any new/updated translations get pulled from Transifex and added to the Photologue project.

New features

In the wiki there is a wishlist of new features already planned
for Photologue [https://github.com/jdriscoll/django-photologue/wiki/Photologue-3.X-wishlist] - you are welcome to suggest other useful improvements.

If you’re interested in developing a new feature, it is recommended that you first
discuss it on the mailing list [http://groups.google.com/group/django-photologue]
or open a new ticket in Github, in order to avoid working on a feature that will
not get accepted as it is judged to not fit in with the goals of Photologue.

A bit of history

Photologue was started by Justin Driscoll in 2007. He quickly built it into a powerful
photo gallery and image processing application, and it became successful.

Justin then moved onto other projects, and no longer had the time required to maintain
Photologue - there was only one commit between August 2009 and August 2012, and
approximately 70 open tickets on the Google Code project page.

At this point Richard Barran took over as maintainer of the project. First priority
was to improve the infrastructure of the project: moving to Github, adding South,
Sphinx for documentation, Transifex for translations, Travis for continuous integration,
zest.releaser.

The codebase has not changed much so far - and it needs quite a bit of TLC
(Tender Loving Care), and new features are waiting to be added. This is where you step in...

And finally...

Please remember that the maintainer looks after Photologue in his spare time -
so it might be a few weeks before your pull request gets looked at... and the pull
requests that are nicely formatted, with code, tests and docs included, will
always get reviewed first ;-)

 Copyright 2013, Justin Driscoll/Richard Barran.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-photologue 2.8 documentation

Changelog

2.8 (2014-05-04)

Upgrade notes:

	Photologue now depends on django-sortedm2m and django-model-utils - please
refer to installation instructions. These dependencies should be added
automatically.

	Run South migrations.

List of changes:

	Photo and Gallery models now support Django’s sites framework.

	Photologue now uses django-sortedm2m to sort photos in a gallery.

	Major rewrite of zip archive uploader: warn users of files that could not be
processed, get code to work with Python 3 (issue #71), add extra error
handling.

	Renamed field title_slug to slug - this allows us to simplify views.py a
bit.

	PHOTOLOGUE_USE_CKEDITOR, PHOTOLOGUE_GALLERY_PAGINATE_BY and
PHOTOLOGUE_PHOTO_PAGINATE_BY are deprecated.

	Fixed pagination controls for photo list template.

	Tightened naming rules for Photosize names.

	Fixed a couple of unicode-related bugs.

	Added to the documentation pages describing how to customise the admin and
the views.

	Refactored slightly views.py.

	Started work on chainable querysets.

2.7 (2013-10-27)

Upgrade notes:

	All settings are now prefixed with PHOTOLOGUE_. Please check that you are
not affected by this.

List of changes:

	Fixed issue #56, Gallery pagination is broken.

	Photologue now works with Python 3.

	Added a set of templates that work well with Twitter-Bootstrap 3, and used
them for the ‘example_project’.

	Fixed issue #64 (allow installation without installing Pillow).

	Optional use of CKEditor.

	Updated/news translations for Polish, Slovak and German.

	Bugfix: allow viewing latest galleries/latest photos pages even if they
are empty.

	Started using factory-boy - makes unit tests a bit easier to read.

	Added settings to customise pagination count on list pages.

	Documented all settings.

	All settings are now prefixed with PHOTOLOGUE_.

2.6.1 (2013-05-19)

List of changes:

	Fixed broken packaging in release 2.6.

2.6 (2013-05-19)

Upgrade notes:

	Photologue now relies on Pillow instead of PIL. The easiest way to upgrade
is to remove PIL completely, then install the new version of Photologue.

	Photologue, in line with Django itself, has dropped support for Django 1.3.

List of changes:

	Switched from PIL to Pillow - hopefully this should make installation
easier.

	Initial setup of data: removed plinit and replaced it with a South data
migration.

	Added feature to allow extending the built-in templates (and documented
it!).

	Allow editing of Photo added date (temp way of sorting photos).

	Added an example project to help people wanting to contribute to the
project.

	Fixed buggy Travis CI script.

	fixed issue #52, transactions in migration

	fixed issue #51, uniqueness collisions in migration

	Accessing the root url (usually /photologue/ will now redirect you to the
gallery list view.

	Photologue requires min. Django 1.4.

	Tidied a data validator on PhotoSizes.

2.5 (2012-12-13)

	added a sitemap.xml.

	added some templatetags.

	started using Sphinx for managing documentation.

	started using Transifex for managing translations.

	started using Travis CI.

	added 12 new translations and improved some of the existing translations.

	fixed issue #29 (quote URL of resized image properly).

	misc improvements to clarity of unit tests.

	added Django 1.4 timezone support.

2.4 (2012-08-13)

Upgrade notes:

	Starting with this version, Photologue uses South to manage the database
schema. If you are upgrading an existing Photologue installation, please
follow the South instructions at:
http://south.readthedocs.org/en/latest/convertinganapp.html#converting-other-installations-and-servers

	Photologue has dropped support for Django 1.2.

List of changes:

	use South to manage schema changes.

	updated installation instructions.

	fixed issue #9 (In Django 1.3, FileField no longer deletes files).

	switched from function-based generic views to class-based views.

	fixed PendingDeprecationWarnings seen when running Django 1.3 - this will
make the move to Django 1.5 easier.

	added unit tests.

	fixed bug where GALLERY_SAMPLE_SIZE setting was not being used.

	fixed issue #11 (GalleryUpload with len(title) > 50 causes a crash).

	fixed issue #10 (Increase the size of the name field for photosize).

 Copyright 2013, Justin Driscoll/Richard Barran.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-photologue 2.8 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 photologue	

 	
 	
 photologue.sitemaps	

 Copyright 2013, Justin Driscoll/Richard Barran.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-photologue 2.8 documentation

Index

 P

P

 	

 	photologue.sitemaps (module)

 Copyright 2013, Justin Driscoll/Richard Barran.
 Created using Sphinx 1.2.2.

 _static/plus.png

_static/ajax-loader.gif

_static/comment.png

_static/up.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-photologue 2.8 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Justin Driscoll/Richard Barran.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/minus.png

