
django-payline Documentation
Release dev

Mathieu Agopian

Sep 27, 2017

Contents

1 Design 3

2 Code 5

3 Installation 7

4 Payline API 9

5 Usage 11

6 Extension points 13

7 Advanced usage 15

8 Changes 17

9 Indices and tables 19

i

ii

django-payline Documentation, Release dev

Django-payline helps you make payments with Payline quickly and easily.

Contents 1

http://www.payline.com/

django-payline Documentation, Release dev

2 Contents

CHAPTER 1

Design

The way this is done is by creating a Payline wallet with the payment information provided by the user, storing this
wallet ID in a Wallet model, and allowing payments to be done using this wallet.

Each payment’s transaction ID is stored in a Transaction model.

3

django-payline Documentation, Release dev

4 Chapter 1. Design

CHAPTER 2

Code

The source code is available on Github under the 3-clause BSD license.

5

https://github.com/magopian/django-payline

django-payline Documentation, Release dev

6 Chapter 2. Code

CHAPTER 3

Installation

Django-payline makes use of class-based views. It’s been written for Django 1.3 but compatibility with older versions
is provided using the django-cbv package.

If you have Django >= 1.3:

pip install django-payline

If you have Django < 1.3:

pip install django-payline django-cbv

Then add payline to your INSTALLED_APPS, and create the necessary tables:

python manage.py syncdb

7

django-payline Documentation, Release dev

8 Chapter 3. Installation

CHAPTER 4

Payline API

By default, Payline’s “homologation” WSDL will be used for all the API calls. For those to succeed, make sure you
have the necessary settings:

• PAYLINE_MERCHANT_ID

• PAYLINE_KEY

• PAYLINE_VADNBR

The first one will be provided to you by a Payline sales person, and the following two are generated from Payline’s
web admin interface.

To use Payline in production, you need to provide the production merchant ID, API key and VAD contract number
(from Payline’s production web admin interface), but you also need to point the settings at the production WSDL file.

To do so, you may use the following setting to point at the production WSDL packaged with the app (which isn’t the
most up to date, but the one tested):

from os import path

import payline

wsdl = path.join(path.dirname(payline.__file__), 'DirectPaymentAPI_prod.wsdl')
PAYLINE_WSDL = 'file://%s' % wsdl

9

https://homologation-admin.payline.com/userManager.do?reqCode=prepareLogin
https://homologation-admin.payline.com/userManager.do?reqCode=prepareLogin
https://admin.payline.com/userManager.do?reqCode=prepareLogin

django-payline Documentation, Release dev

10 Chapter 4. Payline API

CHAPTER 5

Usage

You need to add to your project:

• the URLs

• if you need something different than the default scenario, an implementation of the payment process.

Note: Some very basic templates are provided if you need to use or extend them.

First, create an app. Let’s call it payment:

python manage.py startapp payment

Add some URLs in payment/urls.py:

from django.conf.urls.defaults import patterns, url

from payline.views import ViewWallet, CreateWallet, UpdateWallet

urlpatterns = patterns(
'',
url(r'^wallet/$', ViewWallet.as_view(), name='view_wallet'),
url(r'^wallet/new/$', CreateWallet.as_view(), name='create_wallet'),
url(r'^wallet/update/$', UpdateWallet.as_view(), name='update_wallet'),

)

You can now create wallets, update them, view them, and use them:

• make_payment: takes an amount in Euros (C), and asks Payline to make a payment from this wallet

• is_valid: returns True if the card expiry date is in the future

• expires_this_month: returns True if the card expires this month

• transaction_set: manager that accesses the transactions made on this wallet

11

django-payline Documentation, Release dev

12 Chapter 5. Usage

CHAPTER 6

Extension points

payline.views.CreateWallet is a CreateView, and payline.views.UpdateWallet is an Update-
View. The default wallet form asks for:

• A first and last name

• The card number

• The card type

• The card expiry

• The card cvx code

The default form checks that the expiry date is in the future, obfuscates the card number (before storing it in the
database), and makes sure the information are correct (by creating a Wallet on the Payline service, using its API)
before creating and storing a Wallet locally.

This default form is used both for creating and updating the Wallet.

If you want to perform extra validation, or modify the logic, just subclass the form, and pass it to the class-based view,
as you would normally do.

13

https://docs.djangoproject.com/en/dev/ref/class-based-views/generic-editing/#createview
https://docs.djangoproject.com/en/dev/ref/class-based-views/generic-editing/#updateview
https://docs.djangoproject.com/en/dev/ref/class-based-views/generic-editing/#updateview
https://docs.djangoproject.com/en/1.4/topics/generic-views/

django-payline Documentation, Release dev

14 Chapter 6. Extension points

CHAPTER 7

Advanced usage

Most of the time, there is a Wallet linked to the logged in user. Thus, creating, updating or viewing of this Wallet only
should be allowed.

This can easily be done, for example using a mixin, if there’s a wallet foreign key added to the user’s profile,
pointing to payline.models.Wallet:

from payline import views

class GetWalletMixin(object):
def dispatch(self, request, *args, **kwargs):

"""View current wallet if it exists, or redirect to create view."""
profile = request.user.get_profile()
if profile.wallet is None:

return redirect('create_wallet')
kwargs['pk'] = profile.wallet.pk
return super(GetWalletMixin, self).dispatch(request, *args, **kwargs)

class ViewWallet(GetWalletMixin, views.ViewWallet):
pass

view_wallet = ViewWallet.as_view()

class UpdateWallet(GetWalletMixin, views.UpdateWallet):
pass

update_wallet = UpdateWallet.as_view()

class CreateWallet(views.CreateWallet):

def dispatch(self, request, *args, **kwargs):
"""Redirect to update view if wallet exists."""
profile = request.user.get_profile()
if profile.wallet is None:

15

django-payline Documentation, Release dev

return redirect('update_wallet')
return super(CreateWallet, self).dispatch(request, *args, **kwargs)

create_wallet = CreateWallet.as_view()

16 Chapter 7. Advanced usage

CHAPTER 8

Changes

• 0.11: translation

• 0.10: properly fake/mock payline for non-integration tests

• 0.9: better validation of the payment card (authorize first)

• 0.8: production WSDL packaged

• 0.7: card expiry test correct even for last day of month

• 0.6: french translation

• 0.5: removed useless ordering on ‘pk’

• 0.4: fixing missing wsdl (for good)

• 0.3: fixing wsdl (again)

• 0.2: missing wsdl file in the distribution

• 0.1: initial version

17

django-payline Documentation, Release dev

18 Chapter 8. Changes

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

19

	Design
	Code
	Installation
	Payline API
	Usage
	Extension points
	Advanced usage
	Changes
	Indices and tables

