

Welcome to django-ostinato’s documentation!

“In music, an ostinato (derived from Italian: “stubborn”, compare English:
obstinate) is a motif or phrase, which is persistently repeated in the same
musical voice.”

—Wikipedia [http://en.wikipedia.org/wiki/Ostinato]

Requirements

	django >= 1.4.2

	django-mptt == 0.6.0

	django-appregister == 0.3.1

Introduction

Django-ostinato is a collection of applications that aims to bring together
some of the most common features expected from a CMS.

Every feature is contained within a single ostinato app. This helps us to keep
functionality focussed on the single feature/task that the app is meant to
provide

	The Demo Project
	Setting up the demo project

	Running the demo project

	ostinato.pages
	A quick overview

	Requirements

	Add ostinato.pages to your project

	Creating and registering page content

	Displaying page content in the templates

	Creating a custom view for your content

	Custom forms for Page Content

	Creating complex page content with mixins

	Custom Statemachine for Pages

	Extra Inline Fields for a Page in the Admin

	Template tags and filters

	Multi Site Support

	Pages Settings

	ostinato.statemachine
	Overview

	Custom Action methods

	Admin Integration

	Custom state_field

	ostinato.blog
	Overview

	How to use ostinago.blog

	Using the custom manager

	Wrapping up

	ostinato.contentfilters
	Writing a Contentfilter

	Using the filters in your templates

	Default content filters included with ostinato.contentfilters

Indices and tables

	Index

	Module Index

	Search Page

The Demo Project

Ostinato comes with a demo project that you can use to play around with the app.
The test project uses zc.buildout, which lets you install and run the entire
demo, including all dependencies, in an isolated environment.

Setting up the demo project

After checking out or downloading the source, you will see the demoproject
folder. There should be two files in that folder bootstrap.py and
buildout.cfg. The actual django project is in demoproject/src/odemo.

Lets build the project. To do so you bootstrap it using the python version of
your choice.

python bootstrap.py or you could do, python2.6 bootstrap.py. Just
remember that ostinato have not been tested with versions lower than 2.6.

Ok, after the bootstrap, you will see there should now be a bin folder.

Now run: ./bin/buildout

This will start to download django, mptt, an any other dependecies required
for the project to run.

Running the demo project

Once the buildout has been created, and is finished. A new file will be in the
bin folder called odemo. This is basically a wrapper for manage.py
that ensures that the project is run within buildout, and not in the system.

So lets sync the database: ./bin/odemo syncdb

After the sync we can run the dev server: ./bin/odemo runserver

ostinato.pages

For the user -
Allows for creating a hierarchy of pages, manage publishing, and displaying
the pages in the site’s navigation.

For the Developer -
Allows for creating custom Content for Pages, which can be customized on a
per-project-basis.

A quick overview

Pages

In our pages app, a Page is nothing more than a container for content.
A Page does have some of it’s own field and attributes, but these are mostly
to set certain publication details etc.

Page Content

Page Content is a seperate model from pages, and this is the actual content
for the page. Two of these models already exist within pages, and you are free
to use them out-of-the-box, but you can easilly create your own if you need
more control over content in your pages.

Requirements

	django-mptt

	django-appregister

Add ostinato.pages to your project

Start by adding the app to your INSTALLED_APPS

INSTALLED_APPS = (
 ...

 'ostinato',
 'ostinato.pages',
 'mptt', # Make sure that mptt is after ostinato.pages

 ...
)

Now add the ostinato.pages.urls to the end of your urlpatterns. It is
important to add this snippet right at the end of the urls.py so that pages doesn’t take priority over your other urlpatterns. That is of course unless
you want it to, in which case you can add it where-ever you wish.

urlpatterns += patterns('',
 url(r'^', include('ostinato.pages.urls')),
)

Remember to run syncdb after you’ve done this.

That’s it, you now have a basic Pages app. We cannot do anything with it yet,
since we first need to create actual templates and content. We’ll do this
in the next section.

Note

Publication and Timezones

Django 1.4 changed how timezones are treated. So if you mark a page as
published, please remember that it is published, relative to the timezone
you specified in your settings.py.

Creating and registering page content

Ok, so lets say the client wants a landing page that contains a small intro
and content, and a general page that contains only content. It was
decided by you that these would all be TextFields.

Lets create these now. You need to place these in your app/project
models.py.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from django.db import models
from ostinato.pages.models import PageContent
from ostinato.pages.regitry import page_content

@page_content.register
class LandingPage(PageContent): # Note the class inheritance
 intro = models.TextField()
 content = models.TextField()

@page_content.register
class GeneralPage(PageContent):
 content = models.TextField()

As you can see, these are standard django models, except that we inherit from
ostinato.pages.models.PageContent.

You also need to register your model with the page_content registry, as
you can see on lines 5 and 10.

Note

Since the content you just created are django models, you need to
remember to run syncdb.

If you load up the admin now, you will be able to choose a template for the
page.

Displaying page content in the templates

By default the template used by the page is determined by the page content.
The default template location is pages/<content_model_name>.html.
So the templates for our two content models (which you’ll need to create now)
are:

	pages/landing_page.html

	pages/general_page.html

Note

You can override these templates by using the ContentOptions meta class
in your page content model.

class GeneralPage(PageContent):
 content = models.TextField()

 class ContentOptions:
 template = 'some/custom/template.html'

Lets see how we can access the content in the template.

The page view adds page to your context, which is the current page instance.
Using that it’s very easy to do something like this:

<h1>{{ page.title }}</h1>
<p class="byline">Author: {{ page.author }}</p>

That’s all fine, but we have content for a page as well, which is stored in
a different model. We include a field on the page called contents, which
will get the related page content for you.

In the following example, we assume that you are editing your
landing_page.html.

<p>{{ page.contents.intro }}</p>
<p>{{ page.contents.content }}</p>

Note

You can also access the content using the django related field lookups, but
this method is very verbose and requires a lot of typing. The related name
is in the format of, <app_label>_<model>_content.

<p>{{ page.myapp_landingpage_content.intro }}</p>
<p>{{ page.myapp_landingpage_content.content }}</p>

Creating a custom view for your content

There are cases where you may want to have a custom view to render your
template rather than just using the default view used by ostinato.pages.

One use case for this may be that one of your pages can have a contact form.
So you will need a way to add this form to the page context. You also want this
page to handle the post request etc.

First you create your view. Note that ostinato.pages makes use of django’s
class based views. If you haven’t used them before, then it would help to read
up on them.

from ostinato.pages.views import PageView

class ContactView(PageView): # Note we are subclassing PageView

 def get(self, *args, **kwargs):
 c = self.get_context_data(**kwargs)
 c['form'] = ContactForm()
 return self.render_to_response(c)

 def post(self, *args, **kwargs):
 c = self.get_context_data(**kwargs)
 ## Handle your form ...
 return http.HttpResponseRedirect('/some/url/')

In the example above, we created our own view that will add the form to the
context, and will also handle the post request. There is nothing special here.
It’s just the standard django class based views in action.

One thing to note is that our ContactView inherits from PageView
(which in turn inherits from TemplateView). You don’t have to inherit
from PageView, but if you don’t, then you need to add the page instance
to the context yourself, whereas PageView takes care of that for you.

Next we need to tell the page content model to use this view when it’s being
rendered. We do this in the ContentOptions meta class for the page content.

Using our LandingPage example from earlier, we change it like so:

	1
2
3
4
5
6
7
8
9

	from django.db import models
from ostinato.pages.models import PageContent

class LandingPage(PageContent):
 intro = models.TextField()
 content = models.TextField()

 class ContentOptions:
 view = 'myapp.views.ContactView' # Full import path to your view

Custom forms for Page Content

ostinato.pages also allows you to specify a custom form for page content.
You do this in the ContentOptions class like the example below:

	1
2
3
4
5
6
7
8
9

	from django.db import models
from ostinato.pages.models import PageContent

class LandingPage(SEOContentMixin, PageContent):
 intro = models.TextField()
 content = models.TextField()

 class ContentOptions:
 form = 'myapp.forms.CustomForm' # Full import path to your form

As you can see we just added that at the end. Just create your custom form
on the import path you specified, and the admin will automatically load the
correct form for your page content.

Creating complex page content with mixins

Sometimes you may have two different kinds of pages that share other fields.
Lets say for example we have two or more pages that all needs to update our
meta title and description tags for SEO.

It is a bit of a waste to have to add those two fields to each of our content
models manually, not to mention that it introduces a larger margin for errors.

We use mixins to solve this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from django.db import models
from ostinato.pages.models import PageContent

class SEOContentMixin(models.Model): # Note it's a standard model...
 keywords = models.CharField(max_length=200)
 description = models.TextField()

 class Meta:
 abstract = True # ...and _must_ be abstract

class LandingPage(SEOContentMixin, PageContent):
 intro = models.TextField()
 content = models.TextField()

The two points you have to be aware of here:

	The mixin should be a normal django model

	The mixin must be abstract

Custom Statemachine for Pages

ostinato.pages.workflow provides a default statemachine that is used by
the page model. Sometimes, you may want to create a different workflow for
the pages based on client requirements.

To do this, you just create your custom statemachine as mentioned in the
ostinato.statemachine documentation, and then tell ostinato.pages
which class to use by adding the following in your settings.py:

OSTINATO_PAGES_WORKFLOW_CLASS = "myapp.customworkflow.SomeWorkflow"

When creating your custom workfow, do remember that the Page state is
stored as an IntegerField, so make sure that you use the
IntegerStatemachine so subclass your own statemachine class.

Extra Inline Fields for a Page in the Admin

There are cases where you want a specific page to have extra inline fields,
based on the chosen template. We have provided you with this capability through
the PageContent model.

First you need to create the model that should be related to your page.

	1
2
3
4
5
6

	from django.db import models
from ostinato.pages.models import Page

class Contributor(models.Model):
 page = models.ForeignKey(Page)
 name = models.CharField(max_lenght=50)

Next, you need to create your inline class (usually done in admin.py).

	1
2
3
4

	from django.contrib import admin

class ContributorInline(admin.StackedInline):
 model = Contributor

Right, after a quick syncdb, we are ready to add this to our page content.
Lets say that we want to add contributors to our LandingPage from earlier:

	1
2
3
4
5
6
7
8
9

	...

class LandingPage(SEOContentMixin, PageContent):
 intro = models.TextField()
 content = models.TextField()

 class ContentOptions:
 admin_inlines = ['myapp.admin.ContributorInline']
...

If you load up the django admin now, and edit a Landing Page, you should see
the extra inline model fields below your PageContent.

To access the related set in your template, just do it as normal.

{% for contributor in page.contributor_set.all %}
{{ contributor.name }}
{% endfor %}

Template tags and filters

ostinato.pages comes with a couple of tempalate tags and filters to
help with some of the more common tasks.

navbar(for_page=None)

A inclusion tag that renders the navbar, for the root by default. It will render
all child pages for the node. This tag will only render pages that has
show_in_nav selected and is published.

{% load pages_tags %}
{% navbar %}

This inclusion tag uses pages/navbar.html to render the nav, just in case
you want to customize it.

This inclusion tag can also take a extra arument to render the children for a
specific page.

{% load pages_tags %}
{% navbar for_page=page %}

breadcrumbs(for_page=None, obj=None)

This tag will by default look for page in the context. If found it will
render the breadcrumbs for this page’s ancestors.

{% load pages_tags %}
{% breadcrumbs %}

If you want to manually specify the page for which to render the breadcrumbs,
you can do that using for_page.

{% load pages_tags %}
{% breadcrumbs for_page=custom_page %}

Sometimes you may have a object that does not belong to the standard page
hierarchy. This could be a model like a BlogEntry, but when viewing the detail
template for this entry, you may still want to relate this object to a page.
For this you can use obj.

{% load pages_tags %}
{% breadcrumbs for_page=blog_landingpage obj=entry %}

One thing to note about the custom object is that the model must have a
title attribute, and a get_absolute_url() method.

filter_pages(**kwargs)

This tag will filter the pages by **kwargs and return the the queryset.

{% load pages_tags %}
{% filter_pages state=5 as published_pages %}
{% for p in published_pages %}
 <p>{{ p.title }}</p>
{% endfor %}

get_page(**kwargs)

Same as filter_pages, except that this tag will return the first item
found.

{% load pages_tags %}
{% get_page slug='page-1' as mypage %}
<h1>{{ mypage.title }}</h1>

Multi Site Support

Ostinato pages can be used for multiple sites. We suggest you read the django
documentation on the sites framework for a background on how we use it here.

Every site will have it’s own Tree. So you create one root page for every site,
and then all descendants will belong to this site.

Additionally, in the settings.py file for each site, you need to specify
which TreeID belongs to that site.

OSTINATO_PAGES_SITE_TREEID = 1 will tell tell your project that the current
projects pages are all located in the first Tree.

Pages Settings

OSTINATO_PAGES_SETTINGS = {
 'CACHE_NAME': 'default',
 'DEFAULT_STATE': 5,
}

ostinato.statemachine

Overview

Ostinato includes a statemachine that will allow you to create complex
workflows for your models. A common workflow, for example, is a publishing
workflow where an item can be either private or public. The change from
the one state to the next is called a transition.

In ostinato our main aim was to have the ability to “attach” a statemachine
to a model, without having to change any fields on that model. So you can
create your States and StateMachines completely independent of your models,
and just attach it when needed.

Ok, lets build an actual statemachine so you can see how it works. For this
example we will create the following statemachine:

[image: _images/demo_statemachine.png]
For our example we will assume you are creating a statemachine for the
following model:

class NewsItem(models.Model):
 title = models.CharField(max_length=150)
 content = models.TextField()
 publish_date = models.DateTimeField(null=True, blank=True)
 state = models.CharField(max_length=50, default='private')

We start by creating our States…

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from ostinato.statemachine import State, StateMachine

class Private(State):
 verbose_name = 'Private'
 transitions = {'publish': 'public'}

class Public(State):
 verbose_name = 'Public'
 transitions = {'retract': 'private', 'archive': 'archived'}

class Archived(State):
 verbose_name = 'Archived'
 transitions = {}

This is simple enough. Every state is a subclass of
ostinato.statemachine.core.State and each of these states specifies two
attributes.

	verbose_name is just a nice human readable name.

	
	transitions is a dict where the keys are transition/action names, and

	the values is the target state for the transition.

Now we have to glue these states together into a statemachine.

	1
2
3

	class NewsWorkflow(StateMachine):
 state_map = {'private': Private, 'public': Public, 'archived': Archived}
 initial_state = 'private'

	
	state_map is a dict where keys are unique id’s/names for the states;

	values are the actual State subclass

	initial_state is the starting state key

Thats all you need to set up a fully functioning statemachine.

Lets have a quick look at what this allows you to do:

>>> from odemo.news.models import NewsItem, NewsWorkflow

We need an instance to work with. We just get one from the db in this case
>>> item = NewsItem.objects.get(id=1)
>>> item.state
u'public'

Create a statemachine for our instance
>>> sm = NewsWorkflow(instance=item)

We can see that the statemachine automatically takes on the state of the
newsitem instance.
>>> sm.state
'Public'

We can view available actions based on the current state
>>> sm.actions
['retract', 'archive']

We can tell the statemachine to take action
>>> sm.take_action('retract')

State is now changed in the statemachine ...
>>> sm.state
'Private'

... and we can see that our original instance was also updated.
>>> item.state
'private'
>>> item.save() # Now we save our news item

Custom Action methods

You can create custom action methods for states, which allows you to do
extra stuff, like updating the publish_date.

Our example NewsItem already has a empty publish_date field, so lets
create a method that will update the publish date when the publish action
is performed.

	1
2
3
4
5
6
7
8
9

	from django.utils import timezone

class Private(State):
 verbose_name = 'Private'
 transitions = {'publish': 'public'}

 def publish(self, **kwargs):
 if self.instance:
 self.instance.publish_date = timezone.now()

Now, whenever the publish action is called on our statemachine, it will
update the publish_date for the instance that was passed to the
StateMachine when it was created.

Note

The name of the method is important. The State class tries to look
for a method with the same name as the transition key.

You can use the kwargs to pass extra arguments to your custom methods.
These arguments are passed through from the StateMachine.take_action()
method eg.

sm.take_action('publish', author=request.user)

Admin Integration

Integrating your statemachine into the admin is quite simple. You just need to
use the statemachine form factory function that generates the form for your
model, and then use that form in your ModelAdmin.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from odemo.news.models import NewsItem, NewsWorkflow
from ostinato.statemachine.forms import sm_form_factory

class NewsItemAdmin(admin.ModelAdmin):
 form = sm_form_factory(NewsWorkflow)

 list_display = ('title', 'state', 'publish_date')
 list_filter = ('state',)
 date_hierarchy = 'publish_date'

admin.site.register(NewsItem, NewsItemAdmin)

Lines 2 and 6 are all that you need. sm_form_factory takes as it’s first
argument your Statemachine Class.

Custom state_field

The statemachine assumes by default that the model field that stores the state
is called, state, but you can easilly tell the statemachine (and the
statemachine form factory function) what the field name for the state will be.

	Statemachine - sm = NewsWorkflow(instance=obj, state_field='field_name')

	Form Factory - sm_form_factory(NewsWorkflow, state_field='field_name')

ostinato.blog

Overview

A blog is a very common application that are installed for most websites
these days. There are a couple of common features that most blogging apps
provide, but the use cases of every project can be quite different.

Because of this, we decided to bundle a simple skeleton for building your
own blog, and this is what ostinato.blog does.

How to use ostinago.blog

Start by creating your own blogging application, and within it your
own BlogEntry model.

from ostinato.blog.models import BlogEntryBase

class Entry(BlogEntryBase):
 pass

BlogEntryBase provides the following fields for your Entry Model.

title = models.CharField(max_length=255)
slug = models.SlugField(unique=True)
content = models.TextField()
state = models.IntegerField(default=1)
author = models.ForeignKey(User)
created_date = models.DateTimeField(auto_now_add=True)
modified_date = models.DateTimeField(auto_now=True, null=True, blank=True)
publish_date = models.DateTimeField(null=True, blank=True)
archived_date = models.DateTimeField(null=True, blank=True)

allow_comments = models.BooleanField(default=True)

Those are the most basic fields that any blog might require, but of course
you can extend this to include any other fields that you may require.

from ostinato.blog.models import BlogEntryBase

class Entry(BlogEntryBase):

 contributors = models.ManyToManyField(User, null=True, blank=True)
 preview_image = models.Imagefield(upload_to='uploads', null=True, blank=True)

So now you have a blog entry with two extra fields.

Using the custom manager

published() - Returns a queryset containing published blog entries

Wrapping up

Since blogs can vary in use case so much, we have decided to provide only
the bare minimum to get you going and you still need to create your own urls,
views and templates.

The reason for this approach is that we still wish to maintain flexability,
and we feel that this is the best way to approach this.

ostinato.contentfilters

The ostinato.contentfilters app provides you with a easy way to apply a
list of filters to content, which is rendered in your templates. The basic
functionality is the same as standard django template filters, except that
they are appllied as a group. This is handy if you want to apply a whole range
of filters to a single piece of content.

We also include a couple of filters for some common use cases.

Writing a Contentfilter

Start by creating a standard django template tag library. In our case we will
call this custom_filters.py.

from django import template
register = template.Library()

Now we need to create our filter. For this example we will create a simple
filter that will convert the content to uppercase.

from django import template
from ostinato.contentfilters import ContentMod

register = template.Library()

def to_upper(content):
 return content.upper()

ContentMod.register('upper', to_upper)

As you can see you just create a basic function, which takes a single argument,
content. You then do some processing on your content, and return the result.

The last thing you need to do is register your modifier with
ostinato.contentfilters.ContentMod. The first argument here is the unique
name for the filter. The second argument is the function to use.

Using the filters in your templates

Now that you have your content filters registered, you can use them in your
templates.

{% load content_filters custom_filters %}
{{ 'some lowercase content'|modify }}

Firstly note that we need to load both template tag libraries for
content_filters and custom_filters.

Secondly you will see we just applied a single modify filter to our content.
Calling modify without any arguments will run through all registered
filters.

You can apply specific filters by passing it as arguments to modify:

{% load content_filters custom_filters %}
{{ 'some lowercase content'|modify:"upper,another_filter" }}

You can also tell it to exclude filters. The following will use all
registered filters, except for upper and youtube. Note the exclamation
mark at the start of the filter list.

{% load content_filters custom_filters %}
{{ 'some lowercase content'|modify:"!upper,another_filter" }}

Default content filters included with ostinato.contentfilters

	
	youtube - Searches for a youtube url in the content, and replaces it with

	the html embed code.

	
	snip - Searches for a string, {{{snip}}} in the content, and if found

	it truncates the content at that point.

	
	hide_snip - Searches for a string, {{{snip}}} in the content, and if

	found, removes it from the content.

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-ostinato’s documentation!

 		
 The Demo Project

 		
 Setting up the demo project

 		
 Running the demo project

 		
 ostinato.pages

 		
 A quick overview

 		
 Requirements

 		
 Add ostinato.pages to your project

 		
 Creating and registering page content

 		
 Displaying page content in the templates

 		
 Creating a custom view for your content

 		
 Custom forms for Page Content

 		
 Creating complex page content with mixins

 		
 Custom Statemachine for Pages

 		
 Extra Inline Fields for a Page in the Admin

 		
 Template tags and filters

 		
 Multi Site Support

 		
 Pages Settings

 		
 ostinato.statemachine

 		
 Overview

 		
 Custom Action methods

 		
 Admin Integration

 		
 Custom state_field

 		
 ostinato.blog

 		
 Overview

 		
 How to use ostinago.blog

 		
 Using the custom manager

 		
 Wrapping up

 		
 ostinato.contentfilters

 		
 Writing a Contentfilter

 		
 Using the filters in your templates

 		
 Default content filters included with ostinato.contentfilters

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/demo_statemachine.png
H Private mnsn——{ Public archlve Archived

retract

_static/ajax-loader.gif

