
django-oscar-mws Documentation
Release 0.1.0

Sebastian Vetter

January 08, 2017

Contents

1 Concepts 3
1.1 Merchant Account . 3
1.2 Stock Records with MWS . 3

2 Getting Started 5
2.1 Setting Up The Sandbox . 5
2.2 Setting Up MWS . 6

3 Settings 9
3.1 MWS_ENFORCE_PARTNER_SKU . 9
3.2 MWS_ORDER_ADAPTER . 9
3.3 MWS_ORDER_LINE_ADAPTER . 9
3.4 MWS_FULFILLMENT_MERCHANT_FINDER . 9
3.5 MWS_DEFAULT_SHIPPING_SPEED . 9

4 Recipes For Commmon Problems 11

5 Notes 13
5.1 Fulfillment . 13

6 API Reference 15
6.1 Models and Mixins . 15
6.2 Feeds . 15
6.3 Fulfillment . 15

7 Indices and tables 17

Python Module Index 19

i

ii

django-oscar-mws Documentation, Release 0.1.0

django-oscar-mws is still under heavy development and things are changing quickly. That means the few pieces of
documentation currently available are likely to change or might even be obsolete. It also explains why the docs are
pretty much non-existent. Stay tune, I’ll try and improve them as I go along.

Contents:

Contents 1

django-oscar-mws Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Concepts

django-oscar-mws (OMWS) provides a few models that represent data retrieved from or sent to Amazon’s MWS API.

1.1 Merchant Account

• The merchant account represents the overall account for a region such as EU, US.

• A merchant account has to be linked to a stock record to be able to store stock for a given product in the right
place. A merchant has a 1-to-1 relationship to the partner.Partner model.

• When saving a merchant account without a partner, a partner with name Amazon (<MWS_REGION>) is
looked up or created with the merchant’s region corresponding to MWS_REGION. E.g. for a US merchant
account this would be Amazon (US).

1.2 Stock Records with MWS

Using MWS for fulfillment implies that we are handling physical stock that requires shipping and the tracking of
stock. Oscar’s StockRecord model provides all the necessary functionality for this. However, there is a couple of
assumptions that we have to make based on the way MWS works.

1. Stock in MWS is available on the merchant account level which can be mapped to a fulfillment region, e.g.
Europe. As a result, we have to handle one stock record per region/seller account which is done by tying a
MerchantAccount directly to a Partner. This is automatically taken care of when saving a new merchant
account.

2. Oscar, by default, tracks stock and uses a 2-stage approach for it. The amount of stock is stored in
num_in_stock. Whenever a customer successfully places an order for an item, the num_allocated on its
stock record is incremented. The actual amount that is available to buy is calculated by subtracting the allocated
stock from the number in stock:

available = stockrecord.num_in_stock - stockrecord.num_allocated

This makes tracking stock from MWS a little tricky because we can’t just set the num_in_stock value
to the supply quantity retrieved from MWS. This would ignore the allocated stock number and result in a
wrong number of items available to buy. Resetting num_allocated to zero when updating inventory will
cause issues by itself because marking an item as shipped will result in decrementing num_in_stock and
num_allocated by the shipped quantity which would also result in wrong stock numbers. We decided for a
combined solution by resetting num_allocated to zero when updating stock from MWS and then preventing
decrementing stock when it is marked as shipped if the stock record is tracking MWS stock. This functionality
is encapsulated in AmazonStockRecordMixin which you should add to your projects StockRecord.

3

django-oscar-mws Documentation, Release 0.1.0

4 Chapter 1. Concepts

CHAPTER 2

Getting Started

2.1 Setting Up The Sandbox

django-oscar-mws comes with a sandbox site that shows how MWS can be integrated with Oscar. It resembles a basic
set up of Oscar with an out-of-the-box integration of MWS. This section will walk you through setting the sandbox up
locally and how to make it interact with the MWS API.

Note: Oscar itself has quite a few dependencies and settings that might cause some problems when you are setting
up the MWS sandbox. In addition to this documentation you might also want to check out the Oscar docs on setting
up a project.

The first thing to do is cloning the repository and installing it’s requirements which will includes setting up Oscar. It
also creates a new database (if it doesn’t exist) creates the required tables:

$ git clone git@github.com:tangentlabs/django-oscar-mws.git
$ cd django-oscar-mws
$ mkvirtualenv mws # requires virtualenvwrapper to be installed
$ make sandbox

By default, the sandbox is using Oscar’s precompiled CSS files by setting USE_LESS = False. If you want to use
LESS to generate the CSS yourself, take a look at the documentation on how to use LESS with Oscar.

2.1.1 Create Admin User

The main interface for MWS lives in Oscar’s dashboard and therefore requires an admin user to login. Create a new
admin account using Django’s createsuperuser command and follow the instruction:

$./sandbox/manage.py createsuperuser

You should now be able to run the sandbox locally using Django’s builtin HTTP server:

$./sandbox/manage.py runserver

You now have a sample shop up and running and should be able to navigate to the dashboard to continue the setup of
your MWS credentials.

2.1.2 Stock Records and MWS

As described in Concepts, integration Oscar’s stock records with MWS requires a little additional setup. Oscar assumes
that it handles the allocation and consumption of stock through the stock record(s) for a product. With MWS the

5

http://django-oscar.readthedocs.org/en/latest/internals/sandbox.html#sample-oscar-projects
http://django-oscar.readthedocs.org/en/latest/internals/sandbox.html#sample-oscar-projects
http://django-oscar.readthedocs.org/en/latest/howto/how_to_handle_statics.html?highlight=less#less-css
http://localhost:8000/dashboard/merchants/

django-oscar-mws Documentation, Release 0.1.0

available stock is actually dictated by Amazon and can’t be handled the Oscar way. Therefore, a few extra methods on
the stock record are required which are encapsulated in the AmazonStockTrackingMixin.

Making these methods available to OMWS requires you to override the partner app in Oscar. Check the documen-
tation on how to customise Oscar apps to get a more comprehensive introduction. The short version is, you need to
create a new app in your project called partner and create a models.py module in it. Import all the models from
the core Oscar app and add the AmazonStockTrackingMixin to the StockRecord model similar to this:

from oscar.apps.address.abstract_models import AbstractPartnerAddress
from oscar.apps.partner.abstract_models import *

from oscar_mws.mixins import AmazonStockTrackingMixin

class StockRecord(AmazonStockTrackingMixin, AbstractStockRecord):
pass

class Partner(AbstractPartner):
pass

class PartnerAddress(AbstractPartnerAddress):
pass

class StockAlert(AbstractStockAlert):
pass

And then add the partner app to your INSTALLED_APPS like this:

from oscar.core import get_core_apps

INSTALLED_APPS = [
...

] + get_core_apps([’myproject.partner’])

This setup provides you with a default implementation that disables updating the consumed stock on a MWS-enabled
stock record and provides methods to update stock from MWS when retrieved from Amazon.

Note: The AmazonStockTrackingMixin provides a basic implementation for MWS-enabled stock. If you are
using multiple different types of fulfillment partners this implementation might not be sufficient and you’ll have to
adjust the implemenation to your specific use cases.

2.2 Setting Up MWS

The API endpoints provided by Amazon MWS differ based on the MWS region. The different regions and endpoints
are detailed in the Amazon docs. Each region requires separate MWS credentials for each account. In OMWS, these
accounts are called merchant accounts and are used to identify the endpoints to use when communication with MWS.

You have to create a merchant account and provide your MWS credentials to be able to connect to MWS. Head
to the Amazon MWS > Merchants & Marketplaces in the Oscar dashboard and select ‘Add merchant account’. A
corresponding partner account in Oscar is required for a MWS merchant account, however, if no partner is selected
explicitly, a new one will be created automatically with the same name as the MWS merchant account.

With your merchant account(s) added, you can update the corresponding marketplaces in the drop-down menu on the

6 Chapter 2. Getting Started

http://django-oscar.readthedocs.org/en/latest/howto/how_to_customise_models.html
http://django-oscar.readthedocs.org/en/latest/howto/how_to_customise_models.html
http://docs.developer.amazonservices.com/en_US/dev_guide/DG_Registering.html

django-oscar-mws Documentation, Release 0.1.0

right-hand side. This will pull the MWS marketplaces that you are able to trade in from MWS. This will also indicate
that communicating with the MWS API is successful.

2.2. Setting Up MWS 7

django-oscar-mws Documentation, Release 0.1.0

8 Chapter 2. Getting Started

CHAPTER 3

Settings

3.1 MWS_ENFORCE_PARTNER_SKU

default: True

The seller SKU for a product used with Amazon to uniquely identify it stored on the AmazonProfile of that
product. Oscar’s stock record in the partner app also provides a SKU that is used with a Partner corresponding
to a seller/merchant ID with MWS. In most cases, you would want the partner SKU on the StockRecord kept
in sync with the SKU on the AmazonProfile. To enforce this constraint, you can update the stock records for
Amazon-related partners whenever the Aamzon profile is saved. This is enabled by default. To switch it off set
MWS_ENFORCE_PARTNER_SKU = False in you settings.

3.2 MWS_ORDER_ADAPTER

Specify the order adapter class to use to convert an order into a fulfillment order containing data as expected by
Amazon.

3.3 MWS_ORDER_LINE_ADAPTER

The mapper class for the order line to convert it into a fulfillment orde line including data as expected by Amazon.

3.4 MWS_FULFILLMENT_MERCHANT_FINDER

default: oscar_mws.fulfillment.finders.default_merchant_finder

3.5 MWS_DEFAULT_SHIPPING_SPEED

default: Standard

9

django-oscar-mws Documentation, Release 0.1.0

10 Chapter 3. Settings

CHAPTER 4

Recipes For Commmon Problems

Sorry but you’ll need to be a little patient. I’ll get to it as soon as possible.

11

django-oscar-mws Documentation, Release 0.1.0

12 Chapter 4. Recipes For Commmon Problems

CHAPTER 5

Notes

Warning: For same parts of the API to work, you’ll have to provide tax information in your MWS Pro account.
Otherwise you’ll get a Seller is not registered for Basic fulfillment. error message back.

For the time being, this is going to be a collection of finding while using the MWS API. It mainly things that I’ve
picked up while working on it through feedback submitting wrong or incomplete data. It’s not necessarily correct and
I am happy to be corrected where that’s the case.

5.1 Fulfillment

• Fulfillment orders are created against a seller account rather than a marektplace. That means all marketplaces
that belong to the same seller account are submitted against that seller account and do not require a marketplaces.

5.1.1 Submitting An Order

• The DestinationAddress.CountryCode is validated against the seller account region and is rejected if
outside of it. E.g. a US country code submitted to a seller acount for Europe is rejected with:

<Error>
<Type>Sender</Type>
<Code>InvalidRequestException</Code>
<Message>Value US for parameter DestinationAddress.CountryCode is invalid. Reason: InvalidValue.</Message>

</Error>

• Submitting an order requires a value for StateOrProvinceCode for the destination address. As far as I
have tested it, there is no validation on the state for the European marketplaces. The Marketplace for the US
(and most likely Canada as well) is rejecting anything but the official 2-letter code for the US state.

13

django-oscar-mws Documentation, Release 0.1.0

14 Chapter 5. Notes

CHAPTER 6

API Reference

6.1 Models and Mixins

class oscar_mws.mixins.AmazonStockTrackingMixin
A mixin to make stock tracking for Amazon MWS fulfilled products possible. The way stock tracking works in
Oscar doesn’t play nicely with the details returned from MWS. Basically Amazon provides a single value which
is the amount of items still available to be fulfilled. In Oscar, we track the number in stock as well as the allocated
number of products. num_in_stock - num_allocated is the number of items actually avaiable to buy
and both number in stock and number allocated are only decremented whenever an item is marked as shipped.

To handle this properly and be able to synchronise the fulfillable number of products available from Amazon,
we use this mixin to override the

consume_allocation(quantity)
This is used when an item is shipped. We remove the original allocation and adjust the number in stock
accordingly

Parameters quantity (integer) – The quantity to be consumed.

is_mws_record
Checks whether this stock record is associated with an Amazon merchant account.

Rtype bool True if the stockrecord is Amazon stock, False otherwise.

set_amazon_supply_quantity(quantity, commit=True)
Convenience method to set the field num_in_stock to quantity and reset the allocated stock in
num_allocated to zero. We don’t care about allocation for MWS stock and therefore just reset it.

Parameters

• quantity (integer) – The quantity currently available on Amazon for Fulfillment by Ama-
zon (FBA).

• commit (boolean) – Allows to prevent immediate saving of the changes to the database.
This is useful if you want to save on database queries when making other changes to the
stock record.

6.2 Feeds

6.3 Fulfillment

15

django-oscar-mws Documentation, Release 0.1.0

16 Chapter 6. API Reference

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

17

django-oscar-mws Documentation, Release 0.1.0

18 Chapter 7. Indices and tables

Python Module Index

o
oscar_mws.mixins, 15

19

django-oscar-mws Documentation, Release 0.1.0

20 Python Module Index

Index

A
AmazonStockTrackingMixin (class in os-

car_mws.mixins), 15

C
consume_allocation() (os-

car_mws.mixins.AmazonStockTrackingMixin
method), 15

I
is_mws_record (oscar_mws.mixins.AmazonStockTrackingMixin

attribute), 15

O
oscar_mws.mixins (module), 15

S
set_amazon_supply_quantity() (os-

car_mws.mixins.AmazonStockTrackingMixin
method), 15

21

	Concepts
	Merchant Account
	Stock Records with MWS

	Getting Started
	Setting Up The Sandbox
	Setting Up MWS

	Settings
	MWS_ENFORCE_PARTNER_SKU
	MWS_ORDER_ADAPTER
	MWS_ORDER_LINE_ADAPTER
	MWS_FULFILLMENT_MERCHANT_FINDER
	MWS_DEFAULT_SHIPPING_SPEED

	Recipes For Commmon Problems
	Notes
	Fulfillment

	API Reference
	Models and Mixins
	Feeds
	Fulfillment

	Indices and tables
	Python Module Index

