
django-multiform Documentation
Release 0.1a1

Baptiste Mispelon

September 15, 2016

Contents

1 MultiForm 3

2 MultiModelForm 5

3 Dispatching Parameters 7

4 Indices and tables 9

i

ii

django-multiform Documentation, Release 0.1a1

Django-multiform is a library that allows you to wrap several forms into one object with a form-like API.

It’s compatible with django 1.4 and 1.5.

A lot of care has been put into replicating the same API as Form so that a MultiForm can be used anywhere a regular
Form would.

The library consists of two classes: MultiForm and MultiModelForm.

Contents 1

django-multiform Documentation, Release 0.1a1

2 Contents

CHAPTER 1

MultiForm

Wraps up several Form into one object, which allows you for example to reuse several existing forms in a generic
FormView.

forms.py
from django import forms

from multiform import MultiForm

class FooForm(forms.Form):
foo = forms.CharField()

class BarForm(forms.Form):
bar = forms.CharField()

class FooBarForm(MultiForm):
base_forms = [

('foo', FooForm),
('bar', BarForm),

]

views.py
from django.views import generic
from .forms import FooBarForm

class FooBarView(generic.FormView):
form_class = FooBarForm

def form_valid(self, form):
form.cleaned_data['foo'] # {'foo': ...}
form.cleaned_data['bar'] # {'bar': ...}
return super(FooBarView, self).form_valid(form)

3

django-multiform Documentation, Release 0.1a1

4 Chapter 1. MultiForm

CHAPTER 2

MultiModelForm

As the name hints, it wraps several ModelForm instances into one object.

It’s quite similar to MultiForm, but it adds a save method and it can handle the dispatching of the instance
attribute that you usually pass to a ModelForm.

It’s useful for creating related model instances in one step with a generic CreateView for example.

models.py
from django.db import models

class Person(models.Model):
eye_color = models.CharField(max_length=50)
user = models.OneToOneField(auth.get_user_model())

forms.py
from django.contrib.auth.forms import UserCreationForm
from .models import Person

from multiform import MultiModelForm

class PersonUserForm(MultiModelForm):
base_forms = [

('person', PersonForm),
('user', UserCreationForm),

]

def dispatch_init_instance(self, name, instance):
if name == 'person':

return instance
return super(PersonUserForm, self).dispatch_init_instance(name, instance)

def save(self, commit=True):
"""Save both forms and attach the user to the person."""
instances = super(PersonUserForm, self).save(commit=False)
instances['person'].user = instances['user']
if commit:

for instance in instances.values():
instance.save()

return instances

5

django-multiform Documentation, Release 0.1a1

6 Chapter 2. MultiModelForm

CHAPTER 3

Dispatching Parameters

In the event that you want to pass different parameters to some of the wrapped forms, you have two options (that can
be used independently):

1. Implement a dispatch_init_$arg method on your subclass. This method will be called when builting the
keyword arguments passed to a wrapped form’s constructor. This method is passed two arguments: the name of
the wrapped form being built, and the original value of the $arg keyword argument.

2. Pass a $name__$arg=foo keyword argument to the MultiForm’s constructor. This will make it so that the
wrapped form with the name of $name will be passed the $arg=foo keyword argument. Note that in case of
conflicts, this method has priority over the first one.

Any keyword argument passed to a Multiform’s contructor that’s not part of the Form’s signature and that’s not of the
form $name__* will be passed to all wrapped forms.

7

django-multiform Documentation, Release 0.1a1

8 Chapter 3. Dispatching Parameters

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

9

	MultiForm
	MultiModelForm
	Dispatching Parameters
	Indices and tables

