
Django MSSQL Documentation
Release dev

Django MSSQL authors

December 14, 2016

Contents

1 Welcome to Django-mssql’s documentation! 3
1.1 Quickstart . 3
1.2 Settings . 4
1.3 Usage . 7
1.4 Management Commands . 8
1.5 Datatypes . 9
1.6 Testing . 10
1.7 Contributing to Django-mssql . 11
1.8 Changelog . 12
1.9 Known Issues . 16

i

ii

Django MSSQL Documentation, Release dev

Provides an ADO based Django database backend for Microsoft SQL Server.

Contents 1

Django MSSQL Documentation, Release dev

2 Contents

CHAPTER 1

Welcome to Django-mssql’s documentation!

Contents:

1.1 Quickstart

1.1.1 Installation

• Install SQL Server Management Studio or manually install Microsoft Data Access Components (MDAC).

• Install django-mssql with your favorite Python package manager:

pip install django-mssql

• Add the DATABASES configuration.

DATABASES = {
'default': {

'NAME': 'my_database',
'ENGINE': 'sqlserver_ado',
'HOST': 'dbserver\\ss2012',
'USER': '',
'PASSWORD': '',

}
}

Note: Although the project is named django-mssql the python module is named
sqlserver_ado.

Do not include a django.db.backends. prefix. That is only for core backends that are included
with Django, not 3rd party backends.

1.1.2 Getting the code

The project code is hosted on Bitbucket

hg clone https://bitbucket.org/Manfre/django-mssql/

Are you planning to contribute? See Contributing to Django-mssql.

3

https://bitbucket.org/Manfre/django-mssql/

Django MSSQL Documentation, Release dev

1.1.3 Dependencies

Django

Django 1.8 is supported by the current release.

Support for Django 1.6 requires django-mssql v1.6

Python

This backend requires Python 2.7, 3.4.

PyWin32

PyWin32 build 212 or newer is required.

1.2 Settings

1.2.1 DATABASES

Please see the Django documentation on DATABASES settings for a complete list of available settings. Django-mssql
builds upon these settings.

This is an example of a typical configuration:

DATABASES = {
'default': {

'NAME': 'my_database',
'ENGINE': 'sqlserver_ado',
'HOST': 'dbserver\\ss2008',
'USER': '',
'PASSWORD': '',

}
}

ENGINE

This value must be set to sqlserver_ado.

HOST

Default: ’127.0.0.1’

This defines the Microsoft SQL Server to establish a connection. This value can be a hostname or IP address.

4 Chapter 1. Welcome to Django-mssql’s documentation!

http://www.djangoproject.com/
https://pypi.python.org/pypi/django-mssql
http://sourceforge.net/projects/pywin32/
https://docs.djangoproject.com/en/1.4/ref/settings/#databases

Django MSSQL Documentation, Release dev

PORT

Default: ’’ (Empty string)

This defines the network port to use when connecting to the server. If not defined, the standard Microsoft SQL Server
port will be used.

NAME

This is the name of the SQL server database.

USER

Default: ’’ (Empty string)

This defines the name of the user to use when authenticating to the server. When empty, a trusted connection (SSPI)
will be used.

PASSWORD

Default: ’’ (Empty string)

When a USER is defined, this field should be the plain text password to use when authenticating.

Note: Any user or service that can read the configuration file can will be able to see the plain-text password. Trusted
connections are recommended.

TEST_CREATE

Default: True

This setting is specific to the django-mssql backend and controls whether or not the test database will be created and
destroyed during the test creation. This is useful when integrating to a legacy database with a complex schema that is
created by another application or cannot be easily created by Django’s syncdb.

DATABASES = {
'default': {

'NAME': 'test_legacy_database',
'HOST': r'servername\ss2012',
'TEST_NAME': 'test_legacy_database',
'TEST_CREATE': False,

}
}

Note: This is not intended to allow you to run tests against a QA, staging, or production database.

1.2. Settings 5

Django MSSQL Documentation, Release dev

1.2.2 OPTIONS

Django-mssql provides a few extra OPTIONS that are specific to this backend. Please note that while the main
database settings are UPPERCASE keys, the OPTIONS dictionary keys are expected to be lowercase (due to legacy
reasons).

use_mars

Default: True

Set to False to disable Multiple Active Recordsets. It is not recommended to disable MARS. Without MARS enabled,
you will probably end up seeing the error “Cannot create new connection because in manual or distributed transaction
mode”.

Note: This doesn’t really work properly with the “SQLOLEDB” provider.

extra_params

Default: ’’ (Empty string)

This value will be appended to the generated connection string. Use this to provide any specific connection settings
that are not controllable with the other settings.

provider

Default: ’SQLCLI10’

The SQL provider to use when connecting to the database. If this doesn’t work, try ‘SQLCLI11’ or ‘SQLOLEDB’.

Note: use_mars = True doesn’t always work properly with ‘SQLOLEDB’ and can result in the error “Cannot
create new connection because in manual or distributed transaction mode.” if you try to filter a queryset with another
queryset.

disable_avg_cast

Default: False

This backend will automatically CAST fields used by the AVG function as FLOAT to match the behavior of the core
database backends. Set this to True if you need SQL server to retain the datatype of fields used with AVG.

New in version 1.1.

Note: SQL server maintains the datatype of the values used in AVG. The average of an int column will be an int.
With this option set to True, AVG([1,2]) == 1, not 1.5.

6 Chapter 1. Welcome to Django-mssql’s documentation!

http://msdn.microsoft.com/en-us/library/ms177677.aspx

Django MSSQL Documentation, Release dev

use_legacy_date_fields

Default: False

This setting alters which data types are used for the DateField, DateTimeField, and TimeField fields. When
True, the fields will all use the datetime data type. When False, they will use date, datetime, and time
data types.

Note: The default value changed to False with version 1.5.1.

New in version 1.4.

Deprecated since version 1.5.1.

1.3 Usage

Django-mssql is a Django database backend and supports the interface for the paired Django version. It should
behave the same as the core backends.

1.3.1 Executing Custom SQL

Please refer to the Django documentation for Executing custom SQL directly.

1.3.2 Stored Procedures

Django-mssql provides support for executing stored procedures, with and without parameters. The main function
that should be used to execute a stored procedure is callproc. callproc will allow executing stored procedures
with both input and output parameters, integer return values, and result sets.

def callproc(self, procname, parameters=None):
"""Call a stored database procedure with the given name.

The sequence of parameters must contain one entry for each
argument that the sproc expects. The result of the
call is returned as modified copy of the input
sequence. Input parameters are left untouched, output and
input/output parameters replaced with possibly new values.

The sproc may also provide a result set as output,
which is available through the standard .fetch*() methods.

Extension: A "return_value" property may be set on the
cursor if the sproc defines an integer return value.
"""

Example:

This example assumes that there exists a stored procedure named uspDoesSomething that expects two parameters
(int and varchar), and returns 1 when there is a result set.

from django.db import connection

cursor = connection.cursor()

1.3. Usage 7

https://docs.djangoproject.com/en/dev/topics/db/sql/#executing-custom-sql-directly

Django MSSQL Documentation, Release dev

try:
cursor.callproc('[dbo].[uspDoesSomething]', [5, 'blah'])

if cursor.return_value == 1:
result_set = cursor.fetchall()

finally:
cursor.close()

It is also possible to use the cursor’s execute method to call a stored procedure, but return_value will not be
set on the cursor and output parameters are not supported. This usage is intended for calling a stored procedure that
returns a result set or nothing at all.

Example:

from django.db import connection

cursor = connection.cursor()
try:

cursor.execute('EXEC [dbo].[uspFetchSomeData]')
result_set = cursor.fetchall()

finally:
cursor.close()

1.3.3 RawStoredProcedureManager

The RawStoredProcedureManager provides the raw_callproc method that will take the name of a stored
procedure and use the result set that it returns to create instances of the model.

Example:

from sqlserver_ado.models import RawStoredProcedureManager

class MyModel(models.Model):
...

objects = RawStoredProcedureManager()

sproc_params = [1, 2, 3]
MyModel.objects.raw_callproc('uspGetMyModels', sproc_params)

Note: The db_column name for the field must match the case of the database field as returned by the stored procedure,
or the value will not be populated and will get fetched by the ORM when the field is later accessed.

New in version 1.2.

1.4 Management Commands

Adding sqlserver_ado.sql_app to your INSTALLED_APPS adds the following custom management com-
mands.

1.4.1 install_regex_clr

This will install the regex_clr assembly, located in the sqlserver_ado folder in to the specified database.

8 Chapter 1. Welcome to Django-mssql’s documentation!

Django MSSQL Documentation, Release dev

python manage.py install_regex_clr database_name

1.5 Datatypes

There are known issues related to Python/DB data types.

1.5.1 Dates and Times

When using Django-mssql with SQL Server 2005, all of the date related fields only support the datetime
data type. Support for these legacy data types can be enabled using the use_legacy_date_fields
option, or using the fields LegacyDateField, LegacyDateTimeField, and LegacyTimeField in
sqlserver_ado.fields.

Note: :use_legacy_date_fields option has been deprecated and will be removed. Anyone still needing to
use the ‘datetime’ data type must update their models to use the appropriate legacy model field.

To allow migrating specific apps or only some of your models to the new date times, the model fields DateField,
DateTimeField, and TimeField in sqlserver_ado.fields use the new data types regardless of the
use_legacy_date_fields option.

from django.db import models
from sqlserver_ado.fields import DateField, DateTimeField, TimeField

class MyModel(models.Model):
when use_legecy_date_fields is False, models.*Field will behave like these
a_real_date = DateField() # date data type
a_datetime2 = DateTimeField() # datetime2 data type
a_real_time = TimeField() # time data type

when use_legecy_date_fields is True, models.*Field will behave like these
a_date = LegacyDateField() # datetime data type
a_datetime = LegacyDateTime() # datetime data type
a_time = LegacyTimeField() # datetime data type

datetime limitations

With SQL Server 2005, only the datetime data type is usable with Django. This data type does not store enough
precision to provide the full range of Python datetime dates and will round to increments of .000, .003, or .007
seconds. The earliest supported datetime date value is January 1, 1753.

SQL Server 2008 introduces a datetime2 type, with support for fractional seconds and the full range of Python
datetime dates. To use this time, either set the use_legacy_date_fields option to False or use the
sqlserver_ado.fields.DateTimeField with your models.

1.5.2 bigint

Prior to Django 1.3, bigint was not provided. This backend provided model fields to allow using the bigint
datatype.

class sqlserver_ado.fields.BigAutoField

1.5. Datatypes 9

http://msdn.microsoft.com/en-us/library/ms187819.aspx
http://msdn.microsoft.com/en-us/library/ms180878(SQL.100).aspx

Django MSSQL Documentation, Release dev

This is a django.db.models.AutoField for the bigint datatype.

class sqlserver_ado.fields.BigIntegerField

This was previously an django.db.models.IntegerField that specified the bigint datatype. As of Django
1.3, django.db.models.BigIntegerField is provided and should be used instead.

class sqlserver_ado.fields.BigForeignKey

This is a django.db.models.ForeignKey that should be used to reference either a BigAutoField or a
BigIntegerField.

Note: If your (legacy) database using bigints for primary keys, then you’ll need to replace any introspected
ForeignKey fields with BigForeignKey for things to work as expected.

1.5.3 money

The money and smallmoney data types will be introspected as DecimalField with the appropriate values for
max_digits and decimal_places. This does not mean that they are expected to work without issue.

1.5.4 Unsupported Types

These types may behave oddly in a Django application, as they have limits smaller than what Django expects from
similar types:

• smalldatetime

• tinyint

• real

1.6 Testing

All tests are contained in the tests folder.

1.6.1 Running The Django-mssql Test Suite

The Django-mssql Test Suite mimics the Django Test Suite. runtests.py works the same, except by default it will
run all of the Django-mssql tests and only a subset of the Django Test Suite. From the Django-mssql tests folder, run
the following command.

python runtests.py --settings=test_mssql

Note: You will need to change the database configuration in test_mssql or create your own setting file.

1.6.2 Running Django Test Suite

To run the Django test suite, you will need to create a settings file that lists ‘sqlserver_ado’ as the ENGINE.

Example settings:

10 Chapter 1. Welcome to Django-mssql’s documentation!

https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/unit-tests/

Django MSSQL Documentation, Release dev

DATABASES = {
'default': {

'ENGINE': 'sqlserver_ado',
'NAME': 'django_framework',
'HOST': r'localhost\ss2012',
'USER': '',
'PASSWORD': '',

},
'other': {

'ENGINE': 'sqlserver_ado',
'NAME': 'django_framework_other',
'HOST': r'localhost\ss2012',
'USER': '',
'PASSWORD': '',

}
}

SECRET_KEY = "django_tests_secret_key"

1.7 Contributing to Django-mssql

1.7.1 Project Goals

Django-mssql is a Microsoft SQL Server database backend for Django that is meant to be run on Windows. Early
development of this project was made possible by the generosity of Semiconductor Research Corporation (SRC),
which allowed me to spend time making improvements during business hours.

Django Versions

Database backends are very dependent upon Django’s “internal APIs” that are not subject to the standard deprecation
cycles. At times, this makes it not practical to support multiple versions of Django. Whenever this occurs, code clarity
and ease of maintenance are given a higher priority than supporting older versions of Django. Patches that add support
for legacy versions of Django are less likely to be accepted.

An example of this is the various ORM changes that landed for Django 1.6, which resulted in Django-mssql 1.5
dropping support for all previous versions of Django.

SQL Server Versions

Support for older versions of Microsoft SQL Server will be dropped when its convenient. This usually happens
in response to Microsoft adding support for new data types or other standard SQL features that allow for easier
maintenance of django-mssql. Whenever possible, the two most recent versions of SQL Server will be supported with
each version of Django-mssql to allow for an easier migration.

Note: When I declare that django-mssql has dropped support for a specific version of SQL Server, this means that I
am no longer testing it and will begin to remove any code specific to that version. Some projects that use that version
may still work, but I strongly recommend not using it in production.

1.7.2 Getting the code

The project code and issue tracker are hosted on Bitbucket. You can get the code with the following command:

1.7. Contributing to Django-mssql 11

https://www.src.org
https://bitbucket.org/Manfre/django-mssql/

Django MSSQL Documentation, Release dev

hg clone https://bitbucket.org/Manfre/django-mssql/

If you are planning to submit changes, please fork the code on Bitbucket and work against your fork. When your
changes are ready, submit a pull request.

1.7.3 Pull Requests

Pull requests are the prefered method for getting changes in to django-mssql. There are no set guidelines for what
will be deemed an acceptable changeset and commit message. A more descriptive commit message is appreciated.
Before starting a large or questionable change, please open an issue or contact me directly to make sure there are no
immediate red flags that would prevent the change from being merged.

All changes will need to pass the full Django test suite (See testing) before being merged.

1.7.4 Uploading to PyPi

To build and upload the source and wheel packages to http://pypi.python.org/pypi/django-mssql:

python setup.py sdist bdist_wheel upload --sign --identity="BAD0EDF8"

1.8 Changelog

1.8.1 v1.8

• Only Django 1.8 is supported

• MSSQL Server 2012 or newer is supported

• Fixed usage of isoformat() for Python 2.7. (Thanks erinwyher)

• Fixed error when doing a zero size slicing of [0:0]. Django ticket #25894 (Thanks Rebecca Muraya)

• Removed code supporting Django versions prior to 1.8. (Thanks Tim Graham)

• Force pywintypes.datetime to datetime.datetime.

• Fixed Read the Docs link (Thanks Adam Johnson)

• Removed unused DatabaseError and IntegrityError declarations.

• Changing a field type will now preserve the field’s nullability.

• Fixed date and time related conversions when using django-mssql provided fields.

1.8.2 v1.7.1

• Added missing _hints to ‘‘RawStoredProcedureQuerySet‘. django-mssql issue #83 (Thanks Xiayun Sun)

1.8.3 v1.7

• Enabled bulk_insert database feature. django-mssql issue #6 (Thanks João Pedro Francese)

• Fixed string representation for Decimals in format ‘2.82E+3’. django-mssql issue #55 (Thanks João Pedro
Francese)

12 Chapter 1. Welcome to Django-mssql’s documentation!

http://pypi.python.org/pypi/django-mssql
https://code.djangoproject.com/ticket/25894
https://bitbucket.org/Manfre/django-mssql/issue/83
https://bitbucket.org/Manfre/django-mssql/issue/6
https://bitbucket.org/Manfre/django-mssql/issue/55

Django MSSQL Documentation, Release dev

• Simplified the SQLCompiler by taking advantage of OFFSET/FETCH for slicing.

• SQL 2008 and 2008r2 are no longer supported.

• Removed modified BaseDatabaseSchema and refactored to use the class provided by Django.

• Removed south_adapter.py

1.8.4 v1.6.1

• Fixed issue with setup.py that prevented installing on Python 3.4. django-mssql issue #60

1.8.5 v1.6

• SQL Server 2005 is no longer supported. It should not be used.

• Added support for Django 1.7.

– Schema migrations is a new Django feature that may have unexpected issues that could result in data loss
or destruction of the database schema. You should inspect all generated SQL before manually applying to
your production database.

• Password is masked from the connection string if there are connection errors. Thanks Martijn Pieters.

• Added Project Goals and documentation geared toward those wanting to contribute to Django-mssql. See
Contributing to Django-mssql.

• Removed the dbgui management command, which didn’t work anyway.

1.8.6 v1.5.1

• Datetime strings are now in a format that should work regardless of SQL language/format setting. django-mssql
issue #57

• The default value for use_legacy_date_fields has changed to ‘False’. This setting will be removed
in a later version. Once removed, any usage of the legacy ‘datetime’ datatype will require using the provided
‘Legacy*Field’ model fields.

• SQL Server 2005 has not been tested in a while and support will officially be removed in the next release.

• Decimals are passed through ADO as strings to avoid rounding to four places. django-mssql issue #55.

• Database introspection will now identify a char type with a length over 8000 as a TextField. django-mssql
issue #53

• Minor changes to make it possible to subclass django-mssql for use on a non-Windows platform.

1.8.7 v1.5

• This version only supports Django v1.6. Use a previous version if you are using Django v1.5 or earlier.

• Added BinaryField as varbinary(max)

• Refactored DatabaseOperations.sql_flush to use a faster method of disabling/enabling constraints.

• sqlserver_ado.fields.DateTimeField will now do a better job of returning an aware or naive date-
time.

1.8. Changelog 13

https://bitbucket.org/Manfre/django-mssql/issue/60
https://bitbucket.org/Manfre/django-mssql/issue/57
https://bitbucket.org/Manfre/django-mssql/issue/57
https://bitbucket.org/Manfre/django-mssql/issue/55
https://bitbucket.org/Manfre/django-mssql/issue/53
https://bitbucket.org/Manfre/django-mssql/issue/53

Django MSSQL Documentation, Release dev

• DateTime truncation will now support any datetime2 value without the potential of a datediff overflow
exception.

• Many improvements to regex_clr

– Updated regex_clr to Visual Studio 2010

– Patterns and fields with a length greater than 4000 will now work.

– If pattern or input are NULL, it will not match instead of raising an exception.

– regex_clr auto-installs during test database creation

– Added command install_regex_clr to simplify enabling regex support for any database.

• Database introspection will now identify a varchar(max) field as a TextField.

• DatabaseIntrospection.get_indexes now properly finds regular, non-unique, non-primary indices.

• Complete refactor of django-mssql test suite and abandoned tests that are covered by Django test suite.

• Test database is dropped in a more forcible way to avoid “database in use” errors.

1.8.8 v1.4

• Support for Django v1.3 has been removed.

• Corrected DB-API 2 testing documentation.

• Fixed issue with slicing logic that could prevent the compiler from finding and mapping column aliases properly.

• Improved the “return ID from insert” logic so it can properly extract the column data type from user defined
fields with custom data type strings.

• Fixed case for identifiers in introspection. Thanks Mikhail Denisenko.

• Added option use_legacy_date_fields (defaults to True) to allow changing the DatabaseCre-
ation.data_types to not use the Microsoft preferred date data types that were added with SQL Server 2008.
django-mssql issue #31

• Improved accuracy of field type guessing with inspectdb. See Introspecting custom fields

• Fixed issue with identity insert using a cursor to the wrong database in a multi-database environment. Thanks
Mikhail Denisenko

• Fixed constraint checking. django-mssql issue #35 Thanks Mikhail Denisenko

• Enabled can_introspect_autofield database feature. Django ticket #21097

• Any date related field should now return from the database as the appropriate Python type, instead of always
being a datetime.

• Backend now supports doing date lookups using a string. E.g.
Article.objects.filter(pub_date__startswith=’2005’)

• check_constraints will now check all disabled and enabled constraints. This change was made to match
the behavior tested by backends.FkConstraintsTests.test.test_check_constraints.

• Improved date_interval_sql support for the various date/time related datatypes. The timedelta value
will control whether the database will DATEADD using DAY or SECOND. Trying to add seconds to a date, or
days to a time will generate database exceptions.

• Fixed issue with provider detection that prevented DataTypeCompatibility=80 from being automatically
added to the connection string for the native client providers.

• Fixed SQL generation error that occured when ordering the query based upon a column that is not being returned.

14 Chapter 1. Welcome to Django-mssql’s documentation!

https://bitbucket.org/Manfre/django-mssql/issue/31
https://bitbucket.org/Manfre/django-mssql/issue/35
https://code.djangoproject.com/ticket/21097

Django MSSQL Documentation, Release dev

• Added savepoint support. MS SQL Server doesn’t support savepoint commits and will no-op it. Other databases,
e.g. postgresql, mostly use it as a way of freeing server resources in the middle of a transaction. Thanks Martijn
Pieters.

• Minor cleanup of limit/offset SQL mangling to allow custom aggregates that require multiple column replace-
ments. django-mssql issue #40 Thanks Martijn Pieters for initial patch and tests.

• Savepoints cannot be used with MARS connections. django-mssql issue #41

1.8.9 v1.3.1

• Ensure Django knows to re-enable constraints. django-mssql issue #29

1.8.10 v1.3

• Backend now supports returning the ID from an insert without needing an additional query. This is disabled for
SQL Server 2000 (assuming that version still works with this backend). django-mssql issue #17

– This will work even if the table has a trigger. django-mssql issue #20

• Subqueries will have their ordering removed because SQL Server only supports it when using TOP or FOR
XML. This relies upon the with_col_aliases argument to SQLCompiler.as_sql only being True
when the query is a subquery, which is currently the case for all usages in Django 1.5 master. django-mssql
issue #18

• UPDATE statements will now return the number of rows affected, instead of -1. django-mssql issue #19

• Apply fix for Django ticket #12192. If QuerySet slicing would result in LIMIT 0, then it shouldn’t reach the
database because there will be no response.

• Implemented DatabaseOperation cache_key_culling_sql. Django ticket #18330

• Fixed cast_avg_to_float so that it only controls the cast for AVG and not mapping other aggregates.

• Improved IP address detection of HOST setting. django-mssql issue #21

• Set database feature ignores_nulls_in_unique_constraints = False because MSSQL cannot
ignore NULLs in unique constraints.

• django-mssql issue #26 Documented clustered index issue with Azure SQL. See Azure requires clustered in-
dices.

1.8.11 v1.2

• Ensure master connection connects to the correct database name when TEST_NAME is not defined.

• Connection.close() will now reset adoConn to make sure it’s gone before the CoUninitialize.

• Changed provider default from ‘SQLOLEDB’ to ‘SQLNCLI10’ with MARS enabled.

• Added RawStoredProcedureManager, which provides raw_callproc that works the same as raw, except
expects the name of a stored procedure that returns a result set that matches the model.

• Documented known issue with database introspection with DEBUG = True and column names containing
‘%’. See Introspecting tables with ‘%’ columns.

• Fixed error with iendswith string format operator.

1.8. Changelog 15

https://bitbucket.org/Manfre/django-mssql/issue/40
https://bitbucket.org/Manfre/django-mssql/issue/41
https://bitbucket.org/Manfre/django-mssql/issue/29
https://bitbucket.org/Manfre/django-mssql/issue/17
https://bitbucket.org/Manfre/django-mssql/issue/20
https://bitbucket.org/Manfre/django-mssql/issue/18
https://bitbucket.org/Manfre/django-mssql/issue/18
https://bitbucket.org/Manfre/django-mssql/issue/19
https://code.djangoproject.com/ticket/12192
https://code.djangoproject.com/ticket/18330
https://bitbucket.org/Manfre/django-mssql/issue/21
https://bitbucket.org/Manfre/django-mssql/issue/26

Django MSSQL Documentation, Release dev

1.8.12 v1.1

• Updated SQLInsertCompiler to work with Django 1.4

• Added support for disable_constraint_checking, which is required for loaddata to work properly.

• Implemented DatabaseOperations.date_interval_sql to allow using expressions like
end__lte=F(’start’)+delta.

• Fixed date part extraction for week_day.

• DatabaseWrapper reports vendor as ‘microsoft’.

• AVG function now matches core backend behaviors and will auto-cast to float, instead of maintaining
datatype. Set database OPTIONS setting disable_avg_cast to turn off the auto-cast behavior.

• StdDev and Variance aggregate functions are now supported and will map to the proper MSSQL named func-
tions. Includes work around for Django ticket #18334.

• Monkey patched django.db.backends.util.CursorWrapper to allow using cursors as ContextMan-
agers in Python 2.7. Django ticket #17671.

1.9 Known Issues

1.9.1 Introspecting tables with ‘%’ columns

Attempting to run manage.py inspectdb with DEBUG = True will raise TypeError: not enough
arguments for format string. This is due to CursorDebugWrapper and its use of % format strings.
If you encounter this problem, you can either rename the database column so it does not include a ‘%’ (percent)
character, or change DEBUG = False in your settings when you run manage.py inspectdb.

1.9.2 Introspecting custom fields

Some datatypes will be mapped to a custom model field provided by Django-mssql. If any of these fields are used, it
will be necessary to add import sqlserver_ado.fields to the top of the models.py file. If using a version of
Django prior to 1.7, it will be necessary to also remove the “models.” prefix from any of these custom fields. Django
ticket #21090

1.9.3 Azure requires clustered indices

From http://msdn.microsoft.com/en-us/library/windowsazure/ee336245.aspx#cir

Windows Azure SQL Database (v11 and older) does not support tables without clustered indexes. A table
must have a clustered index. If a table is created without a clustered constraint, a clustered index must be
created before an insert operation is allowed on the table.

The clustered index requirement [has been removed](http://sqlmag.com/sql-server/indexes-azure-sql-database-v12) in
Windows Azure SQL Database v12 and is the recommended over previous versions when possible.

The workaround for older versions is to dump the create SQL, add a clustered index and manually apply the SQL to
the database.

16 Chapter 1. Welcome to Django-mssql’s documentation!

https://code.djangoproject.com/ticket/18334
https://code.djangoproject.com/ticket/17671
https://code.djangoproject.com/ticket/21090
https://code.djangoproject.com/ticket/21090
http://msdn.microsoft.com/en-us/library/windowsazure/ee336245.aspx#cir
http://sqlmag.com/sql-server/indexes-azure-sql-database-v12

Index

B
BigAutoField (class in sqlserver_ado.fields), 9
BigForeignKey (class in sqlserver_ado.fields), 10
BigIntegerField (class in sqlserver_ado.fields), 10

D
DATABASES

setting, 4
disable_avg_cast

setting, 6

E
ENGINE

setting, 4
extra_params

setting, 6

H
HOST

setting, 4

N
NAME

setting, 5

O
OPTIONS

setting, 5

P
PASSWORD

setting, 5
PORT

setting, 4
provider

setting, 6

S
setting

DATABASES, 4
disable_avg_cast, 6
ENGINE, 4
extra_params, 6
HOST, 4
NAME, 5
OPTIONS, 5
PASSWORD, 5
PORT, 4
provider, 6
TEST_CREATE, 5
use_legacy_date_fields, 6
use_mars, 6
USER, 5

T
TEST_CREATE

setting, 5

U
use_legacy_date_fields

setting, 6
use_mars

setting, 6
USER

setting, 5

17

	Welcome to Django-mssql's documentation!
	Quickstart
	Settings
	Usage
	Management Commands
	Datatypes
	Testing
	Contributing to Django-mssql
	Changelog
	Known Issues

