

    
      
          
            
  
Django Media Tree Documentation


Introduction

Django Media Tree is a Django app for managing your website’s media files in a
folder tree, and using them in your own applications.

[image: _images/admin-screenshot.png]
Key features:


	Enables you to organize all of your site media in nested folders.

	Supports various media types (images, audio, video, archives etc).

	Extension system, enabling you to easily add special processing for different
media types and extend the admin interface.

	Speedy AJAX-enhanced admin interface with drag & drop and dynamic resizing.

	Upload queue with progress indicators (using Fine Uploader).

	Add metadata to all media to improve accessibility of your web sites.

	Integration with Django CMS [http://www.django-cms.org]. Plugins include:
image, slideshow, gallery, download list – create your own!






The Media Tree application



	Installing Media Tree
	Dependencies

	Getting the code

	Demo project

	Basic setup

	Configuring media backends (optional)

	Note on django-mptt

	Installing icon sets (optional)





	Admin interface overview

	Models and Managers

	Configuring Media Tree

	FileNode Utility functions

	Bundled extensions
	focal_point

	zipfiles





	Management Commands
	Orphaned files

	Media cache












Extending und using Media Tree with other applications

Your choices range from implementing file listing and detail views based on the
bundled generic view classes, extending Media Tree itself and its admin
interface, or writing custom plugins for use with your own applications.



	Fields and forms

	Using FileNodes in templates
	A word about Media Backends

	Thumbnail Template Tags





	Class-based generic views
	List Views

	Detail Views





	Extending Django Media Tree
	Overview

	Extender bases

	Registering and installing Media Tree extensions

	Tutorial extension: Geotagging Photos

	Tutorial extension: Creating an icon set





	Creating custom plugins for use with 3rd-party applications
	How to create custom plugins

	View Mixins





	Django CMS Plugins
	Installation

	Plugin: File listing

	Plugin: Image

	Plugin: Slideshow

	Plugin: Gallery












Indices and tables


	Index

	Module Index

	Search Page









          

      

      

    

  

    
      
          
            
  
Installing Media Tree

This install guide assumes you are familiar with Python and Django.


Dependencies

Make sure to install the following packages if you want to use Media Tree:


	Django [http://www.djangoproject.com] >= 1.5

	South [http://south.aeracode.org/] >= 0.8

	django-mptt [https://github.com/django-mptt/django-mptt] > 0.4.2 (see
Note on django-mptt)

	Pillow [http://pillow.readthedocs.org/] >= 2.3




Note

All required Python packages can easily be installed using pip [http://pypi.python.org/pypi/pip] (or, alternatively, easy_install).






Getting the code

For the latest stable version (recommended), use pip:

pip install django-media-tree





or download it from http://github.com/samluescher/django-media-tree and run the
installation script:

python setup.py install








Demo project

A demo project is included for you to quickly test and evaluate Django Media
Tree. It is recommended to use virtualenv [http://www.virtualenv.org] for
trying it out, as you’ll be able to install all dependencies in isolation.
Afer installing virtualenv, run the following commands to start the demo
project:

mkdir django-media-tree-test && cd django-media-tree-test
virtualenv venv
source venv/bin/activate
curl -L https://github.com/samluescher/django-media-tree/archive/master.zip  \
  -o django-media-tree-master.zip && unzip django-media-tree-master
cd django-media-tree-master/demo_project
pip install -r requirements.txt
python manage.py collectstatic
python manage.py syncdb  # no need to create a superuser
python manage.py loaddata fixtures/initial_data.json
python manage.py runserver





Then open http://localhost:8000 in your web browser.




Basic setup

Please follow these steps to use Media Tree with your own application.


	In your project settings, add mptt and media_tree to the
INSTALLED_APPS:

INSTALLED_APPS = (
    # ... your other apps here
    'mptt',
    'media_tree',
)







	Make sure your STATIC_URL, STATIC_ROOT, MEDIA_URL and STATIC_ROOT
are properly configured.


Note

Please refer to the Django documentation on how to configure your Django project
to serve static files [https://docs.djangoproject.com/en/dev/howto/static-files/]
if you have not done that yet.





	If you are using django.contrib.staticfiles (recommended), just run the
usual command to collect static files:

python manage.py collectstatic





If you are not going to use the staticfiles app, you will have to copy
the contents of the static folder to the location you are serving static
files from.



	Create the database tables:

python manage.py syncdb





Alternatively, if you are using South [http://south.aeracode.org/] in your
project, you’ll have to use a slightly different command:

python manage.py syncdb --all
python migrate media_tree --fake












Configuring media backends (optional)


	If you want thumbnails to be generated – which will usually be the case – you
need to install the appropriate media backend that takes care of this.
Currently, easy-thumbnails [https://github.com/SmileyChris/easy-thumbnails] is
the only recommended and officially supported 3rd-party application.

After you’ve installed the easy_thumbnails module, configure Media Tree to
use it by defining MEDIA_TREE_MEDIA_BACKENDS in your project settings:

MEDIA_TREE_MEDIA_BACKENDS = (
    'media_tree.contrib.media_backends.easy_thumbnails.EasyThumbnailsBackend',
)






Note

In principle, Media Tree can work together with any other thumbnail
generating app, provided that you write the appropriate media backend class
to support it. Please have a look at one of the backends under
media_tree.contrib.media_backends if you are interested in using your
own specific 3rd-party app.





	Optional: Also add any Media Tree extensions that you are planning to use
to your INSTALLED_APPS:

INSTALLED_APPS = (
    # ... your other apps here
    'media_tree.contrib.media_extensions.images.focal_point',
    'media_tree.contrib.media_extensions.zipfiles',
)






Note

See Bundled extensions for a list of default extensions included in
the project.










Note on django-mptt

A version of django-mptt newer than 0.4.2 is required because there is
an issue with older versions not indenting the folder list correctly. Either
install a recent version:

pip install django-mptt==0.5.1





or, if for some reason you can’t install a recent version, you can resolve
the situation by putting legacy_mptt_support in your INSTALLED_APPS
before mptt. This will be deprecated in the future:

INSTALLED_APPS = (
  # ... your other apps here
  'media_tree.contrib.legacy_mptt_support', 'mptt', 'media_tree',
)








Installing icon sets (optional)

By default, Media Tree only comes with plain file and folder icons. If you would
like to use custom icon sets that are more appropriate for your specific media
types, you can install them like a Django application.

The following ready-to-use modules contain some nice icons:


	Teambox Icons [https://github.com/samluescher/django-teambox-icons]



You will need to configure Media Tree to use an icon set as follows.


	In order to install an icon set, simply add the respective module to your
INSTALLED_APPS setting:

INSTALLED_APPS = (
    # ... your other apps here
    'my_custom_icon_set',
)







	If you are using django.contrib.staticfiles (recommended), just run the
usual command to collect static files:

./manage.py collectstatic





If you are not using the staticfiles app, copy the contents of the
static folder to the static root of your project.



	Define MEDIA_TREE_ICON_DIRS in your project settings, and add the static
path containing the new icon files, e.g.:

MEDIA_TREE_ICON_DIRS = (
    'my_custom_icons/64x64px', # the new folder under your static root
    'media_tree/img/icons/mimetypes', # default icon folder
)






Note

You can add several icon sets to this tuple, and for each media file the
first appropriate icon that is encountered will be used. Please notice that
on the last line we are specifying the default icon location, which will be
used as a fallback in case no appropriate icon is found in one of the
custom sets.













          

      

      

    

  

    
      
          
            
  
Admin interface overview





          

      

      

    

  

    
      
          
            
  
Models and Managers





          

      

      

    

  

    
      
          
            
  
Configuring Media Tree

The following settings can be specified in your Django project’s settings
module.


	MEDIA_TREE_STORAGE

	File storage class to be used for any file-related operations when dealing
with media files.

This is not set by default, meaning that Django’s DEFAULT_FILE_STORAGE
will be used. If you need to implement your custom storage, please refer to the
relevant Django documentation on that setting [https://docs.djangoproject.com/en/dev/ref/settings/#default-file-storage] and
on file storage [https://docs.djangoproject.com/en/dev/ref/files/storage/#module-django.core.files.storage]
in general.



	MEDIA_TREE_MEDIA_BACKENDS

	A tuple of media backends for thumbnail generation and other media-related
tasks, i.e. a list of wrappers for the 3rd-party applications that take
care of them.


Note

Please refer to the installation instructions for information on how to configure
supported media backends.



For general information on media backends, see Using FileNodes in templates for
more information.



	MEDIA_TREE_MEDIA_BACKEND_DEBUG

	Specifies whether exceptions caused by media backends, such as ThumbnailError, should be
raised or silently ignored.

Default: settings.DEBUG



	MEDIA_TREE_LIST_DISPLAY

	A tuple containing the columns that should be displayed in the
FileNodeAdmin. Note that the browse_controls column is necessary for
the admin to function properly.

	MEDIA_TREE_LIST_FILTER

	A tuple containing the fields that nodes can be filtered by in the
FileNodeAdmin.

	MEDIA_TREE_SEARCH_FIELDS

	A tuple containing the fields that nodes can be searched by in the
FileNodeAdmin.

	MEDIA_TREE_UPLOAD_SUBDIR

	Default: 'upload'

The name of the folder under your MEDIA_ROOT where media files are stored.



	MEDIA_TREE_PREVIEW_SUBDIR

	Default: 'upload/_preview'

The name of the folder under your MEDIA_ROOT where cached versions of
media files, e.g. thumbnails, are stored.



	MEDIA_TREE_ICON_DIRS

	Default:

(
    'media_tree/img/icons/mimetypes',
)





A tuple containing all icon directories. See Installing icon sets (optional)
for more information.



	MEDIA_TREE_THUMBNAIL_SIZES

	A dictionary of default thumbnail sizes. You can pass the dictionary key to
the thumbnail templatetag instead of a numeric size.

Default:

{
    'small': (80, 80),
    'default': (100, 100),
    'medium': (250, 250),
    'large': (400, 400),
    'full': None, # None means: use original size
}







	MEDIA_TREE_ALLOWED_FILE_TYPES

	A whitelist of file extensions that can be uploaded. By default, this is a
comprehensive list of many common media file extensions that generally
shouldn’t pose a security risk.


Warning

Just because a file extension may be considered “safe”, there is
absolutely no guarantee that a skilled attacker couldn’t find an exploit.
You should only allow people you trust to upload files to your webserver.
Be careful when adding potentially unsafe file extensions to this
setting, such as executables or scripts, as this possibly opens a door to
attackers.





	MEDIA_TREE_THUMBNAIL_EXTENSIONS

	Default: ('jpg', 'png')

A tuple of image extensions used for thumbnail files. Note that png is
in there since you typically might want to preserve the file type of PNG
images instead of converting them to JPG.



	MEDIA_TREE_FILE_SIZE_LIMIT

	Default: 1000000000 # 1 GB

Maximum file size for uploaded files.



	MEDIA_TREE_GLOBAL_THUMBNAIL_OPTIONS

	A dictionary of options that should be applied by default when generating
thumbnails. You might use this, for instance, to sharpen all thumbnails:

MEDIA_TREE_GLOBAL_THUMBNAIL_OPTIONS = {
    'sharpen': True
}













          

      

      

    

  

    
      
          
            
  
FileNode Utility functions





          

      

      

    

  

    
      
          
            
  
Bundled extensions

Media Tree contains a few useful extensions in its contrib module. Since
some of these extensions modify the FileNode model, you should install them
before you run syncdb for the first time.


focal_point

The focal_point extension allows you to drag a marker on image thumbnails 
while editing, thus specifying the most relevant portion of the image. You can
then use these coordinates in templates for image cropping.


	To install it, add the extension module to your INSTALLED_APPS setting:

INSTALLED_APPS = (
    # ... your apps here ...
    'media_tree.contrib.media_extensions.images.focal_point'
)







	If you are not using django.contrib.staticfiles, copy the contents of the
static folder to the static root of your project. If you are using the 
staticfiles app, just run the usual command to collect static files:

$ ./manage.py collectstatic










Note

This extension adds the fields focal_x and focal_y to
the FileNode model. You are going to have to add these fields to 
the database table yourself by modifying the media_tree_filenode table 
with a database client, unless you installed it before running 
syncdb).






zipfiles

The zipfiles extension adds support for ZIP archives to the FileNodeAdmin.
If it is installed, you can select files and folders in the admin and
download them as a ZIP archive.

To install it, add the extension module to your INSTALLED_APPS setting:

INSTALLED_APPS = (
    # ... your apps here ...
    'media_tree.contrib.media_extensions.zipfiles'
)











          

      

      

    

  

    
      
          
            
  
Management Commands

You can use the following management commands to assist you with media file
management.


Orphaned files

Use the following command to list all orphaned files, i.e. media files existing
in storage that are not in the database:

manage.py mediaorphaned





Use the following command to delete all orphaned files:

manage.py mediaorphaned --delete








Media cache

Use the following command to list all media cache files, such as thumbnails:

manage.py mediacache





Use the following command to delete all media cache files:

manage.py mediacache --delete











          

      

      

    

  

    
      
          
            
  
Fields and forms

There are a number of field classes for conveniently using FileNode objects
in your own Django applications.

The following example model contains a ForeignKey field linking to a
FileNode object that is associated to a document file. Notice the parameters
specifying which media types will be validated, and which should be visible in
the widget:

from media_tree.fields import FileNodeForeignKey
from media_tree import media_types
from media_tree.models import FileNode
from django.db import models

class MyModel(models.Model):
    document = FileNodeForeignKey(allowed_media_types=(media_types.DOCUMENT,),
        null=True, limit_choices_to={'media_type__in':
        (FileNode.FOLDER, media_types.DOCUMENT)})





The following example model will allow the user to select a FileNode object
associated to an image file:

from media_tree.fields import ImageFileNodeForeignKey
from django.db import models

class MyModel(models.Model):
    image_node = ImageFileNodeForeignKey(null=True)





The following example form will allow the user to select files that are under a
specific parent folder named “Projects”:

from media_tree.models import FileNode
from media_tree.fields import FileNodeChoiceField
from django import forms

class MyForm(forms.Form):
    file_node = FileNodeChoiceField(queryset=FileNode.objects.get(
        name="Projects", node_type=FileNode.FOLDER).get_descendants())





For your own applications, the following field classes are available:





          

      

      

    

  

    
      
          
            
  
Using FileNodes in templates

Although Media Tree is designed to be agnostic of the module you use to generate
image versions and thumbnails, it includes some tags to assist you with
generating thumbnails from FileNode objects, since this is one of the most
common tasks when working with image files in web applications.


A word about Media Backends

Media Tree’s template tags do not use an imaging toolkit directly, but an
abstraction class designed to wrap the actual image manipulation handled by a
third-party module (such as easy_thumbnails or sorl.thumbnail, to name
two popular choices).

The advantage of wrapping thumbnail generation like this is that Media Tree does
not need to depend on a specific image generation library, with the additional
benefit that you can just use the abstract template tags in your templates and
switch to another MediaBackend at any time.




Thumbnail Template Tags







          

      

      

    

  

    
      
          
            
  
Class-based generic views

The module media_tree.contrib.views contains class-based generic views that
enable you to access FileNode objects through public URLs. Please see below
for specific examples. Of course you can also extend the generic view classes to 
create views that suit your specific requirements.


Note

As with any public views, you may want to restrict the objects that should be
publicly visible by passing an appropriately filtered queryset when
implementing a view. For instance, you may not want users to see the internal
folder structure of your FileNode objects, hence using a FileNodeListingView
with a QuerySet such as FileNode.objects.all() would be a bad idea.




List Views




Detail Views







          

      

      

    

  

    
      
          
            
  
Extending Django Media Tree

There are several ways in which you may want to add functionality to Media Tree.
Suppose you need to add support for a specific image format, or you need custom
maintenance actions in the admin, or you might need to add some Javascript or
CSS code to the FileNode form. For each of these cases, there is a so-called
extender class.


Overview

The extender base classes provided by Media Tree are ModelExtender,
AdminExtender and FormExtender, and by subclassing them you create your
custom extenders. The structure of extender classes is similar to that
of a regular Django Model, ModelAdmin, or Form class, respectively,
meaning that you can define several attributes such as model Fields or form
Media, and they will be added to Media Tree during runtime.


Note

You can package and install your extender
classes as a regular Django application module, and have Media Tree
auto-discover installed extensions by providing a media_extension.py
module. An application containing one or more extenders and a
media_extension.py that registers them is what is called a Media Tree
extension.



Media Tree already comes with some exemplary extensions in its
contrib.media_extensions module. You should inspect these examples in order
to get an idea of how to build an extension. There is also a tutorial below that
should help you with creating your own extension.




Extender bases

An extender is created by subclassing one of the following base classes:


Extending the FileNode model




Extending the FileNode admin




Extending forms






Registering and installing Media Tree extensions

Each extension module is a regular Django application that is installed by
putting the application in the INSTALLED_APPS setting.

An extension needs to contain a media_extension.py module that registers all
extenders that the extension module contains:

Example of an extension.py file:

from media_tree import extension

class SomeModelExtender(extension.ModelExtender):
    """Example extender"""
    pass

extension.register(SomeModelExtender)





Notice that on the last line the extender is registered by calling the
function media_tree.extension.register().




Tutorial extension: Geotagging Photos

Assume you are using landscape photographs on your website, and in the FileNode
admin you would like to be able to enter the latitude and longitude of the place
where they were taken. This is called geotagging.


Getting started

The first step is to create a Django application that serves as the container
for our new extender classes. You can do this as usual on the command line from
your project folder:

django-admin startapp media_tree_geotagging
cd media_tree_geotagging
touch media_extension.py





Notice that on the last line we created a file called media_extension.py.
Media Tree will scan all INSTALLED_APPS for such a file, so that all
installed extensions will be auto-disovered.

We can delete most of the other files that the startapp command created,
such as models.py, as we are probably not going to need them.




Extending the Model

Now you can create the model extender in the file media_extension.py,
subclassing the parent class provided by Media Tree:

from media_tree import extension
from django.db import models

class GeotaggingModelExtender(extension.ModelExtender):
    lat = models.FloatField('latitude', null=True, blank=True)
    lng = models.FloatField('longitude', null=True, blank=True)

extension.register(GeotaggingModelExtender)





This class looks similar to a regular Model, but it does not have its own
database table – instead, its fields are added to the FileNode class when
you restart the development server.


Note

This extension adds the fields lat and lng to
the FileNode model. You are going to have to add these fields to
the database table yourself by modifying the media_tree_filenode table
with a database client, unless you installed it before running
syncdb).






Extending the form

Of course we want to be able to edit our two new fields in the admin, so we need
to create a form extender and add a new fieldset. We do this by adding a new
class to media_extension.py:

class GeotaggingFormExtender(extension.FormExtender):

    class Meta:
        fieldsets = [
            ('Geotagging', {
                'fields': ['lat', 'lng'],
                'classes': ['collapse']
            })
        ]

extension.register(GeotaggingFormExtender)








Installing the extension

After you have created the database fields, you can install the extension by
adding it to the INSTALLED_APPS in your project’s settings file:

INSTALLED_APPS = (
    # ... your apps here ...
    'media_tree',
    'media_tree_geotagging'
)








Adding an Admin Action

Let’s assume you have a content editor on staff, and this person’s job is to
check if photographs were geotagged, and to notify the photographer of the ones
that aren’t. We can simplify this task by adding an admin action to the
FileNode admin.

With this extender, the editor will be able to check the checkboxes next to
image files, have them checked automatically to see if they are not yet
geotagged, and email the photographer the admin links to those FileNode objects.

As you may be assuming by now, we create an admin extender in
media_extension.py:

from django.core.mail import send_mail

class GeotaggingAdminExtender(extension.AdminExtender):

    def notify_of_non_geotagged(modeladmin, request, queryset):
        non_geotagged_links = []
        for node in queryset:
            # Check if node is JPG and not geotagged:
            if node.extension == 'jpg':
                if not node.lat or not node.lng:
                    non_geotagged_links.append(node.get_admin_url())
        # Send email with admin links for these nodes, and message
        # current user about status of the action.
        if len(non_geotagged_links):
            message = '\n'.join(non_geotagged_links) + '\n\nThanks!'
            send_mail('Please geotag these files', message,
                'from@example.com', ['to@example.com'])
            modeladmin.message_user(request, 'Notification sent for'  \
                + ' %i non-geotagged JPGs.' % len(non_geotagged_links))
        else:
            modeladmin.message_user(request, 'All selected images appear'  \
                +' to be OK.')
    notify_of_non_geotagged.short_description =  \
        'Notify photographer if selected JPGs are not geotagged'

    actions = [notify_of_non_geotagged]





This last example is a bit more verbose, but you will notice that it just
contains one method with the exact same signature like a regular Django admin
action, and on the last line we are specifying the list of actions that this
extender will contribute to the FileNode admin. Also, we are giving the method a
short_description that will appear in the drop-down menu above the list
displaying all of our FileNodes.

And that’s it! We are now able to geotag images in the Django admin.




Adding Form Media

Of course it would be great if we had a map widget in the form where we can just
drop a pin on the location of the photograph. Creating such a widget is beyond
the scope of this tutorial, but if we had created a Javascript containing the
code that implements such a widget, we could easily add this file by adding a
Media class to our form extender:

class GeotaggingFormExtender(extension.AdminExtender):

    class Media:
        js = (
            'map_widget.js',
        )

    # ...





This Media definition is merged with the default media loaded for the FileNode
form, and we can use it to load any code or CSS files required by our
hypothetical map widget.




Conclusion

Using this extension system, you can change many aspects of how Media Tree
behaves. There are more attributes and also signals that you can define in
your extenders than the ones described in this tutorial. Code away and, please,
share your extensions with the Interested Public!






Tutorial extension: Creating an icon set

Icon sets are also packaged as Django applications, and creating a custom set
is rather easy. Basically, an icon set is a Python module containing nothing
but an empty __init__.py and a static folder with the respective image
files. Here’s an example of how that could look like:

my_custom_audio_icon_set
    __init__.py
    static
        audio_icons
            audio.png
            ogg.png
            mp3.png





Note that this package contains three icons: One for generic audio files and
one for either OGG or MP3 files.


Note

When displaying a file icon, Media Tree will scan all installed icon sets for
an icon that is named like the media file’s extension (e.g. mp3.png),
then for one named like its mimetype (e.g. audio/x-mpeg.png), then for
the mime supertype (e.g. audio.png). Icon discovery is handled by a class
called MimetypeStaticIconFileFinder, which by default only finds PNG
files.



To install this icon set, simply add my_custom_audio_icon_set to your
INSTALLED_APPS, collect its static files, and configure the new icon folder
using the MEDIA_TREE_ICON_DIRS setting. See Installing icon sets (optional)
for more detailed instructions.







          

      

      

    

  

    
      
          
            
  
Creating custom plugins for use with 3rd-party applications


How to create custom plugins

Django Media Tree comes with some generic View classes and Mixins that make it
relatively easy to use FileNode objects with your own applications.

The following pseudo code should give you an idea of how to implement your own
custom plugin that will render a file listing and work together with the
3rd-party application of your choice. It loosely looks like a Django CMS plugin.
Please notice that the render() method is passed an
options_instance, which can be a dictionary or an object with
attributes to initialize the generic View class we are using, which is
FileNodeListingView in this case. See Class-based generic views for more
information on the View classes themselves:

from media_tree.contrib.views.listing import FileNodeListingMixin
from third_party_app import YourPluginSuperclass
from django.shortcuts import render_to_response

# Notice we are subclassing our third-party plugin class,
# as well as the FileNodeListingMixin
class CustomFileNodeListingPlugin(YourPluginSuperclass, FileNodeListingMixin):

    # Assuming render() is a standard method of YourPluginSuperclass
    def render(self, request, options_instance):

        # Get the generic view class using the method inherited from
        # the Mixin class.
        # Notice that get_detail_view() is inherited from the
        # FileNodeListingMixin. We are also passing our options model
        # instance for configuring the view instance.
        view = self.get_detail_view(request,
            queryset=options_instance.selected_folders,
            opts=options_instance)

        # Get the template context as generated by the View class
        context_data = view.get_context_data()

        # Render with custom template
        return render_to_response('listing.html', context_data)





This is what our model classes (namely the class of the options_instance above)
might look like:

from django.db import Models
from media_tree.fields import FileNodeForeignKey

class PluginOptions(models.Model):
    # These field names are derived from
    # media_tree.contrib.views.list.FileNodeListingView.
    list_max_depth = models.IntegerField()
    include_descendants = models.BooleanField()

class SelectedFolder(models.Model):
    plugin = models.ForeignKey(PluginOptions)
    folder = FileNodeForeignKey()





The first class contains our plugin option fields. Notice that when calling the
get_detail_view() or get_view() methods provided by the
FileNodeListingMixin and passing it an instance of this model, any fields that
match attributes of the view object returned will be used to initialized the
view object.

The second class creates a relationship between the options model and the
FileNode model, i.e. you will be able to link FileNode objects to
plugins.




View Mixins

View Mixins are classes that add methods useful for interfacing with
Media Tree’s generic view classes to your custom plugin classes, as
demonstrated in the above example.

You can use Mixins as superclasses for your custom plugins when
interfacing with third-party applications, such as Django CMS. Please
take a look at How to create custom plugins for more information.

Basically, a Mixin classes adds methods to your own class (which is
subclassing a Mixin) for instantiating View classes. All attributes 
of your own class that also exist in the View class will be used to 
initialize View instances.

For instance, if your custom class has an attribute 
template_name, and an attribute with the same name also
exists in the View class, then the View instance’s 
template_name attribute will be set accordingly.

Please refer to Class-based generic views for an overview of attributes you can
define.







          

      

      

    

  

    
      
          
            
  
Django CMS Plugins

The module media_tree.contrib.cms_plugins contains a number of plugins for
using FileNode objects on pages created with
Django CMS [https://www.django-cms.org].


Installation

For optimum admin functionality when using these plugins, you should put
media_tree.contrib.cms_plugins in your installed apps, and run 
manage.py collectstatic.

If you are not using the staticfiles app, you have to manually copy 
the contents of the static folder to your static root.




Note

Of course you can also create your own models and plugins using FileNode
objects. Please take a look at Fields and forms and How to create custom plugins
for more information on how to integrate Media Tree with your own applications.




Plugin: File listing

This plugin allows you to put a file listing on a page, displaying download
links for the selected FileNode objects in a folder tree.

The folder tree that is rendered does not have to be identical to the actual tree 
in your media library. Instead, you can group arbitrary nodes, or output a merged 
(flat) list.


Installation

To use this plugin, put media_tree.contrib.cms_plugins.media_tree_listing 
in your installed apps, and run manage.py syncdb.




Template

Override the template cms/plugins/media_tree_listing.html if you want to 
customize the output. Please take a look at the default template for more 
information.






Plugin: Image

This plugin allows you to put a single picture on a page, as a figure complete
with caption and other metadata.


Installation

To use this plugin, put media_tree.contrib.cms_plugins.media_tree_image 
in your installed apps, and run manage.py syncdb.




Template

Override the template cms/plugins/media_tree_image.html if you want to 
customize the output. Please take a look at the default template for more 
information.

By default, images are rendered to the output using the template 
media_tree/filenode/includes/figure.html, which includes captions.






Plugin: Slideshow

This plugin allows you to put a slideshow on a page, automatically
displaying the selected image files with customizable transitions and
intervals.


Installation

To use this plugin, put media_tree.contrib.cms_plugins.media_tree_slideshow 
in your installed apps, and run manage.py syncdb.




Template

Override the template cms/plugins/media_tree_slideshow.html if you want to 
customize the output. Please take a look at the default template for more 
information.

By default, images are rendered to the output using the template 
media_tree/filenode/includes/figure.html, which includes captions.


Note

The default template requires you to include jQuery [http://jquery.com/]
in your pages, since it uses the jQuery Cycle Plugin [http://jquery.malsup.com/cycle/] (bundled) for image transitions.








Plugin: Gallery

This plugin allows you to put an image gallery on a page. Galleries can include
nested folder structures or display merged (flat) compositions of all images in 
a range of subfolders. Pictures can be browsed or auto-played.


Installation

To use this plugin, put media_tree.contrib.cms_plugins.media_tree_gallery 
in your installed apps, and run manage.py syncdb.




Template

Override the template cms/plugins/media_tree_gallery.html if you want to 
customize the output. Please take a look at the default template for more 
information.

By default, images are rendered to the output using the template 
media_tree/filenode/includes/figure.html, which includes captions.


Note

The default template requires you to include jQuery [http://jquery.com/]
in your pages, since it uses the jQuery Cycle Plugin [http://jquery.malsup.com/cycle/] (bundled) for image transitions.











          

      

      

    

  

    
      
          
            

   Python Module Index


   
   m
   


   
     		 	

     		
       m	

     
       	[image: -]
       	
       media_tree	
       

     
       	
       	   
       media_tree.contrib.cms_plugins	
       

     
       	
       	   
       media_tree.contrib.cms_plugins.media_tree_gallery	
       

     
       	
       	   
       media_tree.contrib.cms_plugins.media_tree_image	
       

     
       	
       	   
       media_tree.contrib.cms_plugins.media_tree_listing	
       

     
       	
       	   
       media_tree.contrib.cms_plugins.media_tree_slideshow	
       

     
       	
       	   
       media_tree.contrib.media_extensions.images.focal_point	
       

     
       	
       	   
       media_tree.contrib.media_extensions.zipfiles	
       

     
       	
       	   
       media_tree.contrib.views	
       

     
       	
       	   
       media_tree.contrib.views.mixin_base	
       

   



          

      

      

    

  

    
      
          
            

Index



 M
 


M


  	
      	media_tree.contrib.cms_plugins (module)


      	media_tree.contrib.cms_plugins.media_tree_gallery (module)


      	media_tree.contrib.cms_plugins.media_tree_image (module)


      	media_tree.contrib.cms_plugins.media_tree_listing (module)


  

  	
      	media_tree.contrib.cms_plugins.media_tree_slideshow (module)


      	media_tree.contrib.media_extensions.images.focal_point (module)


      	media_tree.contrib.media_extensions.zipfiles (module)


      	media_tree.contrib.views (module)


      	media_tree.contrib.views.mixin_base (module)


  







          

      

      

    

  _images/admin-screenshot.png
© O O /' (7) Media objects | Django site - |

=

:8000/admin/media_tree/filenode/ AR S

Home » Media_tree » Media objects
Media objects
Q Search| 5 results (6 total)
By media type

Gol 0of 5 seleced o
folder
&n

> @ Bxample Documents 15K8 1 Macn12,2012,912am.  admin audio
document

v &1 Some Example Pictures 367.6K8 3 March12,2012,12:25 pm. admin e
web image

160.1KB Jpg  640x426 March 12,2012, 9:55 am.  admin "
Coconut Trees,jpg o
other

By type

Size  Type Resolution Items Modified Modified by

150.3KB Jpg  640x426 March 12, 2012, 12:25 p.m. Al

irg
ot

Riverjpg
By metadata entered

57.2KB Jpg  640x480 March 12,2012, 9:55 a.m. All
Yes
Sunsetjpg No

5 media objects

localhost:8000/admin/media_tree filenode/3/






_static/up.png





_static/down-pressed.png





_static/ajax-loader.gif





_static/down.png





_static/comment-close.png





nav.xhtml

    
      Table of Contents


      
        		Django Media Tree Documentation


        		Installing Media Tree
          
          		Dependencies


          		Getting the code


          		Demo project


          		Basic setup


          		Configuring media backends (optional)


          		Note on django-mptt


          		Installing icon sets (optional)


          


        


        		Admin interface overview


        		Models and Managers


        		Configuring Media Tree


        		FileNode Utility functions


        		Bundled extensions
          
          		focal_point


          		zipfiles


          


        


        		Management Commands
          
          		Orphaned files


          		Media cache


          


        


        		Fields and forms


        		Using FileNodes in templates
          
          		A word about Media Backends


          		Thumbnail Template Tags


          


        


        		Class-based generic views
          
          		List Views


          		Detail Views


          


        


        		Extending Django Media Tree
          
          		Overview


          		Extender bases
            
            		Extending the FileNode model


            		Extending the FileNode admin


            		Extending forms


            


          


          		Registering and installing Media Tree extensions


          		Tutorial extension: Geotagging Photos
            
            		Getting started


            		Extending the Model


            		Extending the form


            		Installing the extension


            		Adding an Admin Action


            		Adding Form Media


            		Conclusion


            


          


          		Tutorial extension: Creating an icon set


          


        


        		Creating custom plugins for use with 3rd-party applications
          
          		How to create custom plugins


          		View Mixins


          


        


        		Django CMS Plugins
          
          		Installation


          		Plugin: File listing
            
            		Installation


            		Template


            


          


          		Plugin: Image
            
            		Installation


            		Template


            


          


          		Plugin: Slideshow
            
            		Installation


            		Template


            


          


          		Plugin: Gallery
            
            		Installation


            		Template


            


          


          


        


      


    
  

_static/plus.png





_static/comment.png





_static/admin-screenshot.png
© O O /' (7) Media objects | Django site - |

=

:8000/admin/media_tree/filenode/ AR S

Home » Media_tree » Media objects
Media objects
Q Search| 5 results (6 total)
By media type

Gol 0of 5 seleced o
folder
&n

> @ Bxample Documents 15K8 1 Macn12,2012,912am.  admin audio
document

v &1 Some Example Pictures 367.6K8 3 March12,2012,12:25 pm. admin e
web image

160.1KB Jpg  640x426 March 12,2012, 9:55 am.  admin "
Coconut Trees,jpg o
other

By type

Size  Type Resolution Items Modified Modified by

150.3KB Jpg  640x426 March 12, 2012, 12:25 p.m. Al

irg
ot

Riverjpg
By metadata entered

57.2KB Jpg  640x480 March 12,2012, 9:55 a.m. All
Yes
Sunsetjpg No

5 media objects

localhost:8000/admin/media_tree filenode/3/






_static/minus.png





_static/up-pressed.png





_static/file.png





_static/comment-bright.png





