

Django Measurement

[image: version] [https://pypi.python.org/pypi/django-measurement] [image: ci] [https://travis-ci.org/coddingtonbear/django-measurement] [image: coverage] [https://codecov.io/gh/coddingtonbear/django-measurement] [image: license]

Easily use, manipulate, and store unit-aware measurement objects using Python
and Django.

Contents:

	Using Measurement Objects in Forms

	Installation

	Measures

	Settings
	MEASUREMENT_BIDIMENSIONAL_SEPARATOR

	Storing Measurement Objects
	How is this data stored?

	Using Measurement Objects

Summary:

django.contrib.gis.measure [https://github.com/django/django/blob/master/django/contrib/gis/measure.py]
has these wonderful ‘Distance’ objects that can be used not only for storing a
unit-aware distance measurement, but also for converting between different
units and adding/subtracting these objects from one another.

This module provides for a django model field and admin interface for storing
any measurements provided by python-measurement [https://github.com/coddingtonbear/python-measurement].

Example use with a model:

from django_measurement.models import MeasurementField
from measurement.measures import Volume
from django.db import models

class BeerConsumptionLogEntry(models.Model):
 name = models.CharField(max_length=255)
 volume = MeasurementField(measurement=Volume)

 def __unicode__(self):
 return u"%s of %s" % (self.name, self.volume)

entry = BeerConsumptionLogEntry()
entry.name = 'Bear Republic Racer 5'
entry.volume = Volume(us_pint=1)
entry.save()

These stored measurement objects can be used in all of the usual ways supported
by python-measurement [https://github.com/coddingtonbear/python-measurement]
too:

>>> from measurement.measures import Weight
>>> weight_1 = Weight(lb=125)
>>> weight_2 = Weight(kg=40)
>>> added_together = weight_1 + weight_2
>>> added_together
Weight(lb=213.184976807)
>>> added_together.kg # Maybe I actually need this value in kg?
96.699

	Documentation for django-measurement is available via Read the Docs [https://django-measurement.readthedocs.io/].

	Please post issues on GitHub [https://github.com/coddingtonbear/django-measurement/issues].

Indices and tables

	Index

	Module Index

	Search Page

Using Measurement Objects in Forms

This is an example for a simple form field usage:

from django import forms
from django_measurement.forms import MeasurementField

class BeerForm(forms.Form):

 volume = MeasurementField(Volume)

You can limit the units in the select field by using the ‘unit_choices’ keyword argument.
To limit the value choices of the MeasurementField uses the regular ‘choices’ keyword argument:

class BeerForm(forms.Form):

 volume = MeasurementField(
 measurement=Volume,
 unit_choices=(("l","l"), ("oz","oz")),
 choices=((1.0, 'one'), (2.0, 'two'))
)

If unicode symbols are needed in the labels for a MeasurementField, define a LABELS dictionary for your subclassed MeasureBase object:

-*- coding: utf-8 -*-
from sympy import S, Symbol

class Temperature(MeasureBase):
 SU = Symbol('kelvin')
 STANDARD_UNIT = 'k'
 UNITS = {
 'c': SU - S(273.15),
 'f': (SU - S(273.15)) * S('9/5') + 32,
 'k': 1.0
 }
 LABELS = {
 'c':u'°C',
 'f':u'°F',
 'k':u'°K',
 }

For a MeasurementField that represents a BidimensionalMeasure, you can set the separator either in settings.py (MEASUREMENT_BIDIMENSIONAL_SEPARATOR is ‘/’ by default, add setting to override for all BiDimensionalMeasure subclasses) or override for an individual field with the kwarg bidimensional_separator:

speed = MeasurementField(
 measurement=Speed,
 bidimensional_separator=' per '
)

Rendered option labels will now be in the format "ft per s", "m per hr", etc

Installation

You can either install from pip:

pip install django-measurement

or checkout and install the source from the github repository [https://github.com/coddingtonbear/django-measurement/]:

git clone https://github.com/coddingtonbear/django-measurement.git
cd django-measurement
python setup.py install

Measures

See python-measurement’s documentation [http://python-measurement.readthedocs.org/en/latest/topics/measures.html]
for information about what measures are available.

Settings

MEASUREMENT_BIDIMENSIONAL_SEPARATOR

For any BidimensionalMeasure, what is placed between the primary and reference dimensions on rendered label

MEASUREMENT_BIDIMENSIONAL_SEPARATOR = ” per “

Defaults to “/”. Can be overriden as kwarg bidimensional_separator for a given MeasurementField.

Storing Measurement Objects

Suppose you were trying to cut back on drinking,
and needed to store a log of how much beer you drink day-to-day;
you might (naively) create a model like such:

from django_measurement.models import MeasurementField
from measurement.measures import Volume
from django.db import models

class BeerConsumptionLogEntry(models.Model):
 name = models.CharField(max_length=255)
 volume = MeasurementField(measurement=Volume)

 def __str__(self):
 return '%s of %s' % (self.name, self.volume)

and assume you had a pint of
Ninkasi’s Total Domination [http://www.ninkasibrewing.com/beers/total_domination];
you’d add it to your log like so:

from measurement.measures import Volume

beer = BeerConsumptionLogEntry()
beer.name = 'Total Domination'
beer.volume = Volume(us_pint=1)
beer.save()

print beer # '1 us_pint of Total Domination'

Perhaps you next recklessly dove into your stash of terrible,
but nostalgia-inducing Russian beer and had a half-liter of
Baltika’s #9 [http://beeradvocate.com/beer/profile/401/1967];
you’d add it to your log like so:

another_beer = BeerConsumptionLogEntry()
another_beer.name = '#9'
another_beer.volume = Volume(l=0.5)
another_beer.save()

print beer # '0.5 l of #9'

Note that although the original unit specified is stored for display,
that the unit is abstracted to the measure’s standard unit for storage and comparison:

print beer.volume # '1 us_pint'
print another_beer.volume # '0.5 l'
print beer.volume > another_beer.volume # False

How is this data stored?

Since django-measurement v2.0 there value will be stored in a single float field.

Using Measurement Objects

You can import any of the above measures from measurement.measures
and use it for easily handling measurements like so:

from measurement.measures import Weight

w = Weight(lb=135) # Represents 135lbs
print w # '135.0 lb'
print w.kg # '61.234919999999995'

See Python-measurement’s documentation [http://python-measurement.readthedocs.org/en/latest/topics/use.html]
for more information about interacting with measurements.

Index

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Django Measurement

 		
 Using Measurement Objects in Forms

 		
 Installation

 		
 Measures

 		
 Settings

 		
 MEASUREMENT_BIDIMENSIONAL_SEPARATOR

 		
 Storing Measurement Objects

 		
 How is this data stored?

 		
 Using Measurement Objects

