

django-ldap-sync documentation

django-ldap-sync provides a Django management command that synchronizes LDAP
users and groups from an authoritative server. It performs a one-way
synchronization that creates and/or updates the local Django users and groups.

This synchronization is performed each time the management command is run and
can be fired manually on demand, via an automatic cron script or as a periodic
Celery [http://www.celeryproject.org] task.

Contents

	Installation
	Prerequisites

	Installing

	Configuring

	Running

	Settings

	Changelog

Credits

Initially inspired by this snippet [http://djangosnippets.org/snippets/893/].

Installation

Prerequisites

django-ldap-sync 0.4.3 has two required prerequisites:

	Django [http://www.djangoproject.com/] 1.5 or later

	python-ldap [http://www.python-ldap.org/] 2.4.13 or later

The automatic installation options below will install or update python-ldap as
necessary. Earlier versions of these dependencies may work, but are not tested
or supported.

Installing

There are several different ways to install django-ldap-sync, depending on
your preferences and needs. In all cases, it is recommended to run the
installation within a virtualenv [http://www.virtualenv.org/] for isolation from other Python system
packages.

Via pip

The easiest installation method is with pip [http://www.pip-installer.org/]:

pip install django-ldap-sync

Via a downloaded package

If you cannot access pip or prefer to install the package manually, download
the tarball from PyPI [https://pypi.python.org/pypi/django-ldap-sync/]. Extract the downloaded archive and install it with:

python setup.py install

Via GitHub

To stay current with the latest development, clone the active development
repository on GitHub [https://github.com/jbittel/django-ldap-sync]:

git clone git://github.com/jbittel/django-ldap-sync.git

If you don’t want a full git repository, download the latest code from GitHub
as a tarball [https://github.com/jbittel/django-ldap-sync/tarball/master].

Configuring

Add django-ldap-sync to the INSTALLED_APPS setting within your project’s
settings.py (or equivalent) file:

INSTALLED_APPS = (
 # ...
 'ldap_sync',
)

django-ldap-sync has a number of required settings that need to be configured
before it can operate. See the Settings documentation for a complete
list of the required and optional settings.

Running

Typically you will want to run this management command on a regular basis to
keep the users synchronized. There are several ways to accomplish this
depending on your needs and environment.

Manual

The management command can always be run manually, which might be sufficient
for some simple or relatively static environments. Run the command with:

python manage.py ldap_sync

Cron

The next logical step from running the command manually is to automate running
it on a regular basis with cron (or your system’s equivalent). The
implementation details depend on your system and environment. If you do not
have access to the local system cron, consider django-cron [http://code.google.com/p/django-cron/] or
django-poormanscron [http://code.google.com/p/django-poormanscron/].

Celery

Another methodology is to run the command as a periodic Celery [http://www.celeryproject.org] task.
Particularly if you already have Celery available, this can be a good way to
run the command in a more distributed fashion. django-ldap-sync comes with a
Celery task that wraps the management command, so only some additional
configuration is required within your project’s settings.py file:

from datetime import timedelta

CELERYBEAT_SCHEDULE = {
 'synchronize_local_users': {
 'task': 'ldap_sync.tasks.syncldap',
 'schedule': timedelta(minutes=30),
 }
}

For more information and other configuration options, see the Celery
documentation on periodic tasks [http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html].

Settings

	
django.conf.settings.LDAP_SYNC_URI

	

	Default:	""

The address of the LDAP server containing the authoritative user account
information. This should be a string specifying the complete address:

LDAP_SYNC_URI = "ldap://users.example.com:389"

	
django.conf.settings.LDAP_SYNC_BASE

	

	Default:	""

The root of the LDAP tree to search for user account information. The
contents of this tree can be further refined using the filtering settings.
This should be a string specifying the complete root path:

LDAP_SYNC_BASE = "OU=Users,DC=example,DC=com"

	
django.conf.settings.LDAP_SYNC_BASE_USER

	

	Default:	""

A user with appropriate permissions to connect to the LDAP server and
retrieve user account information. This should be a string specifying the
LDAP user account:

LDAP_SYNC_BASE_USER = "CN=Django,OU=Users,DC=example,DC=com"

	
django.conf.settings.LDAP_SYNC_BASE_PASS

	

	Default:	""

The corresponding password for the above user account. This should be a
string specifying the password:

LDAP_SYNC_BASE_PASS = "My super secret password"

	
django.conf.settings.LDAP_SYNC_USER_FILTER

	

	Default:	""

An LDAP filter to further refine the user accounts to synchronize. This
should be a string specifying a valid LDAP filter:

LDAP_SYNC_USER_FILTER = "(&(objectCategory=person)(objectClass=User)(memberOf=CN=Web,OU=Users,DC=example,DC=com))"

Note

If this setting is not specified, the user synchronization step will
be skipped.

	
django.conf.settings.LDAP_SYNC_USER_ATTRIBUTES

	

	Default:	{}

A dictionary mapping LDAP field names to User profile attributes. New users
will be created with this data populated, and existing users will be
updated as necessary. The mapping must at least contain a field mapping
the User model’s username field:

LDAP_SYNC_USER_ATTRIBUTES = {
 "sAMAccountName": "username",
 "givenName": "first_name",
 "sn": "last_name",
 "mail": "email",
}

	
django.conf.settings.LDAP_SYNC_USER_CALLBACKS

	

	Default:	[]

A list of dotted paths to callback functions that will be called for each user
added or updated. Each callback function is passed three parameters: the user
object, a created flag and an updated flag.

	
django.conf.settings.LDAP_SYNC_USER_EXTRA_ATTRIBUTES

	

	Default:	[]

A list of additional LDAP field names to retrieve. These attributes are not
updated on user accounts, but are passed to user callback functions for
additional processing.

	
django.conf.settings.LDAP_SYNC_REMOVED_USER_CALLBACKS

	

	Default:	[]

A list of dotted paths to callback functions that will be called for each user
found to be removed. Each callback function is passed a single parameter of the
user object. Note that if changes are made to the user object, it will need to
be explicitly saved within the callback function.

Two callback functions are included, providing common functionality:
ldap_sync.callbacks.removed_user_deactivate and ldap_sync.callbacks.removed_user_delete
which deactivate and delete the given user, respectively.

	
django.conf.settings.LDAP_SYNC_USERNAME_FIELD

	

	Default:	None

An optional field on the synchronized User model to use as the unique key for
each user. If not specified, the User model’s USERNAME_FIELD will be used.
If specified, the field must be included in LDAP_SYNC_USER_ATTRIBUTES.

	
django.conf.settings.LDAP_SYNC_GROUP_FILTER

	

	Default:	""

An LDAP filter string to further refine the groups to synchronize. This
should be a string specifying any valid filter string:

LDAP_SYNC_GROUP_FILTER = "(&(objectclass=group))"

Note

If this setting is not specified, the group synchronization step will
be skipped.

	
django.conf.settings.LDAP_SYNC_GROUP_ATTRIBUTES

	

	Default:	{}

A dictionary mapping LDAP field names to Group attributes. New groups
will be created with this data populated, and existing groups will be
updated as necessary. The mapping must at least contain a field with the
value of name to specify the group’s name:

LDAP_SYNC_GROUP_ATTRIBUTES = {
 "cn": "name",
}

Changelog

These are the notable changes for each django-ldap-sync release. For
additional detail, read the complete commit history [https://github.com/jbittel/django-ldap-sync/commits/].

	django-ldap-sync 0.4.3

	
	Fix empty attribute values not being cleared

	django-ldap-sync 0.4.2

	
	Fix missing import (thanks @alexsilva!)

	django-ldap-sync 0.4.1

	
	Additionally enable users in AD callback

	django-ldap-sync 0.4.0

	
	Fix error when synchronizing groups

	Add setting to retrieve additional LDAP attributes

	Pass attributes to user callback functions

	Add example callback for disabling users with AD userAccountControl

	django-ldap-sync 0.3.2

	
	Fix packaging errors

	django-ldap-sync 0.3.0

	
	Add a setting to override the username field

	Add handling of removed users

	Implement callbacks for added/changed and removed users

	django-ldap-sync 0.2.0

	
	Handle DataError exception when syncing long names (thanks @tomrenn!)

	Change Celery task to use @shared_task decorator

	django-ldap-sync 0.1.1

	
	Fix exception with AD internal referrals

	django-ldap-sync 0.1.0

	
	Initial release

Index

 L

L

 	
 	LDAP_SYNC_BASE (in module django.conf.settings)

 	LDAP_SYNC_BASE_PASS (in module django.conf.settings)

 	LDAP_SYNC_BASE_USER (in module django.conf.settings)

 	LDAP_SYNC_GROUP_ATTRIBUTES (in module django.conf.settings)

 	LDAP_SYNC_GROUP_FILTER (in module django.conf.settings)

 	LDAP_SYNC_REMOVED_USER_CALLBACKS (in module django.conf.settings)

 	
 	LDAP_SYNC_URI (in module django.conf.settings)

 	LDAP_SYNC_USER_ATTRIBUTES (in module django.conf.settings)

 	LDAP_SYNC_USER_CALLBACKS (in module django.conf.settings)

 	LDAP_SYNC_USER_EXTRA_ATTRIBUTES (in module django.conf.settings)

 	LDAP_SYNC_USER_FILTER (in module django.conf.settings)

 	LDAP_SYNC_USERNAME_FIELD (in module django.conf.settings)

 nav.xhtml

 Table of Contents

 		django-ldap-sync documentation

 		Installation

 		Prerequisites

 		Installing

 		Via pip

 		Via a downloaded package

 		Via GitHub

 		Configuring

 		Running

 		Manual

 		Cron

 		Celery

 		Settings

 		Changelog

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

