
django-lazysignup Documentation
Release 1.1.2

Dan Fairs

Sep 27, 2017





Contents

1 Requirements 3

2 Installation 5

3 Usage 7
3.1 The allow_lazy_user decorator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 The require_lazy_user and require_nonlazy_user decorators . . . . . . . . . . . . . . 8
3.3 The is_lazy_user template filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 User agent blacklisting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Using the convert view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6 The converted signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Custom User classes 11

5 Maintenance 13

6 Helping Out 15
6.1 Build the docs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 Releasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Indices and tables 17

i



ii



django-lazysignup Documentation, Release 1.1.2

Contents:

Contents 1



django-lazysignup Documentation, Release 1.1.2

2 Contents



CHAPTER 1

Requirements

Tested on Django 1.10.0 and above. It requires django.contrib.auth to be in the INSTALLED_APPS list.

3



django-lazysignup Documentation, Release 1.1.2

4 Chapter 1. Requirements



CHAPTER 2

Installation

django-lazysignup can be installed with your favourite package management tool from PyPI:

pip install django-lazysignup

Once that’s done, you need to add lazysignup to your INSTALLED_APPS. You will also need to add
lazysignup‘s authentication backend to your site’s AUTHENTICATION_BACKENDS setting:

AUTHENTICATION_BACKENDS = (
'django.contrib.auth.backends.ModelBackend',
'lazysignup.backends.LazySignupBackend',

)

Finally, you need to add lazysignup to your URLConf, using something like this:

urlpatterns += (
url(r'^convert/', include('lazysignup.urls')),

)

5



django-lazysignup Documentation, Release 1.1.2

6 Chapter 2. Installation



CHAPTER 3

Usage

The package works by creating temporary user accounts based on a user’s session key whenever a flagged view
is requested. You can specify which views trigger this behaviour using the lazysignup.decorators.
allow_lazy_user decorator.

When an anonymous user requests such a view, a temporary user account will be created for them, and they will
be logged in. The user account will have an unusable password set, so that it can’t be used to log in as a reg-
ular user. The way to tell a regular use from a temporary user is to call the is_lazy_user() function from
lazysignup.templatetags.lazysignup_tags. If this returns True, then the user is temporary. Note that
user.is_anonymous() will return False and user.is_authenticated() will return True. See below
for more information on is_lazy_user.

A view is provided to allow such users to convert their temporary account into a real user account by providing a
username and a password.

A Django management command is provided to clear out stale, unconverted user accounts - although this depends on
your use of database-backed sessions, and assumes that all user accounts with an expired session are safe to delete.
This may not be the case for all apps, so you may wish to provide your own cleaning script.

The allow_lazy_user decorator

Use this decorator to indicate that accessing the view should cause anonymous users to have temporary accounts
created for them.

For example:

from django.http import HttpResponse
from lazysignup.decorators import allow_lazy_user

@allow_lazy_user
def my_view(request):
return HttpResponse(request.user.username)

When accessing the above view, a very simple response containing the generated username will be displayed.

7



django-lazysignup Documentation, Release 1.1.2

The require_lazy_user and require_nonlazy_user decorators

It is also possible to mark views as requiring only a lazily-created user, or requiring only a non-lazy user, with the
require_lazy_user and require_nonlazy_user decorators respectively. These decorators take arguments
and keyword arguments which are passed verbatim to Django’s own redirect view.

The is_lazy_user template filter

This template filter (which can also be imported from lazysignup.utils and used in your own code) will return
True if the user is a generated user. You need to pass it the user to test. For example, a site navigation template might
look like this:

{% load i18n lazysignup_tags %}

<nav id="account-bar">
<ul>
<li><a href="{% url home %}">{% trans "Home" %}</a></li>
{% if not user|is_lazy_user %}

<li><a href="#">{% trans "Account" %}</a></li>
<li><a href="{% url auth_logout %}">{% trans "Log out" %}</a></li>

{% else %}
<li><a href="{% url lazysignup_convert %}">{% trans "Save your data" %}</a> {%

→˓trans "by setting a username and password" %}</li>
{% endif %}

</ul>
</nav>

This filter is very simple, and can be used directly in view code, or tests. For example:

from lazysignup.utils import is_lazy_user

def testIsLazyUserAnonymous(self):
user = AnonymousUser()
self.assertEqual(False, is_lazy_user(user))

Note that as of version 0.6.0, the user tested no longer needs to have been authenticated by the
LazySignupBackend for lazy user detection to work.

User agent blacklisting

The middleware will not create users for certain requests from blacklisted user agents. This is simply a fairly crude
method for preventing many spurious users being created by passing search engines.

The blacklist is specified with the USER_AGENT_BLACKLIST setting. This should be an iterable of regular expres-
sion strings. If the user agent string of a request matches a regex (search() is used, so the match can be anywhere
in the string) then a user will not be created.

If the list is not specified, then the default is as follows

• slurp

• googlebot

• yandex

8 Chapter 3. Usage



django-lazysignup Documentation, Release 1.1.2

• msnbot

• baiduspider

Specifying your own USER_AGENT_BLACKLIST will replace this list.

Using the convert view

Users will be able to visit the /convert/ view. This provides a form with a username, password and password
confirmation. As long as they fill in valid details, their temporary user account will be converted into a real user
account that they can log in with as usual.

You may specify your own form class into the convert view in order to customise user creation. The code requires
expects the following:

• It expects to be able to create the form passing in the generated User object with an instance kwarg (in
general, this is fine when using a ModelForm based on the User model)

• It expects to be able to call save() on the form to convert the user to a real user

• It expects to be able to call a get_credentials() method on the form to obtain a set of credentials to
authenticate the new user with. The result of this call should be a dictionary suitable for passing to django.
contrib.auth.authenticate(). Typically, this would be a dict with username and password keys
- but this may vary if you’re using a different authentication backend.

The default configuration, using the provided UserCreationForm, should be enough for most users, but the cus-
tomisation point is there if you need it.

To specify your own form, set the LAZYSIGNUP_CUSTOM_USER_CREATION_FORM setting to your settings file
like so:

LAZYSIGNUP_CUSTOM_USER_CREATION_FORM = 'myproject.apps.myapp.forms.MyForm'

The view also supports template_name and ajax_template_name arguments, to specify templates to render
in web and ajax contexts respectively.

The converted signal

Whenever a temporary user account is converted into a real user account, the lazysignup.signals.
converted signal will be sent. If you need to do any processing when an account is converted, you should listen for
the signal, eg:

from lazysignup.signals import converted
from django.dispatch import receiver

@receiver(converted)
def my_callback(sender, **kwargs):

print "New user account: %s!" % kwargs['user'].username

The signal provides a single argument, user, which contains the newly-converted User object.

3.5. Using the convert view 9



django-lazysignup Documentation, Release 1.1.2

10 Chapter 3. Usage



CHAPTER 4

Custom User classes

Many projects use a custom User class, augmenting that from django.contrib.auth. If you want to use such
a custom class with lazysignup, then you can set the LAZYSIGNUP_USER_MODEL setting. This should be a
standard dotted Django name for a model, eg:

LAZYSIGNUP_USER_MODEL = 'myapp.CustomUser'

The setting defaults to settings.AUTH_USER_MODEL, so if you’ve set AUTH_USER_MODEL to your custom
model, there is no need to alter LAZYSIGNUP_USER_MODEL.

If you do use a custom user class, note that lazysignup expects that class’ default manager to have
a create_user method, with the same signature and semantics as django.contrib.auth.models.
UserManager. If your model actually subclasses Django’s own user model, you may well be able to use this
manager directly. For example:

from django.contrib.auth.models import AbstractUser, UserManager

class MyCustomUser(AbstractUser):
objects = UserManager()

notes = models.TextField(blank=True, null=True)

lazysignup also expects that it can fetch instances of your custom user class using a get() method on the object’s
manager, and that looking them up by primary key and by username will work. See lazysignup.backends
for more detail.

11



django-lazysignup Documentation, Release 1.1.2

12 Chapter 4. Custom User classes



CHAPTER 5

Maintenance

Over time, a number of user accounts that haven’t been converted will build up. To avoid performance problems
from an excessive number of user accounts, it’s recommended that the remove_expired_users management
command is run on a regular basis. It runs from the command line:

python manage.py remove_expired_users

In a production environment, this should be run from cron or similar.

There is also an action in the Django Admin for removing expired users. To use, select all LazyUser instances, select
the action “Delete selected lazy users and unconverted users older than settings.SESSION_COOKIE_AGE”, and click
“Go”.

This works by removing user accounts from the system whose associated sessions have expired. user.delete()
is called for each user, so related data will be removed as well.

Note of course that these deletes will cascade, so if you need to keep data associated with such users, you’ll need to
write your own cleanup job.

13



django-lazysignup Documentation, Release 1.1.2

14 Chapter 5. Maintenance



CHAPTER 6

Helping Out

If you want to add a feature or fix a bug, please go ahead! Fork the project on GitHub and when you’re done with your
changes, let me know. Fixes and features with tests have a greater chance of being merged. To run the tests, do:

git clone https://github.com/danfairs/django-lazysignup
cd django-lazysignup

# Install dependencies and requirements
pip install -e .[all]

# To test against a PostgreSQL Database locally
psql -c "CREATE USER lazysignup with login createdb password 'lazysignup';"
psql -c "CREATE DATABASE lazysignup with OWNER lazysignup;"
export DB="local-postgres"

# To test against a MySQL Database locally
mysql -e "CREATE DATABASE lazysignup CHARACTER SET utf8;"
mysql -e "CREATE USER 'lazysignup'@'localhost' IDENTIFIED BY 'lazysignup';"
mysql -e "GRANT ALL PRIVILEGES ON lazysignup.* to 'lazysignup'@'localhost';"
mysql -e "FLUSH PRIVILEGES;"
export DB="local-mysql"

# To test against a SQLite Database locally
export DB="sqlite"

# Run the tests and report coverage
coverage run manage.py test
coverage report --fail-under=98

coverage run manage.py test --settings=custom_user_tests.settings
coverage report --fail-under=98

15

https://github.com/danfairs/django-lazysignup


django-lazysignup Documentation, Release 1.1.2

Build the docs

To build and view the documentation, run

pip install -e .[all]
python setup.py build_sphinx
open docs/_build/html/index.html

Releasing

Releasing to pypi is as simple as:

pip install -e .[all]
python setup.py sdist bdist_wheel upload

16 Chapter 6. Helping Out



CHAPTER 7

Indices and tables

• genindex

• modindex

• search

17


	Requirements
	Installation
	Usage
	The allow_lazy_user decorator
	The require_lazy_user and require_nonlazy_user decorators
	The is_lazy_user template filter
	User agent blacklisting
	Using the convert view
	The converted signal

	Custom User classes
	Maintenance
	Helping Out
	Build the docs
	Releasing

	Indices and tables

