

 Navigation

 	
 index

 	
 next |

 	django-is-core 1.4 documentation

Django-is-core’s documentation

Django-is-core is application/framework for simple development of a Information System. You will find that it is very simlar to django admin but there si several differences that justifies why we created own implementation.

Features

	Django-is-core has same edit/add/table views as admin, but it uses REST and AJAX call to achieve it. It adds easier usage and broaden usability.

	Django-is-core can be used for creation only REST resources without UI.

	Models UI (add/edit) is more linked together. Links between foreign keys are automatically added.

	Django-is-core provides more posibilities for readonly fields. For example the fields defined only inside form can be readonly too.

	Exports to xlsx, pdf, csv can be very simply add to table view.

	Better permissions, for example link between objects is not added to UI if user does not have permission to see the object.

	Add new custom view is for django admin nightmare. With django-is-core it is very easy.

	Django-is-core views as implemented with using generic views not as method. It is cleaner and changes are simplier.

	Add new model administration without its registration.

	Better objects filters from UI (automatically respond to user typing) and coding (easier new filter implementation) perspective too.

	Token authorization.

	And much much more.

Project Home

https://github.com/matllubos/django-is-core

Documentation

https://django-is-core.readthedocs.org/en/latest

Content

	Installation
	Requirements

	Using Pip

	Configuration
	Required Settings

	Setup

	Advanced Settings
	Token authentification

	Cores
	UIRESTModelISCore

	RESTModelISCore

	UIModelISCore

	ISCore hiearchy

	ISCore

	ModelISCore

	UIISCore

	RESTISCore

	HomeUIISCore

	UIModelISCore

	RESTModelISCore

	Views

	REST

	Permissions

	Models

	Forms
	SmartForm

	SmartFormMixin

	Filters

	Auth

	Utils

 Copyright 2015, Luboš Mátl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-is-core 1.4 documentation

Installation

Requirements

Python/Django versions

	Modeltranslation
	Python
	Django

	>=1.4
	3.2 - 3.4
	1.8 - 1.9

	2.7
	1.8 - 1.9

	<=1.3
	2.7
	1.6 - 1.8

Libraries

	django-class-based-auth-views - Login/Logkout views as generic view structure

	django-piston - not original pistion library, but improved. You can find it here https://github.com/matllubos/django-piston

	django-block-snippets - library providing block snippets of html code for easier development webpages with ajax. You can find it here https://github.com/matllubos/django-block-snippets

	django-chamber - several helpers removing code duplication. You can find it here https://github.com/matllubos/django-chamber

	python-dateutil - provides powerful extensions to the datetime module available in the Python standard library

	django-apptemplates - Django template loader that allows you to load a template from a specific application

	django-project-info - small library getting project version to django context data

	pillow - Python imaging library (optional)

	sorl-thumbnail - thumbnails for django (optional)

	germanium - framework for testing purposes (optional)

	factory-boy - testing helper for creating model data for tests (optional)

All optional libraries is not instaled automatically. Other libraries are dependecies of django-is-core.

Using Pip

Django is core is not currently inside PyPE but in the future you will be able to use:

$ pip install django-is-core

Because django-is-core is rapidly evolving framework the best way how to install it is use source from github

$ pip install https://github.com/matllubos/django-is-core/tarball/{{ version }}#egg=django-is-core-{{ version }}

Configuration

After instalation you must go throught these steps to use django-is-core:

Required Settings

The following variables have to be added to or edited in the project’s settings.py:

INSTALLED_APPS

For using is-core you just add add is_core and block_snippets to INSTALLED_APPS variable:

INSTALLED_APPS = (
 ...
 'is_core',
 'block_snippets',
 ...
)

MIDDLEWARE_CLASSES

Next add two middlewares to end of MIDDLEWARE_CLASSES variable:

MIDDLEWARE_CLASSES = (
 ...
 'is_core.middleware.RequestKwargsMiddleware',
 'is_core.middleware.HttpExceptionsMiddleware',
)

Setup

To finally setup the application please follow these steps:

	Collect static files from django-is-core with command python manage.py collectstatic

	Sync database with command python manage.py syncdb or python manage.py migrate

Advanced Settings

Token authentification

Because django-is-core provides simple way how to create Information Systems based on REST the standard django session authentification is not ideal for this purpose.

Django-is-core provides token authentification. The advantages of this method are:
1. You can use fat client that can not use cookies.
2. Every token conains information about connected device. So you can watch user activity.
3. You can lead connected users by expiration time or deactivate user token to logout authentificated user.

If you want to use token authentification follow these steps:

INSTALLED_APPS

Add is_core.auth_token right after is_core inside INSTALLED_APPS variable:

INSTALLED_APPS = (
 ...
 'is_core',
 'is_core.auth_token',
 'block_snippets',
 ...
)

MIDDLEWARE_CLASSES

Replace django.contrib.auth.middleware.AuthenticationMiddleware with is_core.auth_token.middleware.TokenAuthenticationMiddlewares inside MIDDLEWARE_CLASSES

Setup

Finally again sync database models, because auth_token adds new django models (python manage.py syncdb or python manage.py migrate)

 Copyright 2015, Luboš Mátl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-is-core 1.4 documentation

Cores

UIRESTModelISCore

The purpose of ISCore is to get a shared functionality of views into a one source.
The UIRESTModelISCore class is the representation of a model in the django-is-core interface. These
representations are stored in a file named cores.py in your application. We will start with the most common case when
you want to create three typical views for information system:

	table view for printing objects

	view for creating new objects

	view for editing objects

As example project we use Issue tracker. Firstly for every application you need management of users. We use default
Django user model.

For creating add, edit and table views you must only create file cores.py inside specific application that
contains:

from django.contrib.auth.models import User

from is_core.main import UIRESTModelISCore

class UserISCore(UIRESTModelISCore):
 model = User

There is no obligation for registration. Cores are registered automatically. The result views with preview are:

Table/List

image 1

Add

image 2

Edit

image 3

REST

But there is created REST resource too. By default on URLs /api/user/ and /api/user/{obj_id} that returns
object in asked format (HTTP header Content-type: application/json).

RESTModelISCore

The RESTModelISCore is parent of UIRESTModelISCore. As the name suggests this class is used only for creating
REST resources without UI HTML views. The usage is the same as UIRESTModelISCore:

from django.contrib.auth.models import User

from is_core.main import RESTModelISCore

class RESTUserISCore(RESTModelISCore):
 model = User

UIModelISCore

The UIModelISCore is the second parent of UIRESTModelISCore. It is used for creating only UI views. Because UI
views needs some REST resources is necessary to specify on which URL is deployed REST resource of model (api_url_name is
transformed to URL by Django resolve helper):

from django.contrib.auth.models import User

from is_core.main import UIModelISCore

class UIUserISCore(UIModelISCore):
 model = User
 api_url_name = 'api-user'

You can specify URL manually:

class UIUserISCore(UIModelISCore):
 model = User

 def get_api_url(self, request):
 return '/api/user/'

ISCore hiearchy

Now we provide detailed description of all ISCore objects. Firstly for better understanding you can see UML class
diagram of core hierarchy.

TODO add diagram

ISCore

Following options and methods can be applied for all Core objects like RESTModelISCore, UIModelISCore or
UIRESTModelISCore (all descendants of ISCore class).

Options

	
ISCore.abstract

	

The variable abstract provides way how to create core that is not registered but this class variable is not inherited.
Let’s show an example:

from django.contrib.auth.models import User

from is_core.main import RESTModelISCore

class AbstractUIRESTUserISCore(RESTModelISCore):
 model = User
 abstract = True
 verbose_name = 'example of abstract user core'

class UIRESTUserISCore(AbstractUIRESTUserISCore):
 pass

First core is not registered. Therefore views and REST resources are not created. But the second core that inherits from
the abstract core is registered. All configuration from parent class is inhered (without abstract variable).

	
ISCore.verbose_name,ISCore.verbose_name_plural

	

These variables are used inside generic views. It can be added to context_data and rendered inside templates.

	
ISCore.menu_group

	

It is necessary have a slug that distinguish one core from another. For this purpose is used variable menu_group.
This variable is used for example to generate URL patterns or menu. Value of the variable is generated automatically
for cores that is connected to model.

Methods

	
ISCore.init_request(request)

	

Every core views/REST resources calls this method before calling dispatch. You can use it to change request its calling.

	
ISCore.get_url_prefix()

	

Every core must have unique URL. Therefore a method get_url_prefix is way how to achieve it. Method defines URL
prefix for all views and rest resources. By default the URL prefix is value of attribute menu_group.

ModelISCore

The next class that extends ISCore is ModelISCore. All cores that inherits from ModelISCore works
as controller over a model.

Options

	
ModelISCore.list_actions

	

Variable list_action contains actions that user can perform via REST or UI. More detailed explanation with example
you find inside UIRESTModelISCore options part.

	
ModelISCore.form_fields

	

Use the form_fields option to make simple layout changes in the forms on the add and edit and REST resources
pages such as showing only a subset of available fields, modifying their order, or grouping them into rows. We will
show it on UIRESTModelISCore. If you want to restrict form fields to username, first_name and last_name
the simpliest way is use:

from django.contrib.auth.models import User

from is_core.main import UIRESTModelISCore

class UserISCore(UIRESTModelISCore):
 model = User
 form_fields = ('username', 'fist_name', 'last_name')

	
ModelISCore.form_exclude

	

This attribute, if given, should be a list of field names to exclude from the form.:

from django.contrib.auth.models import User

from is_core.main import UIRESTModelISCore

class UserISCore(UIRESTModelISCore):
 model = User
 form_exclude = ('password',)

	
ModelISCore.form_class

	

If you want to change default form class which is SmartModelForm you can change it with this option. The form is
changed for add, edit views and REST resources too.

	
ModelISCore.ordering

	

Option for changing default ordering of model for core.:

from django.contrib.auth.models import User

from is_core.main import UIRESTModelISCore

class UserISCore(UIRESTModelISCore):
 model = User
 ordering = ('last_name', 'fist_name', '-created_at')

Methods

	
ModelISCore.get_form_fields(request, obj=None)

	

Use this method to define form fields dynamically or if you want to define different form fields for add, edit,
view of REST resources.

	
ModelISCore.get_form_exclude(request, obj=None)

	

The opposite to get_form_fields.

	
ModelISCore.get_form_class(request, obj=None)

	

Use this method to define form dynamically or if you want to define different form for add, edit view of REST
resources.

	
ModelISCore.pre_save_model(request, obj, form, change)

	

Method per_save_model is called before saving object to database. Body is empty by default.

	
ModelISCore.post_save_model(request, obj, form, change)

	

Method post_save_model is called after saving object to database. Body is empty by default.

	
ModelISCore.save_model(request, obj, form, change)

	

You can rewrite this method if you want to change way how is object saved to database. Default body is:

def save_model(self, request, obj, form, change):
 obj.save()

	
ModelISCore.pre_delete_model(request, obj)

	

Method pre_delete_model is called before removing object from database. Body is empty by default.

	
ModelISCore.post_delete_model(request, obj)

	

Method post_delete_model is called after removing object from database. Body is empty by default.

	
ModelISCore.delete_model(request, obj)

	

You can rewrite this method if you want to change way how is object removed from database. Default body is:

def delete_model(self, request, obj):
 obj.delete()

	
ModelISCore.verbose_name(), ModelISCore.verbose_name_plural()

	

Default verbose names of ModelISCore is get from model meta options:

self.model._meta.verbose_name
self.model._meta.verbose_name_plural

	
ModelISCore.menu_group()

	

Default menu_group value is get from module name of model (self.model._meta.module_name)

	
ModelISCore.get_ordering(request)

	

Use this method if you want to change ordering dynamically.

	
ModelISCore.get_queryset(request)

	

Returns model queryset, ordered by defined ordering inside core. You can filter here objects according to user
permissions.

	
ModelISCore.preload_queryset(request, qs)

	

The related objects of queryset should sometimes very slow down retrieving data from the database. If you want to
improve a speed of your application use this function to create preloading of related objects.

	
ModelISCore.get_list_actions(request, obj)

	

Use this method if you want to change list_actions dynamically.

	
ModelISCore.get_default_action(request, obj)

	

Chose default action for object used inside UI and REST. For example default action is action that is performed if you
select row inside table of objects. For table view default action is open edit view. If you return None
no action is performed by default.

UIISCore

Options

	
UIISCore.menu_url_name

	

Every UI core has one place inside menu that addresses one of UI views of a core. This view is selected by option
menu_url_name.

	
UIISCore.show_in_menu

	

Option show_in_menu is set to True by default. If you want to remove core view from menu set this option to
False.

	
UIISCore.view_classes

	

Option contains view classes that are automatically added to Django urls. Use this option to add new views. Example
you can see in section generic views (this is a declarative way if you want to register views dynamically see
UIISCore.get_view_classes).:

from django.contrib.auth.models import User

from is_core.main import UIRESTModelISCore

from .views import MonthReportView

class UserISCore(UIRESTModelISCore):
 model = User

 view_classes = (
 ('reports', r'^/reports/$', MonthReportView),
)

	
UIISCore.default_ui_pattern_class

	

Every view must have assigned is-core pattern class. This pattern is not the same patter that is used with django
urls. This pattern has higher usability. You can use it to generate the url string or checking permissions. Option
default_ui_pattern_class contains pattern class that is used with defined view classes. More about patterns you can
find in section patterns. #TODO add link

Methods

	
UIISCore.init_ui_request(request)

	

Every view defined with option view_classes calls this method before calling dispatch. The default implementation of
this method calls parent method init_request:

def init_ui_request(self, request):
 self.init_request(request)

	
UIISCore.get_view_classes()

	

Use this method if you want to change view_classes dynamically. A following example shows overriding edit view
and registering a custom view:

from django.contrib.auth.models import User

from is_core.main import UIRESTModelISCore

from .views import UserEditView, MonthReportView

class UserISCore(UIRESTModelISCore):
 model = User

 def get_view_classes(self):
 view_classes = super(UserISCore, self).get_view_classes()
 view_classes['edit'] = (r'^/(?P<pk>\d+)/$', UserEditView)
 view_classes['reports'] = (r'^/reports/$', MonthReportView)
 return view_classes

	
UIISCore.get_ui_patterns()

	

Contains code that generates ui_patterns from view classes. Method returns ordered dict of pattern classes.

	
UIISCore.get_show_in_menu(request)

	

Returns boolean if menu link is provided for the core, by default there are three rules:

	show_in_menu must be set to True

	menu_url_name need not be empty

	current user must have permissions to see the linked view

	
UIISCore.is_active_menu_item(request, active_group)

	

This method finds if a menu link of a core is active (if the view with menu_url_name is the current displayed page).

	
UIISCore.get_menu_item(request, active_group)

	

This method returns a menu item object that contains information about the link displayed inside menu.

	
UIISCore.menu_url(request, active_group)

	

Returns URL string of menu item.

RESTISCore

RESTISCore is very similar to UIISCore, but provides REST resources instead of UI views.

Options

	
RESTISCore.rest_classes

	

Option contains REST classes that are automatically added to django urls. Use this option to add new REST resources.
Example you can see in section REST. #TODO add link

	
RESTISCore.default_rest_pattern_class

	

As UI views every resource must have assigned is-core pattern class. Default pattern for REST resources is
RESTPattern. More about patterns you can find in section patterns. #TODO add link

Methods

	
RESTISCore.init_rest_request(request)

	

Every resource defined with option rest_classes calls this method before calling dispatch. The default implementation
of this method calls parent method init_request.

	
RESTISCore.get_rest_classes()

	

Use this method if you want to change rest_classes dynamically.

	
RESTISCore.get_rest_patterns()

	

Contains code that generates rest_patterns from rest classes. Method returns an ordered dict of pattern classes.

HomeUIISCore

HomeISCore contains only one UI view which is index page. By default this page is empty and contains only menu
because every information system has custom index. You can very simply change default view class by changing settings
attribute HOME_VIEW, the default value is:

HOME_VIEW = 'is_core.generic_views.HomeView'

You can change whole is core too by attribute HOME_IS_CORE, default value:

HOME_IS_CORE = 'is_core.main.HomeUIISCore'

UIModelISCore

UIModelISCore represents core that provides standard views for model creation, editation and listing. The
UIModelISCore will not work correctly without REST resource. Therefore you must set api_url_name option.

Options

	
UIModelISCore.default_model_view_classes

	

For the UIModelISCore default views are add, edit and list:

default_model_view_classes = (
 ('add', r'^/add/$', AddModelFormView),
 ('edit', r'^/(?P<pk>[-\w]+)/$', EditModelFormView),
 ('list', r'^/?$', TableView),
)

	
UIModelISCore.api_url_name

	

The api_url_name is required attribute. The value is pattern name of REST resource.

	
UIModelISCore.list_display

	

Set list_display to control which fields are displayed on the list page.

	
UIModelISCore.export_display

	

Set export_display to control which fields are displayed inside exports (e.g. PDF, CSV, XLSX).

	
UIModelISCore.export_types

	

REST resources provide the ability to export output to several formats:

	XML

	JSON

	CSV

	XLSX (you must install library XlsxWriter)

	PDF (you must install library reportlab)

	List view provides export buttons. Option export_types contains tripple:

	
	title

	type

	serialization format (content-type).

For example if you want to serialize users to CSV:

class UIRESTUserISCore(UIRESTISCore):
 export_types = (
 ('export to csv', 'csv', 'text/csv'),
)

If you want to set export_types for all cores you can use EXPORT_TYPES attribute in your settings:

EXPORT_TYPES = (
 ('export to csv', 'csv', 'text/csv'),
)

	
UIModelISCore.default_list_filter

	

UI table view support filtering data from REST resource. There are situations where you need to set default values for
filters. For example if you want to filter only superusers you can use:

class UIRESTUserISCore(UIRESTISCore):
 default_list_filter = {
 'filter': {
 'is_superuser': True
 }
 }

On the other hand if you want to filter all users that is not superusers:

class UIRESTUserISCore(UIRESTISCore):
 default_list_filter = {
 'exclude': {
 'is_superuser': True
 }
 }

Exclude and filter can be freely combined:

class UIRESTUserISCore(UIRESTISCore):
 default_list_filter = {
 'filter': {
 'is_superuser': True
 },
 'exclude': {
 'email__isnull': True
 }
 }

	
UIModelISCore.form_inline_views

	

The django-is-core interface has the ability to edit models on the same page as a parent model. These are called
inlines. We will use as example new model issue of issue tracker system:

class Issue(models.Model):
 name = models.CharField(max_length=100)
 watched_by = models.ManyToManyField(AUTH_USER_MODEL)
 created_by = models.ForeignKey(AUTH_USER_MODEL)

Now we want to add inline form view of all reported issues to user add and edit views:

class ReportedIssuesInlineView(TabularInlineFormView):
 model = Issue
 fk_name = 'created_by'

class UIRESTUserISCore(UIRESTISCore):
 form_inline_views = (ReportedIssuesInlineView,)

The fk_name is not required if there is only one relation between User and Issue. More about inline views you
can find in generic views section # TODO add link.

	
UIModelISCore.form_fieldsets

	

Set form_fieldsets to control the layout of core add and change pages. Fieldset defines a list of form fields
too. If you set form_fieldsets the form_fields is rewritten with a set of all fields from fieldsets.
Therefore you should use only one of these attributes.

form_fieldsets is a list of two-tuples, in which each two-tuple represents a <fieldset> on the core form page.
(a <fieldset> is a section of the form.).

The two-tuples are in the format (name, field_options), where name is a string representing the title of the
form_fieldset and field_options is a dictionary of information about the fieldset, including a list of fields
to be displayed in it.

As a example we will use User model again:

class UIRESTUserISCore(UIRESTISCore):
 form_fieldsets = (
 (None, {'fields': ('username', 'email')}),
 ('profile', {'fields': ('first_name', 'last_name'), 'classes': ('profile',)}),
)

If neither form_fieldsets nor form_fields options are present, Django will default to displaying each field
that isn’t an AutoField and has editable=True, in a single fieldset, in the same order as the fields are
defined in the model.

The field_options dictionary can have the following keys:

	fields

A tuple of field names to display in this fieldset. This key is required.

Example:

{
 'fields': ('first_name', 'last_name'),
}

fields can contain values defined in form_readonly_fields to be displayed as read-only.

If you add callable to fields its result will be displayed as read-only.

	classes

A list or a tuple containing extra CSS classes to apply to the fieldset.

Example:

{
 'classes': ('profile',),
}

	inline_view

inline_view attribute can not be defined together with fields. This attribute is used for definig position of
inline view inside form view. The value of the attribute is a string class name of the inline view.

Example:

{
 'inline_view': 'ReportedIssuesInlineView'
}

	
UIModelISCore.form_readonly_fields

	

By default the django-is-core shows all fields as editable. Any fields in this option (which should be a list or
a tuple) will display its data as-is and non-editable. Compare to django-admin fields defined in a form are used
too (due SmartModelForm).

	
UIModelISCore.menu_url_name

	

menu_url_name is set to list by default, for all UIModelISCore and its descendants.

Methods

	
UIISCore.get_form_fieldsets(request, obj=None)

	

Use this method if you want to change form_fieldsets dynamically.

	
UIISCore.get_form_readonly_fields(request, obj=None)

	

Use this method if you want to change form_readonly_fields dynamically.

	
UIISCore.get_ui_form_class(request, obj=None)

	

Change this method to get a custom form only for UI. By default it uses get_ui_form_class(request, obj) method
to obtain a form class.

	
UIISCore.get_ui_form_fields(request, obj=None)

	

Change this method to get a custom form fields only for UI. By default it uses get_form_fields(request, obj) method
to obtain form fields.

	
UIISCore.get_ui_form_exclude(request, obj=None)

	

Change this method to get a custom form exclude fields only for UI. By default it uses
get_form_exclude(request, obj) method to obtain excluded form fields.

	
UIISCore.get_form_inline_views(request, obj=None)

	

Use this method if you want to change form_inline_views dynamically.

	
UIISCore.get_default_list_filter(request)

	

Use this method if you want to change default_list_filter dynamically.

	
UIISCore.get_list_display(request)

	

Use this method if you want to change list_display dynamically.

	
UIISCore.get_export_display(request)

	

Method returns export_display if no export_display is set the output is result of method
get_list_display(request).

	
UIISCore.get_export_types(request)

	

Use this method if you want to change export_types dynamically.

	
UIISCore.get_api_url_name(request)

	

Use this method if you want to change api_url_name dynamically.

	
UIISCore.get_api_url(request)

	

A result of this method is an URL string of REST API. The URL is generated with Django reverse function from
api_url_name option.

	
UIISCore.get_add_url(request)

	

Returns an URL string of add view. Rewrite this method if you want to change a link of add button at the list view.

RESTModelISCore

RESTModelISCore represents core that provides a standard resource with default CRUD operations.

Options

	
RESTModelISCore.rest_detailed_fields

	

Set rest_detailed_fields if you want to define fields that will be returned inside REST response for a request on
concrete object (an URL contains an ID of a concrete model object. For example an URL of a request is /api/user/1/).
This option rewrites settings inside RESTMeta (you can find more about it at section #TODO add link).

	
RESTModelISCore.rest_general_fields

	

Set rest_general_fields if you want to define fields that will be returned inside REST response for a request on
more than one object (an URL does not contain an ID of a concrete objects, eq. /api/user/). This defined set of
fields is used for generating result of a foreign key object. This option rewrites settings inside RESTMeta
(you can find more about it at section #TODO add link).

	
RESTModelISCore.rest_extra_fields

	

Use rest_extra_fields to define extra fields that is not returned by default, but can be extra requested
by a HTTP header X-Fields or a GET parameter _fields. More info you can find in django-piston library
documentation. This option rewrites settings inside RESTMeta (you can find more about it at section #TODO add link).

	
RESTModelISCore.rest_default_guest_fields

	

rest_guest_fields contains list of fields that can be seen by user that has not permission to see the whole
object data. In case that a user has permission to see an object that is related with other object that can not be
seen. In this situation is returned only fields defined inside rest_guest_fields. This option rewrites settings
inside RESTMeta (you can find more about it at section #TODO add link).

	
RESTModelISCore.rest_default_detailed_fields

	

The purpose of rest_default_detailed_fields is the same as rest_detailed_fields but this option does not rewrite
settings inside RESTMeta but the result fields is intersection of RESTMeta options and this option.

	
RESTModelISCore.rest_default_general_fields

	

The purpose of rest_default_general_fields is the same as rest_general_fields but this option does not rewrite
settings inside RESTMeta but the result fields is intersection of RESTMeta options and this option.

	
RESTModelISCore.rest_default_extra_fields

	

The purpose of rest_default_extra_fields is the same as rest_extra_fields but this option does not rewrite
settings inside RESTMeta but the result fields is intersection of RESTMeta options and this option.

	
RESTModelISCore.rest_default_guest_fields

	

The purpose of rest_default_guest_fields is the same as rest_guest_fields but this option does not rewrite
settings inside RESTMeta but the result fields is intersection of RESTMeta options and this option.

	
RESTModelISCore.rest_allowed_methods

	

A default value of rest_allowed_methods is:

rest_allowed_methods = ('get', 'delete', 'post', 'put')

Use this option to remove a REST operation from a model REST resource. For example if you remove post, the REST
resource will not be able to create new model object:

rest_allowed_methods = ('get', 'delete', 'put')

	
RESTModelISCore.rest_obj_class_names

	

This option is used with UIIScore. A REST resource will return a list of defined class names inside a response.
The atribute inside response has named _class_names.

	
RESTModelISCore.rest_resource_class

	

A default resource class is RESTModelResource. You can change it with this attribute.

 Copyright 2015, Luboš Mátl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-is-core 1.4 documentation

Views

 Copyright 2015, Luboš Mátl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-is-core 1.4 documentation

REST

 Copyright 2015, Luboš Mátl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-is-core 1.4 documentation

Permissions

 Copyright 2015, Luboš Mátl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-is-core 1.4 documentation

Models

 Copyright 2015, Luboš Mátl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-is-core 1.4 documentation

Forms

is_core.forms contains helpers for forms rutines. The most interesting class is SmartForm.

SmartForm

Imagine you need to dynamically change behaviour of your form fields, e.g. make a field required when some
condition holds. In pure Django, you would override the __init__ method and change the field attributes there.
However, that’s pretty uncomfortable as you need to explicitly call super. More importantly, the __init__ method
tends to grow and become unreadable for complex forms. With SmartForm, you can define _init_fields method
instead and put your field-related logic there. For example:

from is_core.forms import SmartForm

class MyForm(SmartForm):

 def _init_fields(self):

 for field in self.fields:
 if field.name == 'foo':
 # do logic for foo
 elif field.name == 'bar':
 # do logic for bar

Even more readable way is to define the _init_{field_name} method for the individual fields thus removing
the clumsy for cycle and if-elif-else:

from is_core.forms import SmartForm

class MyForm(SmartForm):

 def _init_foo(self, field):
 field.required = False
 if self._my_secret_condition():
 # do logic for foo

 def _init_bar(self, field):
 # do logic for bar

Yay! It’s pretty, isn’t it?

SmartForm contains helper methods that are called when an instance is created in a following order:

	_pre_init_fields

	init{field_name} methods

	_init_fields

	
SmartForm._pre_init_fields(self)

	

This method is called when a form is created (after super __init__ method and before _init_{field_name} methods).
It makes fields from base_required_fields attribute required.

	
SmartForm._init_{field_name}(self, field)

	

This method is called when a form has foo field and it is created (after super __init__ method and after
_pre_init_fields method). You can modify the field’s attributes here. There is no need to return
the field as it modifies the internal state of the passed field.:

from is_core.forms import SmartForm

class MyForm(SmartForm):

 def _init_foo(field):
 # put logic here

	
SmartForm._init_fields(self)

	

This method is called when a form is created (after super __init__ method and after _init_{field_name} methods:

from is_core.forms import SmartForm

class MyForm(SmartForm):

 def _init_fields(self):
 # put logic here

	
SmartForm.changed_data

	

This attribute contains changed data as a dict. More details. [https://docs.djangoproject.com/en/1.8/ref/forms/api/#django.forms.Form.changed_data]

SmartFormMixin

In case that you have your own form you can use this mixin to get same functionality as SmartForm.

	
smartform_factory(request, form, readonly_fields=None, required_fields=None,

	
exclude=None, formreadonlyfield_callback=None, readonly=False)

	

A wrapper factory for SmartForm.

 Copyright 2015, Luboš Mátl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-is-core 1.4 documentation

Filters

 Copyright 2015, Luboš Mátl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-is-core 1.4 documentation

Auth

 Copyright 2015, Luboš Mátl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	django-is-core 1.4 documentation

Utils

 Copyright 2015, Luboš Mátl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	django-is-core 1.4 documentation

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | V

_

 	

 	_init_fields() (SmartForm method)

 	

 	_pre_init_fields() (SmartForm method)

A

 	

 	abstract (ISCore attribute)

 	

 	api_url_name (UIModelISCore attribute)

C

 	

 	changed_data (SmartForm attribute)

D

 	

 	default_list_filter (UIModelISCore attribute)

 	default_model_view_classes (UIModelISCore attribute)

 	default_rest_pattern_class (RESTISCore attribute)

 	

 	default_ui_pattern_class (UIISCore attribute)

 	delete_model() (ModelISCore method)

E

 	

 	export_display (UIModelISCore attribute)

 	

 	export_types (UIModelISCore attribute)

F

 	

 	form_class (ModelISCore attribute)

 	form_exclude (ModelISCore attribute)

 	form_fields (ModelISCore attribute)

 	

 	form_fieldsets (UIModelISCore attribute)

 	form_inline_views (UIModelISCore attribute)

 	form_readonly_fields (UIModelISCore attribute)

G

 	

 	get_add_url() (UIISCore method)

 	get_api_url() (UIISCore method)

 	get_api_url_name() (UIISCore method)

 	get_default_action() (ModelISCore method)

 	get_default_list_filter() (UIISCore method)

 	get_export_display() (UIISCore method)

 	get_export_types() (UIISCore method)

 	get_form_class() (ModelISCore method)

 	get_form_exclude() (ModelISCore method)

 	get_form_fields() (ModelISCore method)

 	get_form_fieldsets() (UIISCore method)

 	get_form_inline_views() (UIISCore method)

 	get_form_readonly_fields() (UIISCore method)

 	get_list_actions() (ModelISCore method)

 	

 	get_list_display() (UIISCore method)

 	get_menu_item() (UIISCore method)

 	get_ordering() (ModelISCore method)

 	get_queryset() (ModelISCore method)

 	get_rest_classes() (RESTISCore method)

 	get_rest_patterns() (RESTISCore method)

 	get_show_in_menu() (UIISCore method)

 	get_ui_form_class() (UIISCore method)

 	get_ui_form_exclude() (UIISCore method)

 	get_ui_form_fields() (UIISCore method)

 	get_ui_patterns() (UIISCore method)

 	get_url_prefix() (ISCore method)

 	get_view_classes() (UIISCore method)

I

 	

 	init_request() (ISCore method)

 	init_rest_request() (RESTISCore method)

 	

 	init_ui_request() (UIISCore method)

 	is_active_menu_item() (UIISCore method)

L

 	

 	list_actions (ModelISCore attribute)

 	

 	list_display (UIModelISCore attribute)

M

 	

 	menu_group (ISCore attribute)

 	menu_group() (ModelISCore method)

 	

 	menu_url() (UIISCore method)

 	menu_url_name (UIISCore attribute)

 	

 	(UIModelISCore attribute)

O

 	

 	ordering (ModelISCore attribute)

P

 	

 	post_delete_model() (ModelISCore method)

 	post_save_model() (ModelISCore method)

 	pre_delete_model() (ModelISCore method)

 	

 	pre_save_model() (ModelISCore method)

 	preload_queryset() (ModelISCore method)

R

 	

 	rest_allowed_methods (RESTModelISCore attribute)

 	rest_classes (RESTISCore attribute)

 	rest_default_detailed_fields (RESTModelISCore attribute)

 	rest_default_extra_fields (RESTModelISCore attribute)

 	rest_default_general_fields (RESTModelISCore attribute)

 	rest_default_guest_fields (RESTModelISCore attribute), [1]

 	

 	rest_detailed_fields (RESTModelISCore attribute)

 	rest_extra_fields (RESTModelISCore attribute)

 	rest_general_fields (RESTModelISCore attribute)

 	rest_obj_class_names (RESTModelISCore attribute)

 	rest_resource_class (RESTModelISCore attribute)

S

 	

 	save_model() (ModelISCore method)

 	

 	show_in_menu (UIISCore attribute)

V

 	

 	verbose_name() (ModelISCore method)

 	

 	view_classes (UIISCore attribute)

 Copyright 2015, Luboš Mátl.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

