

Introduction to web development

Contents:

	Introduction
	The Internet

	Http and the Request / Response cycle

	The Client Server Architecture

	HTML

	Databases

	Exercise

	Take Away

	Setup
	Project folder

	Installing Django

	Creating Django project

	settings.py

	Creating the Database

	Inspecting the Database

	Running the server

	Creating & installing the Blog App

	Creating Web Services
	website/urls.py

	Saying hello

	GET parameters

	Exercises

	Resources

Introduction

There are a few things we need to explain before getting stuck in.

We focus on the overall picture. To do this we use a few analogies not to be
taken too literally.

The Internet

The internet is a network of computers. Its goal is to enable communication
between them.

A network is composed of nodes and edges. Visually it is a set of dots and
connections. The London tube map is an example.

Your family, friends, colleagues, and acquaintances can be thought of as
a network of people. (This is how social networks model our relationships.)

To communicate we must have a means by which our messages reach the intended
destination.

On the one hand we need something physical to connect the computers. These are
the wires.

On the other hand we need some conventions (software) to ensure messages reach their
destinations.

One way this is done over the internet is called TCP/IP.

TCP ensures the messages arrive safely with nothing missing.
Every computer has an IP which is a unique address.

You can think of TCP as an envelope and IP as the address on it.

Http and the Request / Response cycle

To communicate effectively the elements of a network need to agree on some
protocol. That protocol for humans can be english but there are other
‘protocols’, chinese for example.

Many computers on the internet use Http to communicate.

Every time you click on a link, or type a url and enter into a browser, you are
making what is called an http GET request.

Here is an example that uses curl from the command line as a client:

$ curl -sv www.example.com -o /dev/null
* About to connect() to www.example.com port 80 (#0)
* Trying 93.184.216.119...
* Connected to www.example.com (93.184.216.119) port 80 (#0)
> GET / HTTP/1.1
> User-Agent: curl/7.30.0
> Host: www.example.com
> Accept: */*
>
< HTTP/1.1 200 OK
< Accept-Ranges: bytes
< Cache-Control: max-age=604800
< Content-Type: text/html
< Date: Thu, 21 Aug 2014 12:09:46 GMT
< Etag: "359670651"
< Expires: Thu, 28 Aug 2014 12:09:46 GMT
< Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
< Server: ECS (iad/182A)
< Content-Length: 1270
<
< <!doctype html>
< <html>
< <head>
< <title>Example Domain</title>
< </head>
< <body>
< <div>
< <h1>Example Domain</h1>
< <p>This domain is established to be used for illustrative examples in documents.</p>
< </div>
< </body>
< </html>

Note this has been abridged.

The lines starting with:

	‘*’ is information from the curl program.

	‘>’ is the http request text that curl is sending.

	‘<’ is the http response text that curl received.

Note that the response includes the html page that will be rendered in
a browser.

Tip:

Http is just text. We send text requests, we recieve text responses. All
complex pretty pages in the browser are created from these text responses.

The Client Server Architecture

In software development an architecture is a way of organising code you see time and time
again. Its also called a pattern. Similar perhaps to how journalists follow
a pattern when structuring their articles.

Think about the meaning of the words.

A browser is a great example of a client. It sends http requests to a server.
A server returns an http response, which the browser then renders as a web page.

We will see other examples of a client - server architecture when we introduce
using databases.

HTML

Browsers understand how to render HTML.

HTML is a way to structure text.

<!doctype html>
<html>
<head>
 <title>Example Domain</title>
</head>
<body>
<div>
 <h1>A Header</h1>
 <p>Here is some text between p elements</p>
</div>
</body>
</html>

Note it consists of elements like this: <el>content<el>

We won’t delve any deeper than this as we don’t need to.

Databases

Data, or information, needs to be stored somewhere.

Typically we save data in files.

Databases are another way of saving data which has some advantages over plain
files.

Web applications often save data in databases rather than files.

You can think of a database much as you would spreadsheet software. It stores
information in a collection of tables.

Exercise

Using Chrome, open developer tools: view/Developer/DeveloperTools

[image: _images/open-dev-tools-chrome.png]
A tab will pop up. Click on the Network tab.

Now type a URL (web address) that is familiar to you.

Inspect the http GET request.

Here we try with www.example.com:

[image: _images/req-res-chrome.png]
Note we have same information we found with curl above. It is presented in
a more user friendly way however.

Explore one of your favourite websites using the developer tools to inspect
what is going on at the http network level.

Take Away

All internet experiences, online shopping, news, videos, sending texts... boil down to
computers sending messages much like what we have described above.

Http is not the only protocol in town, but the concept of computers acting as
clients and servers communicating by sending requests and responses is almost
universal.

Setup

Project folder

Lets create a project directory:

mkdir website
cd website

Installing Django

Pip is a way to install python code. Python code is installed as a package.

To list all currently installed python packages:

$ pip freeze

To install a Django:

$ pip install django

Creating Django project

We use a script supplied by django to set up a new project:

$ django-admin.py startproject website

You should see this folder structure and files generated:

website
├── manage.py
└── website
 ├── __init__.py
 ├── settings.py
 ├── urls.py
 └── wsgi.py

The important files are manage.py, settings.py, and urls.py.

settings.py

A lot of configuration is needed to setup a web application.

website/settings.py contains a lot of names that define all the configuration
for our website. All the defaults are good for now.

Note the INSTALLED_APPS name is defined as a tuple of strings. We will be
adding to that tuple shortly.

Note also the DATABASES name is defined as a dictionary.

Creating the Database

Notice that the current directory doesn’t include a db.sqlite3 file.

Django like all web frameworks stores its data in a database. Lets create that
database now:

python manage.py syncdb

You will see some output such as: Creating table auth_user

(django) website $./manage.py syncdb
Creating tables ...
Creating table django_admin_log
Creating table auth_permission
Creating table auth_group_permissions
Creating table auth_group
Creating table auth_user_groups
Creating table auth_user_user_permissions
Creating table auth_user
Creating table django_content_type
Creating table django_session

You just installed Django's auth system, which means you don't have any superusers defined.
Would you like to create one now? (yes/no): yes
Username (leave blank to use 'greg'):
Email address:
Password:
Password (again):
Superuser created successfully.
Installing custom SQL ...
Installing indexes ...
Installed 0 object(s) from 0 fixture(s)

Now the top level folder website contains a file called db.sqlite3. This is
your database.

Inspecting the Database

Download sqlite3 from www.sqlite.org/download.html. Choose the
sqlite-shell-win32-x86-....zip file. Unzip it by double
clicking it. Then drag and drop into C:BOOTCAMPPython34The last step is to add it to a directory on the PATH.

A database application is like a server.

We send requests using clients. The clients in this case aren’t the browser but
typically programs such as our python website.

We will use another server to independently inspect our database.

You launch the client by typing:

sqlite3 db.sqlite3

The sqlite3 program provides a new type of shell which is meant for
inspecting our database.

Here is an example interaction:

(django)➜ website sqlite3 db.sqlite3
SQLite version 3.7.13 2012-07-17 17:46:21
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .tables
auth_group auth_user_user_permissions
auth_group_permissions django_admin_log
auth_permission django_content_type
auth_user django_session
auth_user_groups
sqlite> select * from auth_user;
1|pbkdf2_sha256$12000$YqWBCAkWemZC$+hazwa/dPJNczpPitJ2J0KR8UuAX11txLlSkrtAXk5k=|2014-08-21 14:59:05.171913|1|greg||||1|1|2014-08-21 14:59:05.171913
sqlite>

The .tables command lists all the tables that exist in the database. We
recognise these as being the same that were created earlier by running the
.manage.py syncdb command.

The select * from auth_user; is SQL. SQL is a language dedicated to programming databases. This command means give me everything in the auth_user table.

Type:

sqlite3> .quit

To exit.

Running the server

You run the server with:

./manage.py runserver

Now you can send http requests using your browser as client. Enter:

http://127.0.0.:8000/

You should see:

[image: _images/django-it-worked.png]
You can quit the server at any point by pressing together cntrl + c

Creating & installing the Blog App

Tip:

Django like any framwork, provides a way of organising your code. It provides
in effect a proven architecture which you learn to work within.

A good webframework makes a lot of decisions for you. You build on the combined
experience of the developpers who created it.

Django introduces the concept of an app as a way to organise code.

Our Blog will be an app. We create it thusly:

./manage.py startapp blog

We now have a foler directory generated looking like:

├── blog
│ ├── __init__.py
│ ├── admin.py
│ ├── models.py
│ ├── tests.py
│ └── views.py
├── db.sqlite3
├── manage.py
└── website
 ├── __init__.py
 ├── settings.py
 ├── urls.py
 └── wsgi.py

We now need to tell our website about the blog apps’ existence. We do this by
adding it to the INSTALLED_APPS tuple.

INSTALLED_APPS = (
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'website',
 'blog',
)

Creating Web Services

We will start by programming the server to return a responses to an http GET
request.

We will always need to do two things:

	map a url to a view function

	define the view function

website/urls.py

This file matches urls to view functions.

When the django server receives a url. It searches in this file for one that
matches. If it matches it executes the mapped function. If it doesn’t find
anything you get a 404 - page not found error.

Saying hello

Django provides us with what it calls view functions.

These are orgindary pythong functions, but they take a request object and they
response with a string or what is called an HTTPResponse object.

In your blog app, open the views.py file.

Add this to it:

from django.http import HttpResponse

def hello(request):
 return HttpResponse('hello')

Now we need to configure our website with which request will trigger this view
function. We do this by adding a line to website/urls.py:

urlpatterns = patterns('',
 url(r'^hello$', 'blog.views.hello'),
 url(r'^admin/', include(admin.site.urls)),
)

In our browser, http://localhost:8000 responds with ‘hello’.

We have responded to a GET request.

We will often follow this pattern of creating a view function and hooking it up to a url.

GET parameters

http GET requests can pass parameters in the URL.

Here is an example:

http://localhost:8000/whoami/?name=greg&sex=male

The parameter section is defined by ? followed by & separated keys and values.

Here we have the parameters:
- name, equal to greg
- sex, equal to male

As usual we need to do two things create a view function and hook it up in website/urls.py

First the view function:

def whoami(request):

 sex = request.GET['sex']
 name = request.GET['name']

 response = 'You are ' + name + ' and of sex ' + sex

 return HttpResponse(response)

Note that we can extract anything passed in the url after the ? character
using the request.GET dictionary.

Now website/urls.py:

urlpatterns = patterns('',
 url(r'^$', 'blog.views.hello'),
 url(r'^time$', 'blog.views.time'),
 url(r'^whoami/$', 'blog.views.whoami'),
 url(r'^admin/', include(admin.site.urls)),
)

You should now get as a response: You are greg and of sex male

Exercises

A clock service

You can get an exact time by doing the following:

>>> import datetime
>>> datetime.datetime.now()

Program your server to response the time when it recieves an http GET request
to this url:

http://localhost:8000/time

You will need to create a view function in blog/views.py, and hook it up to a url in
website/urls.py.

Body Mass Index Service

You have just been contracted by the NHS to provide a service that calculates
the BMI. Both other websites and mobile apps will be using your service.

The endpoint (url) will respond successfully to the following type of url:

bmi/?mass=75&height=182

Look up the BMI equation on wikipedia, and write a bmi view function and hook
it up to the website urls.

You may have to revisit the notion of type in Python. Remember there is
a difference between ‘5’ and 5.

To transform a number as a string into a number you can cast it using either
int() or float():

>>> float('5')
5.0
>>> int('5')
5

Your Serivce

By now you have discovered that you can trigger any type of programming sending
ba GET request to your server. You simply hook up a url to a view function.

Come up with something that is useful to you!

Anything that involves simple maths is easily explored.

Solutions:

You can find some suggestions by adding _solutions to the above url.

Resources

For more use the following:

	The Django Girls tutorial [http://tutorial.djangogirls.org/] For
begginers. Publish a blog in a day!

	The Official Django tutorial [https://docs.djangoproject.com/en/dev/intro/tutorial01/] is essential.

	Test Driven Development with Python [http://chimera.labs.oreilly.com/books/1234000000754/index.html]
teaches the tools and best practices followed by web professionals.

Index

Solutions to Creating Web Services

website/urls.py

from django.conf.urls import patterns, include, url

from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
 url(r'^$', 'blog.views.hello'),
 url(r'^time$', 'blog.views.time'),
 url(r'^whoami/$', 'blog.views.whoami'),
 url(r'^bmi/$', 'blog.views.bmi'),
 url(r'^admin/', include(admin.site.urls)),
)

blog/views.py

from django.shortcuts import render

from django.http import HttpResponse

def hello(request):
 return HttpResponse('hello there')

import datetime
def time(request):
 now = datetime.datetime.now()
 return HttpResponse(now)

def whoami(request):

 sex = request.GET['sex']
 name = request.GET['name']

 response = 'You are {}, of sex {}'.format(name, sex)

 return HttpResponse(response)

bmi_html = """
<html>
<head></head>
<body>
 <h1>BMI calculator</h1>
 <p>Your bmi is {}</p>
 <p>see where you are on this chart:</p>

</body>
</html>
"""

def bmi(request):

 mass = request.GET['mass']
 height = request.GET['height']

 bmi = float(mass) / float(height)**2

 response = bmi_html.format(bmi)

 return HttpResponse(response)

 _static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Introduction to web development

 		Introduction

 		The Internet

 		Http and the Request / Response cycle

 		The Client Server Architecture

 		HTML

 		Databases

 		Exercise

 		Take Away

 		Setup

 		Project folder

 		Installing Django

 		Creating Django project

 		settings.py

 		Creating the Database

 		Inspecting the Database

 		Running the server

 		Creating & installing the Blog App

 		Creating Web Services

 		website/urls.py

 		Saying hello

 		GET parameters

 		Exercises

 		A clock service

 		Body Mass Index Service

 		Your Serivce

 		Resources

_images/req-res-chrome.png
Q Elements | Network| Sources Timeline Profiles Resources Audits Console = £ 0, x

L4

Name
Path

o example.com

detector js
homgenaoacgigpkkijjekpi¢

2 requests | 1.6 KB transferred .

[JPreserve log [)Disable cache

* [enders | preview Response Timing

Remote Address: 93.184.216.119:80
Request URL: http://wu. example. con/
Request Method: GET
Status Code: @ 208 0K
v Request Headers view source
Accept: text/ntml,application/xhtmlsxnl,application/xnl;
8
Accept-Encoding: gzip, detlate, sdch
Accept-Language: en-Us, en; g
Connection: keep-alive
DNT: 1
Host: . example. con
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_9_4) AppleWebKit/537.36 (KHTM
L, like Gecko) Chrome/36.0.1985.143 Safari/537.36
v Response Headers view source
Accept-Ranges: bytes
Cache-Control: max-age=604800
Content-Length: 1270
Content-Type: text/html
Date: Thu, 21 Aug 2014 11:55:16 GMT
Etag: "359670651"
Expires: Thu, 28 Aug 2014 11:55:16 GHT
Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
Server: ECS (ewr/1584)
X-Cache: HIT
x-ec-custom-error: 1

9, inage/webp, =/+;

_images/open-dev-tools-chrome.png
® Chrome File Edit RUCTN History Bookmarks Window Users —Help

000 oummeoman | AlWays Show Bookmarks Bar 08
M o— 1 Stop e
S C [www.exampl ¢ oo peload This Page %R
Enter Presentation Mode ~ 03%F
Enter Full Screen ~3%F
Actual Size %0
Zoom In %+
Zoom Out %
Encoding >
Developer [l View Source

Example Doma DeRTSoP 1508

JavaScript Console 3]

This domain is established to be used for illustrative examples in documents. You
may use this domain in examples without prior coordination or asking for
permission.

More information...

_images/django-it-worked.png
€ - € [J localhost:8000

It worked!
Congratulations on your first Django-powered page.

Of course, you havent actually done any work yet. Next, start your first app by running python manage.py startapp {appnamel.

You'e seeing this message because you have DEsUG = True in your Diango settings file and you havent configured any URLS. Get to work!

