

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/django-geoip-redirection/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/django-geoip-redirection/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

 [image: Build Status] [https://travis-ci.org/vinitkumar/django-geoip-redirection]

Django-geoip-redirection

[image: World Map]

GeoIP based redirection is awesome and achieving it isn’t too hard either. I wrote this middleware
to ensure that my website would get redirected properly with regards to the location of the user
accessing the website.

Usage:

Install via pypi: pip install django_geoip_redirection

Add the middleware in your settings file:

MIDDLEWARE_CLASSES = (
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'cms.middleware.language.LanguageCookieMiddleware',
 'django_geoip_redirection.middleware.LocationMiddleWare',
)

Also add django_geoip_redirection to INSTALLED APPS:

INSTALLED_APPS = (
 'django_geoip_redirection',

)

Customization:

Change the array for extension as per country you
have to support
if request.path[:4] in ["/en/", "/nl/", "/in/"]:
 return None

if 'HTTP_X_FORWARDED_FOR' in request.META:
 request.META['REMOTE_ADDR'] = request.META['HTTP_X_FORWARDED_FOR']
ip_address = request.META['REMOTE_ADDR']
get country name using Maxmind database.
Now, just match and redirect.
Likewise, replace the name of country to match and redirect.
country = get_country_request(ip_address)
if country == "India":
 return HttpResponseRedirect('/in/')
elif country == "Netherlands":
 return HttpResponseRedirect('/nl/')
else:
 return HttpResponseRedirect('/en/')
return None

You would also need to place the GeoIP.dat.dat present inside the data folder to
your project root directory.

How to Contribute

There are many ways you can help contribute to this project. Contributing
code, writing documentation, reporting bugs, as well as reading and providing
feedback on issues and pull requests, all are valid and necessary ways to
help.

Committing Code

The great thing about using a distributed versioning control system like git
is that everyone becomes a committer. When other people write good patches
it makes it very easy to include their fixes/features and give them proper
credit for the work.

We recommend that you do all your work in a separate branch. When you
are ready to work on a bug or a new feature create yourself a new branch. The
reason why this is important is you can commit as often you like. When you are
ready you can merge in the change. Let’s take a look at a common workflow:

git checkout -b task-566
... fix and git commit often ...
git push origin task-566

The reason we have created two new branches is to stay off of master.
Keeping master clean of only upstream changes makes yours and ours lives
easier. You can then send us a pull request for the fix/feature. Then we can
easily review it and merge it when ready.

Writing Commit Messages

Writing a good commit message makes it simple for us to identify what your
commit does from a high-level. There are some basic guidelines we’d like to
ask you to follow.

A critical part is that you keep the first line as short and sweet
as possible. This line is important because when git shows commits and it has
limited space or a different formatting option is used the first line becomes
all someone might see. If your change isn’t something non-trivial or there
reasoning behind the change is not obvious, then please write up an extended
message explaining the fix, your rationale, and anything else relevant for
someone else that might be reviewing the change. Lastly, if there is a
corresponding issue in Github issues for it, use the final line to provide
a message that will link the commit message to the issue and auto-close it
if appropriate.

Add ability to travel back in time

You need to be driving 88 miles per hour to generate 1.21 gigawatts of
power to properly use this feature.

Fixes #88

Coding style

When writing code to be included in django-user-accounts keep our style in mind:

	Follow PEP8 [http://www.python.org/dev/peps/pep-0008/] there are some
cases where we do not follow PEP8. It is an excellent starting point.

	Follow Django’s coding style [http://docs.djangoproject.com/en/dev/internals/contributing/#coding-style]
we’re pretty much in agreement on Django style outlined there.

We would like to enforce a few more strict guides not outlined by PEP8 or
Django’s coding style:

	PEP8 tries to keep line length at 80 characters. We follow it when we can,
but not when it makes a line harder to read. It is okay to go a little bit
over 80 characters if not breaking the line improves readability.

	Use double quotes not single quotes. Single quotes are allowed in cases
where a double quote is needed in the string. This makes the code read
cleaner in those cases.

	Blank lines should contain no whitespace.

	Docstrings always use three double quotes on a line of their own, so, for
example, a single line docstring should take up three lines not one.

	Imports are grouped specifically and ordered alphabetically. This is shown
in the example below.

	Always use reverse and never @models.permalink.

	Tuples should be reserved for positional data structures and not used
where a list is more appropriate.

	URL patterns should use the url() function rather than a tuple.

Here is an example of these rules applied:

first set of imports are stdlib imports
non-from imports go first then from style import in their own group
import csv

second set of imports are Django imports with contrib in their own
group.
from django.core.urlresolvers import reverse
from django.db import models
from django.utils import timezone
from django.utils.translation import ugettext_lazy as _

from django.contrib.auth.models import User

third set of imports are external apps (if applicable)
from tagging.fields import TagField

fourth set of imports are local apps
from .fields import MarkupField

class Task(models.Model):
 """
 A model for storing a task.
 """

 creator = models.ForeignKey(User)
 created = models.DateTimeField(default=timezone.now)
 modified = models.DateTimeField(default=timezone.now)

 objects = models.Manager()

 class Meta:
 verbose_name = _("task")
 verbose_name_plural = _("tasks")

 def __unicode__(self):
 return self.summary

 def save(self, **kwargs):
 self.modified = datetime.now()
 super(Task, self).save(**kwargs)

 def get_absolute_url(self):
 return reverse("task_detail", kwargs={"task_id": self.pk})

 # custom methods

class TaskComment(models.Model):
 # ... you get the point ...
 pass

Pull Requests

Please keep your pull requests focused on one specific thing only. If you
have a number of contributions to make, then please send seperate pull
requests. It is much easier on maintainers to receive small, well defined,
pull requests, than it is to have a single large one that batches up a
lot of unrelated commits.

If you ended up making multiple commits for one logical change, please
rebase into a single commit.

git rebase -i HEAD~10 # where 10 is the number of commits back you need

This will pop up an editor with your commits and some instructions you want
to squash commits down by replacing ‘pick’ with ‘s’ to have it combined with
the commit before it. You can squash multiple ones at the same time.

When you save and exit the text editor where you were squashing commits, git
will squash them down and then present you with another editor with commit
messages. Choose the one to apply to the squashed commit (or write a new
one entirely.) Save and exit will complete the rebase. Use a forced push to
your fork.

git push -f

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/minus.png

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

